A hybrid three-axis magnetic sensor for calculating the accurate direction of the earth magnetism. The hybrid three-axis magnetic sensor includes: a flux gate type magnetic sensor which is so formed that a base serves as a main member and detects two axis components of a magnetic vector defined by a plane parallel to the base; a Hall element which detects another component of the magnetic vector orthogonal to the base; a tilt sensor which detects a tilt angle of the base; and a CPU, wherein the flux gate type magnetic sensor and the Hall element are integrally structured together as a hybrid ic. The thus detected three dimensional magnetic vector is corrected in the light of inclination of the base, so that the direction of the earth magnetism is accurately calculated.
|
3. An omnidirectional magnetic sensor, comprising:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector; and
a tilt sensor which detects inclination of the base,
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic, and wherein the base includes a pattern which transfers a detection signal outputted from said tilt sensor, and the detection signal is directly introduced to the base via the pattern when said tilt sensor is mounted on the base.
6. An omnidirectional magnetic sensor, comprising:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector;
a tilt sensor which detects inclination of the base; and
a film base mounted on the base in the form externally extended from the base, wherein said tilt sensor is mounted on said film base, said film base is folded toward the base, and whole members including said tilt sensor are fixed;
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic.
0. 29. A cellular phone, comprising:
an omnidirectional magnetic sensor, wherein the omnidirectional magnetic sensor comprises:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector; and
a tilt sensor which detects inclination of the base,
wherein the three axis magnetic sensor and the tilt sensor are integrally structured together as a hybrid ic, and
wherein the base includes a pattern which transfers a detection signal outputted from the tilt sensor, and the detection signal is directly introduced to the base via the pattern when the tilt sensor is mounted on the base.
0. 35. A cellular phone, comprising:
an omnidirectional magnetic sensor, wherein the omnidirectional magnetic sensor comprises:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector;
a tilt sensor which detects inclination of the base; and
a film base mounted on the base in the form externally extended from the base,
wherein the tilt sensor is mounted on the film base, the film base is folded toward the base, and whole members including the tilt sensor are fixed;
wherein the three axis magnetic sensor and the tilt sensor are integrally structured together as a hybrid ic.
5. An omnidirectional magnetic sensor, comprising:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector; and
a tilt sensor which detects inclination of the base, wherein said tilt sensor is an acceleration sensor which detects displacement in three axis directions,
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic, and wherein the base includes a pattern which transfers a detection signal outputted from said tilt sensor, and the detection signal is directly introduced to the base via the pattern when said tilt sensor is mounted on the base.
8. An omnidirectional magnetic sensor, comprising:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector;
a tilt sensor which detects inclination of the base, wherein said tilt sensor is an acceleration sensor which detects displacement in three axis directions; and
a film base mounted on the base in the form externally extended from the base, wherein said tilt sensor is mounted on said film base, said film base is folded toward the base, and whole members including said tilt sensor are fixed;
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic.
4. An omnidirectional magnetic sensor, comprising:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector; and
a tilt sensor which detects inclination of the base, wherein said tilt sensor detects a first inclination of an X axis and a second inclination of a Y axis which are parallel to the base,
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic, and wherein the base includes a pattern which transfers a detection signal outputted from said tilt sensor, and the detection signal is directly introduced to the base via the pattern when said tilt sensor is mounted on the base.
7. An omnidirectional magnetic sensor, comprising:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector;
a tilt sensor which detects inclination of the base, wherein said tilt sensor detects a first inclination of an X axis and a second inclination of a Y axis which are parallel to the base; and
a film base mounted on the base in the form externally extended from the base, wherein said tilt sensor is mounted on said film base, said film base is folded toward the base, and whole members including said tilt sensor are fixed;
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic.
0. 32. A cellular phone, comprising:
an omnidirectional magnetic sensor, wherein the omnidirectional magnetic sensor comprises:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector; and
a tilt sensor which detects inclination of the base, wherein the tilt sensor is an acceleration sensor which detects displacement in three axis directions,
wherein the three axis magnetic sensor and the tilt sensor are integrally structured together as a hybrid ic, and
wherein the base includes a pattern which transfers a detection signal outputted from the tilt sensor, and the detection signal is directly introduced to the base via the pattern when the tilt sensor is mounted on the base.
0. 11. A cellular phone comprising:
an omnidirectional magnetic sensor;
a display;
a gps receiving unit configured to receive position data; and
a map data processing unit configured to display a map on the display based on information from the omnidirectional magnetic sensor and the gps receiving unit,
wherein the omnidirectional magnetic sensor comprises:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector; and
a tilt sensor which detects inclination of the base,
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic, and
wherein the base includes a pattern which transfers a detection signal outputted from said tilt sensor, and the detection signal is directly introduced to the base via the pattern when said tilt sensor is mounted on the base.
0. 20. A cellular phone comprising:
an omnidirectional magnetic sensor;
a display;
a gps receiving unit configured to receive position data; and
a map data processing unit configured to display a map on the display based on information from the omnidirectional magnetic sensor and the gps receiving unit,
wherein the omnidirectional magnetic sensor comprises:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector;
a tilt sensor which detects inclination of the base; and
a film base mounted on the base in the form externally extended from the base,
wherein said tilt sensor is mounted on said film base, said film base is folded toward the base, and whole members including said tilt sensor are fixed;
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic.
1. A three axis magnetic sensor cellular phone, comprising:
a three axis magnetic sensor;
a display;
a gps receiving unit configured to receive position data; and
a map data processing unit configured to display a map on the display based on information from the three axis magnetic sensor and the gps receiving unit,
wherein the three axis magnetic sensor comprises:
a two axis magnetic sensor which detects two axis components of a magnetic vector defined by a plane parallel to a base, said two axis magnetic sensor being so formed that the base serves as a main member; and
a magnetic detecting element which detects a component corresponding to a direction orthogonal to the plane of the magnetic vector,
wherein said two axis magnetic sensor and said magnetic detecting element are integrally structured together as a hybrid ic, and wherein a plurality of coil patterns which detect the two axis components of the magnetic vector are formed over stacked bases.
0. 17. A cellular phone comprising:
an omnidirectional magnetic sensor;
a display;
a gps receiving unit configured to receive position data; and
a map data processing unit configured to display a map on the display based on information from the omnidirectional magnetic sensor and the gps receiving unit,
wherein the omnidirectional magnetic sensor comprises:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector; and
a tilt sensor which detects inclination of the base,
wherein said tilt sensor is an acceleration sensor which detects displacement in three axis directions,
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic, and
wherein the base includes a pattern which transfers a detection signal outputted from said tilt sensor, and the detection signal is directly introduced to the base via the pattern when said tilt sensor is mounted on the base.
0. 26. A cellular phone comprising:
an omnidirectional magnetic sensor;
a display;
a gps receiving unit configured to receive position data; and
a map data processing unit configured to display a map on the display based on information from the omnidirectional magnetic sensor and the gps receiving unit,
wherein the omnidirectional magnetic sensor comprises:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector;
a tilt sensor which detects inclination of the base, wherein said tilt sensor is an acceleration sensor which detects displacement in three axis directions; and
a film base mounted on the base in the form externally extended from the base,
wherein said tilt sensor is mounted on said film base, said film base is folded toward the base, and whole members including said tilt sensor are fixed;
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic.
0. 14. A cellular phone comprising:
an omnidirectional magnetic sensor;
a display;
a gps receiving unit configured to receive position data; and
a map data processing unit configured to display a map on the display based on information from the omnidirectional magnetic sensor and the gps receiving unit,
wherein the omnidirectional magnetic sensor comprises:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector; and
a tilt sensor which detects inclination of the base,
wherein said tilt sensor detects a first inclination of an X axis and a second inclination of a Y axis which are parallel to the base,
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic, and
wherein the base includes a pattern which transfers a detection signal outputted from said tilt sensor, and the detection signal is directly introduced to the base via the pattern when said tilt sensor is mounted on the base.
0. 23. A cellular phone comprising:
an omnidirectional magnetic sensor;
a display;
a gps receiving unit configured to receive position data; and
a map data processing unit configured to display a map on the display based on information from the omnidirectional magnetic sensor and the gps receiving unit,
wherein the omnidirectional magnetic sensor comprises:
a three axis magnetic sensor, formed on a base, which detects a three dimensional magnetic vector;
a tilt sensor which detects inclination of the base, wherein said tilt sensor detects a first inclination of an X axis and a second inclination of a Y axis which are parallel to the base; and
a film base mounted on the base in the form externally extended from the base,
wherein said tilt sensor is mounted on said film base, said film base is folded toward the base, and whole members including said tilt sensor are fixed;
wherein said three axis magnetic sensor and said tilt sensor are integrally structured together as a hybrid ic.
2. A three axis magnetic sensor cellular phone as recited in
0. 9. The cellular phone of claim 1, wherein the map data processing unit is configured to rotate the map displayed on the display based on the information from the three axis magnetic sensor.
0. 10. The cellular phone of claim 1, wherein the map data processing unit is configured to change orientation of the map displayed on the display based on the information from the three axis magnetic sensor.
0. 12. The cellular phone of claim 11, wherein the map data processing unit is configured to rotate the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 13. The cellular phone of claim 11, wherein the map data processing unit is configured to change orientation of the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 15. The cellular phone of claim 14, wherein the map data processing unit is configured to rotate the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 16. The cellular phone of claim 14, wherein the map data processing unit is configured to change orientation of the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 18. The cellular phone of claim 17, wherein the map data processing unit is configured to rotate the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 19. The cellular phone of claim 17, wherein the map data processing unit is configured to change orientation of the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 21. The cellular phone of claim 20, wherein the map data processing unit is configured to rotate the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 22. The cellular phone of claim 20, wherein the map data processing unit is configured to change orientation of the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 24. The cellular phone of claim 23, wherein the map data processing unit is configured to rotate the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 25. The cellular phone of claim 23, wherein the map data processing unit is configured to change orientation of the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 27. The cellular phone of claim 26, wherein the map data processing unit is configured to rotate the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 28. The cellular phone of claim 26, wherein the map data processing unit is configured to change orientation of the map displayed on the display based on the information from the omnidirectional magnetic sensor.
0. 30. The cellular phone of claim 29, further comprising a display configured to display data based on information from the omnidirectional magnetic sensor.
0. 31. The cellular phone of claim 29, further comprising:
a display;
a gps receiving unit configured to receive position data from one or more gps satellites; and
a map data processing unit configured to display map data on the display.
0. 33. The cellular phone of claim 32, further comprising a display configured to display data based on information from the omnidirectional magnetic sensor.
0. 34. The cellular phone of claim 32, further comprising:
a display;
a gps receiving unit configured to receive position data from one or more gps satellites; and
a map data processing unit configured to display map data on the display.
0. 36. The cellular phone of claim 35, further comprising a display configured to display data based on information from the omnidirectional magnetic sensor.
0. 37. The cellular phone of claim 35, further comprising:
a display;
a gps receiving unit configured to receive position data from one or more gps satellites; and
a map data processing unit configured to display map data on the display.
|
1. Field of the Invention
The present invention relates to a measuring technique of the earth's natural magnetism, and it particularly relates to a terrestrial magnetism detecting sensor which corrects the error encountered in azimuth calculation, and also relates to an azimuth measuring method thereof.
2. Description of the Related Art
The terrestrial magnetism detecting sensor is utilized to measure the orientation of an observation spot. The terrestrial magnetism detecting sensor also simply referred to as a magnetic sensor or a terrestrial magnetic sensor is placed on a horizontal plane at the observation spot, and detects biaxial or two-axis components of a terrestrial magnetic vector in the horizontal plane. The magnetic bearing is calculated based on the two axis components detected by the terrestrial magnetism detecting sensor. The terrestrial magnetism detecting sensor is used in the navigation system employed in an automobile, and is put on the market after certain calibration procedure has been performed to correct the magnetic effect.
On the other hand, it is widely prevalent that the map data are displayed in the cellular phone and other mobile terminals. In the light of this current situation, the applicant of the present invention first propose that the terrestrial magnetic sensor be built into portable equipment such as the cellular phone and mobile terminal, and came to recognize the following objects in the course of examining the realization of his proposal. Namely, the portable equipment may be held at any position depending on the posture of an owner of the portable equipment or how it is held by the owner, so that the direction of the portable equipment is not stabilized and constantly changes. Thus, the terrestrial magnetic sensor equipped in the portable equipment may be inclined by any possible tilt angle with respect to the horizontal position, and its tilt angle may constantly fluctuate. Therefore, under such a usage environment, besides the removal of the static magnetic effect as described above, an effect due to the change of the posture and holding position need be eliminated so that detection signals of the terrestrial magnetic vector can be automatically corrected.
The present invention has been made by the applicant in recognition of the above and an object thereof is to provide a compact-size terrestrial magnetic sensor capable of automatically correcting inclination, and an azimuth measuring method utilizing the terrestrial magnetic sensor.
In Japanese Patent Application No. 2000-104689, the applicant of the present invention proposed a portable terminal equipment to which a two-axis magnetic sensor is built in, and proposed a position data display system which can process a map according to the orientation of the map displayed in the portable terminal equipment. Moreover, the applicant of the present invention herewith proposes an omnidirectional magnetic sensor which incorporates a tilt sensor or inclination sensor into a magnetic sensor and which is capable of automatically correcting the inclination in order to improve usability of the system.
According to an aspect of the present invention relating to a three axis magnetic sensor, the three axis magnetic sensor is so structured that the two axis magnetic sensor and a magnetism detecting element are integrally structured as a hybrid IC. The two axis magnetic sensor is so formed that a base serves as a main member and detects two axial components specified by a plane parallel to the base. The magnetic detecting element detects a component of a direction orthogonal to the plane. Thereby, the three axis magnetic sensor can detect three axial component of the magnetic vector of the terrestrial magnetism. As the magnetism detecting element, a magnetic induction element such as a Hall element which detects magnetism by the Hall effect may be used, or a magneto-resistance effect element such as an MR (magnetoresistive) element which detects the magnetism by a phenomenon in which an electric resistance varies relative to magnetization of ferromagnetic body may be used.
The two axis magnetic sensor may be structured such that a coil pattern for detecting the two axis components of the magnetic vector is formed on a stacked base. The two axis magnetic sensor may be a flux gate type magnetic sensor in which an amorphous ring coil serves as a core, and a first coil base for detecting a magnetic field component in the X axis of a plane parallel to the base and a second coil base for detecting a magnetic field component in the Y axis of the plane are stacked on the outer surface of an exciting coil base.
As a mounting embodiment in which the two axis magnetic sensor and the magnetism detecting element are integrally structured together, the base on which the two axis magnetic sensor is formed may include a pattern for transmitting a detection signal outputted from the magnetism detecting element, so that the detection signal may be directly introduced into the base via the pattern when the magnetism detecting element is mounted on the base.
According to another aspect of the present invention relating to an omnidirectional magnetic sensor, the omnidirectional magnetic sensor is structured such that a three axis magnetic sensor for detecting a three dimensional magnetic vector and a tilt sensor for detecting a tilt angle of the base are integrally formed together. “Being formed on the base” indicates, for example, that at least part of a structural component of the three axis magnetic sensor is so formed that the base serves as a main member, and it includes cases where other structural components of the three axis magnetic sensor is mounted outside the base and where all structural components of the three axis magnetic sensor are so formed that the base serves as the main member. For example, the two axis magnetic sensor which detects two axis components of a magnetic vector specified by a plane parallel to the base, may be formed with the base as the main member, while a magnetism detecting element which detects a component in a direction vertical to the plane of the magnetic vector may be so mounted that the magnetism detecting element is connected to a pattern formed on the base.
The tilt sensor may detect a tilt angle in the X axis and a tilt angle in the Y axis specified by a plane parallel to the base. The tilt sensor may be an acceleration sensor which detects displacement in the two axis direction or the three axis direction.
The base may include a pattern which transfers a detection signal outputted from the tilt sensor, so that the detection signal may be directly introduced to the base via the pattern when the tilt sensor is mounted on the base.
The omnidirectional magnetic sensor as recited may further comprise a film base mounted on the base in the form externally extended from the base, where the tilt sensor is mounted on the film base, the film base is folded toward the base, and whole members including the tilt sensor are fixed.
Moreover, the three axis magnetic sensor may be so formed that the base servers as a main member, and the three axis magnetic sensor may include a two axis magnetic sensor which detects two axis components of a magnetic vector defined by a plane parallel to the base, and a magnetism detecting element which detects a component corresponding to a direction orthogonal to the plane of the magnetic vector. The magnetism detecting element may be mounted on the film base. A flip chip method may be utilized to mount the element on the film.
According to still another aspect of the present invention relating to an azimuth measuring method, the azimuth measuring method includes the steps of: receiving a signal of a three-dimensional magnetic vector detected by a magnetic sensor; receiving inclination formed between three dimensional coordinates specified by the magnetic vector and a horizontal plane, from a tilt sensor; and calculating a magnetic vector which ought to be detected when the magnetic sensor is placed horizontal to the horizontal plane, based on the magnetic vector detected by the magnetic sensor and the inclination detected by the tilt sensor. Moreover, the azimuth measuring method may further include the step of calculating magnetic declination based on the calculated magnetic vector.
Moreover, any arbitrary combination of the abovementioned structural components in the present invention is still effective as an embodiment when applied as a method, a sensor, and a system and so forth.
Moreover, this summary of the invention does not necessarily describe all necessarily features so that the invention may also be sub-combination of these described features.
The invention will now be described based on the preferred embodiments, which do not intend to limit the scope of the present invention, but exemplify the invention. All of the features and the combinations thereof described in the embodiment are not necessarily essential to the invention.
The structure of an omnidirectional magnetic sensor according to present embodiments will be described referring to
In both structures shown in
The CPU 20 includes a coordinate transformation unit 202 and a magnetic declination calculating unit 204. The coordinate transformation unit 202 carries out a correction calculation by which to eliminate an effect caused by inclination, based on a magnetic vector (x, y, z), the pitch angle α and roll angle β. Thus, the coordinate transformation unit 202 calculates a horizontal magnetic vector (xh, yh, zh) detected when the base of the hybrid magnetic sensor 200 is placed horizontally with respect to the horizontal plane. The magnetic declination calculating unit 204 inputs the horizontal magnetic vector (xh, yh, zh) so as to calculate the magnetic declination θ. The magnetic declination calculating unit 204 may additionally calculate a dip φ.
Since when the base of the hybrid magnetic sensor 200 is tilted by α about the X axis and by β about the Y axis of a horizontal spatial coordinate system its magnetic vector is represented by (x, y, z), the horizontal magnetic vector (xh, yh, zh) is obtained by rotating the magnetic vector (x, y, z) by −β about the Y axis and by −α about the X axis as in the following equation (1).
Thus, the horizontal magnetic vector (xh, yh, zh) is expressed by:
xh=x cos β−z sin β
yh=−x sin β sin α+y cos α−z cos β sin α
zh=x sin β cos α+y sin α+z cos β cos α (2)
The magnetic declination calculating unit 204 obtains the magnetic declination θ of the terrestrial magnetism (S16) based on the coordinate-transformed X-axis component xh and Y-axis component yh of the magnetic vector, using the following equation (3).
θ=arc tan(yh/xh) (3)
In the magnetic declination calculating unit 204, the dip of the terrestrial magnetism, that is the angle φ formed between the terrestrial magnetic vector and the vertical direction, may further be obtained using the following equation (4).
φ=ar cos(zh/r) (4)
where r is the norm (magnitude) of the magnetic vector (xh, yh, zh) (namely the total magnetic force).
The GPS receiving unit 102 receives from the GPS satellites 114 the position data of the observation spot while the total magnetic force acquiring unit 104 transmits to the ground station 112 the position data received by the GPS receiving unit 102, and receives the total magnetic force r from the ground station 112. The total magnetic force acquiring unit 104 inputs the total magnetic force r to the coordinate transformation unit 202. The X-axis component x and Y-axis component y, of the magnetic vector, detected by and outputted from the flux gate type magnetic sensor 100, and the pitch angle α and roll angle β outputted from the tilt sensor 22 are inputted to the coordinate transformation unit 202. In the coordinate transformation unit 202, a Z-axis component z of the magnetic vector is obtained based on the X-axis component x, Y-axis component y and the total magnetic force r. Then, the horizontal magnetic vector (xh, yh, zh) is obtained by the coordinate transformation utilizing the pitch angle α and roll angle β. The magnetic declination calculating unit 204 calculates the magnetic declination θ of the terrestrial magnetism based on the horizontal magnetic vector, so that the calculated magnetic declination θ is inputted to map processing unit 206.
The map data processing unit 206 processes the map data received from the ground station 112 based on the magnetic declination θ, and the display 208 displays the processed map data on screen. For example, the map data processing unit 206 rotates the map in such a manner that the orientation of the map is aligned with the magnetic declination θ. Thus, on the screen of the cellular phone 110, the map is displayed which is aligned with the direction which the cellular phone owner looks at.
z=√{square root over (r2−x2−y2)} (5)
The coordinate transformation unit 202 obtains the horizontal magnetic vector (xh, yh, zh) by the coordinate transformation of the aforementioned equation (2), utilizing the pitch angle α and roll angle β (S30) . The magnetic declination calculating unit 204 calculates the magnetic declination θ from the coordinate transformed X-axis component x and Y-axis component y of the magnetic vector, by the above-mentioned equation (3) (S32).
It is to be noted that the altitude of the observation spot together with latitude and longitude thereof may be transmitted to the server 116 of the ground station 112 by utilizing a hybrid magnetic sensor 200 capable of detecting the altitude shown in
As described above, the hybrid magnetic sensor 200 according to the present embodiments is formed such that the base serves as a main member thereof, and is integrally structured such that the Hall element 24 and the tilt sensor 22 are mounted on the base, so as to realize compactness in size.
Moreover, by implementing the hybrid magnetic sensor 200 according to the present embodiments, the automatic correction against the inclination makes it possible to automatically correct and eliminate the effect caused by the inclination even when the hybrid magnetic sensor 200 is tilted in any direction or the inclination angle thereof varies and is not stabilized. Moreover, the hybrid magnetic sensor 200 can be easily built into portable equipment such as the cellular phone and mobile terminal. Note that the conventional magnetic azimuth sensor performs the calibration by use of a mechanical means such as a pendulum to maintain and track horizontality. Compared to such a conventional scheme, the hybrid magnetic sensor 200 thus formed according to the present embodiments is purely electronically operated, thus superior in responsibility, moreover there is no mechanical contacts thus capable of being used semipermanently. Moreover, since the hybrid magnetic sensor 200 is thus structured, it can be adapted to all possible positions and postures.
According to the present embodiments, the correction is carried out eliminating the effect caused by the inclination, so that the orientation of the terrestrial magnetism can be accurately measured.
Although the present invention has been described by way of exemplary embodiments, it should be understood that many changes and substitutions may be made by those skilled in the art without departing from the spirit and the scope of the present invention which is defined by the appended claims.
Patent | Priority | Assignee | Title |
11525700, | Feb 21 2019 | Seiko Epson Corporation | Electronic timepiece |
Patent | Priority | Assignee | Title |
3936949, | Jan 02 1973 | Grouzet | Static non-swinging course determining device on a vehicle |
4414753, | Jun 05 1980 | Crouzet | Process for compensating the magnetic disturbances in the determination of a magnetic heading, and devices for carrying out this process |
4452075, | Oct 29 1979 | Conoco Inc. | Push drill guidance indication apparatus |
4497034, | Aug 05 1981 | Nippon Soken, Inc. | Heading detecting apparatus |
4527155, | Mar 04 1981 | Nissan Motor Company, Limited | System for maintaining an orientation of characters displayed with a rotatable image |
4539760, | Oct 12 1982 | ROKE MANOR RESEARCH LIMITED, | Compass |
4686772, | May 23 1986 | Elbit Computers Ltd. | Electronic magnetic compass system |
4831563, | Jul 01 1986 | Pioneer Electronic Corporation | Method of processing output data from geomagnetic sensor |
4914605, | Oct 22 1984 | TELE ATLAS NORTH AMERICA, INC | Apparatus and method for displaying a map |
5012014, | Apr 26 1990 | Mobil Oil Corporation | Catalyst pretreatment for olefin hydration |
5105548, | Feb 29 1988 | INPUT OUTPUT, INC | Apparatus and method for determining azimuth, pitch and roll |
5172480, | Aug 31 1990 | Noranda Inc. | Borehole deviation monitor |
5297051, | Mar 18 1991 | Pioneer Electronic Corporation | Map display device |
5317515, | Jan 23 1991 | Sumitomo Electric Industries, Ltd. | Vehicle heading correction apparatus |
5321631, | Mar 07 1991 | Societe Nationale Industrielle et Aerospatiale | Method and self-contained system for harmonizing equipments on board a vehicle, using means of measuring the earth's gravitational and magnetic fields |
5435069, | Jan 13 1993 | Shell Oil Company | Method for determining borehole direction |
5552989, | Oct 30 1991 | AX DEVELOPMENT KG LIMITED LIABILITY COMPANY | Portable digital map reader |
5592195, | Nov 21 1994 | IBM Corporation | Information displaying device |
5617317, | Jan 24 1995 | Honeywell Inc.; Honeywell INC | True north heading estimator utilizing GPS output information and inertial sensor system output information |
5742924, | Dec 02 1994 | Nissan Motor Co., Ltd. | Apparatus and method for navigating mobile body using road map displayed in form of bird's eye view |
5745866, | Jan 09 1996 | Trimble Navigation Limited | Cardinal-up graphic map display system |
5862498, | Nov 11 1994 | CLARION CO , LTD | Map display apparatus for motor vehicle |
5917436, | Apr 20 1995 | Hitachi, Ltd.; Xanavi Informatics Corporation | Map display apparatus |
5941932, | Jun 09 1995 | CLARION CO , LTD | Map display apparatus |
5941934, | Jun 09 1995 | CLARION CO , LTD | Current position calculating device |
5953683, | Oct 09 1997 | Ascension Technology Corporation; ROPER ASCENSION ACQUISITION, INC | Sourceless orientation sensor |
5964810, | Jun 09 1995 | Xanavi Informatics Corporation | Map display apparatus |
6016120, | Dec 17 1998 | Trimble Navigation Limited | Method and apparatus for automatically aiming an antenna to a distant location |
6023229, | Mar 02 1999 | Gentex Corporation | Rearview mirror with internally-mounted compass sensor |
6115025, | Sep 30 1997 | AUTODESK, Inc | System for maintaining orientation of a user interface as a display changes orientation |
6140933, | Mar 02 1999 | Gentex Corporation | Rearview mirror assembly with internally mounted compass sensor |
6157342, | May 27 1997 | CLARION CO , LTD | Navigation device |
6253152, | Sep 02 1997 | Toyota Jidosha Kabushiki Kaisha | Navigation controller |
6282496, | Oct 29 1999 | TOMTOM NAVIGATION B V | Method and apparatus for inertial guidance for an automobile navigation system |
6366856, | Nov 21 2000 | Qualcomm Incorporated | Method and apparatus for orienting a map display in a mobile or portable device |
JP11118892, | |||
JP1983026213, | |||
JP1993045436, | |||
JP1993099675, | |||
JP1995334077, | |||
JP1997008216, | |||
JP1997043322, | |||
JP1997081308, | |||
JP1997181215, | |||
JP1997182143, | |||
JP1998185608, | |||
JP1999230779, | |||
JP1999325904, | |||
JP1999344339, | |||
JP2000098882, | |||
JP2000275051, | |||
WO9848548, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 17 2012 | Naos Innovation, LLC | (assignment on the face of the patent) | / | |||
Jul 25 2017 | Naos Innovation, LLC | AMOSENSE CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043124 | /0487 |
Date | Maintenance Fee Events |
Jul 15 2014 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Jul 22 2017 | 4 years fee payment window open |
Jan 22 2018 | 6 months grace period start (w surcharge) |
Jul 22 2018 | patent expiry (for year 4) |
Jul 22 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 22 2021 | 8 years fee payment window open |
Jan 22 2022 | 6 months grace period start (w surcharge) |
Jul 22 2022 | patent expiry (for year 8) |
Jul 22 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 22 2025 | 12 years fee payment window open |
Jan 22 2026 | 6 months grace period start (w surcharge) |
Jul 22 2026 | patent expiry (for year 12) |
Jul 22 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |