computer systems are typically designed with multiple levels of memory hierarchy. Prefetching has been employed to overcome the latency of fetching data or instructions from or to memory. Prefetching works well for data structures with regular memory access patterns, but less so for data structures such as trees, hash tables, and other structures in which the datum that will be used is not known a priori. The present invention significantly A system and method is provided that increases the cache hit rates of many important data structure traversals, and thereby the potential throughput of the computer system and application in which it is employed. The invention This is applicable to those data structure accesses in which the traversal path is dynamically determined. The invention does this This is done by aggregating traversal requests and then pipelining the traversal of aggregated requests on the data structure. Once enough traversal requests have been accumulated so that most of the memory latency can be hidden by prefetching the accumulated requests, the data structure is traversed by performing software pipelining on some or all of the accumulated requests. As requests are completed and retired from the set of requests that are being traversed, additional accumulated requests are added to that set. This process is repeated until either an upper threshold of processed requests or a lower threshold of residual accumulated requests has been reached. At that point, the traversal results may be processed.
|
13. A computer system with a cache hierarchy comprising:
a) at least one main memory,
b) at least one cache coupled to the at least one main memory,
c) a means for prefetching data into any such of the at least one cache from the at least one main memory,
d) a buffer for accumulating configured to accumulate traversal requests,
e) a buffer for storing configured to store traversal results,
f) a means of for storing the traversal requests once prefetch operations have been initiated,
g) a buffer for holding configured to hold an active traversal request, and
h) a multiplexor configured to select between the accumulated traversals traversal requests and the active traversal request.
0. 29. In a data processing system, a method for restructuring data requests, comprising:
receiving the data requests directed to a data structure having a dynamically determined traversal path between data elements, wherein each data request of the data requests is independent of any other data request of the data requests, and wherein the data requests are temporally scattered;
storing the data requests in an accumulation queue;
searching, in response to satisfaction of a search trigger criterion, the data structure for data requested by the data requests stored in the accumulation queue, wherein the search trigger criterion is satisfied at a time other than a time of the storing the data requests and wherein the searching includes issuing prefetch requests for at least a portion of the data requested by the data requests stored in the accumulation queue;
determining if a results queue of the data processing system is empty, wherein the results queue is configured to store at least a result of a data request of the data requests;
forcing a processing of the data request if the results queue is empty;
storing, in the result queue, results of the prefetch requests; and
deferring a further processing of the stored results, by a requesting process of the data processing system, until a threshold number of stored results is stored in the results queue, wherein the requesting process is configured to issue temporally scattered independent data requests.
0. 49. In a data processing system, a method, comprising:
receiving the data requests directed to a data structure configured to store, in a memory, data elements which are spatially decoherent, wherein a traversal path to a first data element in the data structure is contingent upon at least one value stored in a second data element of the data structure, wherein each data request of the data requests is independent of any other request of the data requests, and wherein the data requests are spatially scattered in the memory;
storing the data requests in an accumulation queue;
searching, responsive to satisfaction of a search trigger criterion, the data structure for data requested by the data requests stored in the accumulation queue, wherein the search trigger criterion is satisfied at a time other than a time of the storing the data request and wherein the searching includes issuing prefetch requests for at least a portion of the data requested by the data requests stored in the accumulation queue;
determining if a results queue of the data processing system is empty, wherein the results queue is configured to store at least a result of a data request of the data requests;
storing, in the result queue, results of the prefetch requests;
forcing a processing of the data request if the results queue is empty; and
deferring a further processing of the stored results, by a requesting process of the data processing system, until a threshold number of stored results is stored in the results queue, wherein the requesting process is configured to issue temporally scattered independent data requests.
0. 1. A method of scheduling units of work for execution on a computer system including a data cache or data cache hierarchy, the method comprising the steps of:
buffering a plurality of transactions on a data structure;
scheduling a plurality of said transactions on said data structures in a loop;
issuing prefetch instructions within the body of said loop for the data required to process said transactions.
0. 2. The method of buffering the results of the transactions processed on a computer system in accordance with
0. 3. The method of processing the results of a completed traversal on a data structure on a computer system according to
0. 4. The method of associating a request identifier with each transaction on a data structure represented on a computer system according to
0. 5. The method of associating a prefetch descriptor with each data structure that describes the invariants across buffered requests on a computer system according to
0. 6. The method of initiating execution of the software pipeline loop on a computer system according to
0. 7. The method of allowing a computer system according to
0. 8. The method of exiting the software pipeline on a computer system according to
0. 9. The method of buffering the transaction results on a computer system according to
0. 10. The method of buffering the transaction results on a computer system according to
0. 11. The method of selecting the next node to prefetch in the software pipeline executing on a computer system according to
0. 12. The method of forcing the completion of the requests buffered in a computer system according to
14. A cache memory The computer system according to
15. A cache memory The computer system according to
16. A cache memory The computer system according to
17. A cache memory The computer system according to
18. A cache memory The computer system according to
19. A cache memory The computer system according to
a means of for reading the contents of subfields of said active request buffer,;
a means of for storing and extracting the subfields of said active request buffer.
20. A cache memory The computer system according to
a next device register (N) is provided whereby, wherein writing to said device register causes the an active traversal request address field to be updated with the a value written to said device register, the active traversal request to be added to the a prefetch issued queue, and a prefetch issued for the device register according to the specifications of the a prefetch control register.
21. A cache memory The computer system according to
wherein a result register (R) is provided where, wherein upon to said result register being updated:
the an active traversal request address field is updated to the a value written to said device result register;
if an active results buffer is employed, the active traversal request is added to the results buffer configured to store the traversal results;
a traversal request from the accumulation buffer configured to accumulate the traversal requests is added to the a prefetch issued queue, and
a prefetch is issued for the a prefetch address specified by the a prefetch issued buffer.
22. A cache memory The computer system according to
23. A cache memory The computer system according to
24. A cache memory The computer system according to
25. A cache memory The computer system according to
0. 26. The method of organizing data within the memory on a computer system, the method comprising the steps of:
a) determining the cache line boundaries of data structure elements;
b) aligning the base of the data structure on a cache line boundary;
c) homogenizing the data structure;
d) inserting a pad field into data structure elements so that subsequent elements are aligned on cache line boundaries;
e) packing elements so as to maximize the data represented in each cache line by removing pointers to adjacent elements, whereby the program instructions that traverse the data structure are constructed to traverse the adjacent packed elements before traversing non-packed elements,
whereby steps b, c, d, and e may be performed in any order and any proper subset of steps c, d, and e can be employed.
0. 27. The method of creating a homogeneous hash table according to
0. 28. The method of creating a graph represented as adjacency lists according to
0. 30. The method of claim 29, wherein the data structure comprises at least one of a binary tree and a hash table, and wherein receiving the data requests comprises at least one of receiving requests to search for data nodes in the binary tree and receiving requests to search for bucket chains of the hash table.
0. 31. The method of claim 29, further comprising:
storing, in the result queue, found data if, as a result of the searching the data structure, the requested data are found in the data structure, and
storing, in the result queue, an indication that the requested data are other than present if, as a result of the searching the data structure, the requested data are other than present in the data structure.
0. 32. The method of claim 29, further comprising:
storing, in the result queue, a request of the prefetch requests; and
storing, in the result queue, a result of the request stored in the result queue, wherein the request stored in the result queue and the result of the requests stored in the result queue are uniquely associated in the result queue, a resulting process of the data processing system is configured to search within the result queue for the request stored in the result queue to obtain the result of the stored result, and the resulting process is configured to issue temporally scattered independent data requests.
0. 33. The method of claim 32, further comprising:
issuing, via the requesting process, a first data request at a first time, wherein the first data request and a result of the first data request are associated in the results queue;
issuing, via the requesting process, a second data request at a second time, wherein the second time is later than the first time; and
matching the second data request to the first data request stored in the results queue, wherein the stored result of the first data request is returned from the results queue in response to the second data request.
0. 34. The method of claim 33, wherein the second data request comprises a time-deferred processing of the first data request.
0. 35. The method of claim 29, further comprising:
storing, in the result queue, found data if, as a result of the searching the data structure, the requested data are found in the data structure; and
determining if the stored found data requires a modification.
0. 36. The method of claim 35, further comprising:
deferring the modification of the stored found data in the data structure until the stored found data are not stored in the result queue.
0. 37. The method of claim 29, further comprising:
storing the prefetch requests in a prefetch queue; and
tracking pending prefetch requests to ensure that at most one prefetch is stored pertaining to any one unique element of the data structure.
0. 38. The method of claim 29, further comprising forcing a processing of any pending data request in the accumulation queue if the results queue is empty.
0. 39. The method of claim 29, wherein the data structure comprises a binary tree and further comprising:
determining that a node of the binary tree excludes a data value requested by a data request;
determining that the node has a pointer to a child element; and
queuing a request to search a child node, wherein the request is queued in at least one of the accumulation queue or a prefetch queue.
0. 40. The method of claim 29, wherein the data structure comprises a hash table and further comprising at least one of the homogenizing the hash table and aligning a bucket of the hash table on a cache boundary.
0. 41. The method of claim 29, further comprising implementing the accumulation queue in a hardware register.
0. 42. The method of claim 29, further comprising;
implementing at least one of the accumulation queue, a prefetch queue, and the results queue in a hardware register.
0. 43. The method of claim 29, wherein the searching comprises searching the data structure for the data requested by the data requests stored in the accumulation queue when a threshold time delay has been exceeded.
0. 44. The method of claim 43, wherein the threshold time delay is set based on a system response time requirement.
0. 45. The method of claim 43, wherein the threshold time delay is based on at least one of:
a maximum permissible delay time before a search is processed; and
an average frequency at which search requests are received.
0. 46. The method of claim 29, wherein the receiving comprises receiving the data requests issued by a transaction processing system.
0. 47. The method of claim 29, wherein the receiving comprises receiving the data requests issued by an operating system.
0. 48. The method of claim 29, whereon the receiving comprises receiving the data requests issued by a database management system for searches of a database.
|
This application claims benefit of Ser. No. 60/174,745 a provisional application filed Jan. 3, 2000 and claims benefit of provisional application Ser. No. 60/174,292 filed Jan. 3, 2000.
This invention addresses the problem of prefetching indirect memory references commonly found in applications employing pointer-based data structures such as trees and hash tables. More specifically, the invention relates to a method for pipelining transactions on these data structures in a way that makes it possible to employ data prefetching into high speed caches closer to the CPU from slow memory. It further specifies a means of scheduling prefetch operations on data so as to improve the throughput of the computer system by overlapping the prefetching of future memory references with the execution of previously cached data.
1. Background of the Invention
Modern microprocessors employ multiple levels of memory of varying speeds to reduce the latency of references to data stored in memory. Memories physically closer to the microprocessor typically operate at speeds much closer to that of the microprocessor, but are constrained in the amount of data they can store at any given point in time. Memories further from the processor tend to consist of large dynamic random access memory (DRAM) that can accommodate a large amount of data and instructions, but introduce an undesirable latency when the instructions or data cannot be found in the primary, secondary, or tertiary caches. Prior art has addressed this memory latency problem by prefetching data and/or instructions into the one or more of the cache memories through explicit or implicit prefetch operations. The prefetch operations do not stall the processor, but allow computation on other data to overlap with the transfer of the prefetch operand from other levels of the memory hierarchy. Prefetch operations require the compiler or the programmer to predict with some degree of accuracy which memory locations will be referenced in the future. For certain mathematical constructs such as arrays and matrices, these memory locations can be computed a priori, but the memory reference patterns of the traversals of certain data structures such as linked lists, trees, and hash tables are inherently unpredictable. In a binary tree data structure, for instance, the decision on whether a given traversal should continue down the left or right sub-tree of a given node may depend on the node itself.
In modern transaction processing systems, database servers, operating systems, and other commercial and engineering applications, information is frequently organized in hash tables and trees. These applications are naturally structured in the form of distinct requests that traverse these data structures, such as the search for records matching a particular social security number. If the index set of a database is maintained in a tree or other pointer-based data structure, lack of temporal and spatial locality results in a high probability that a miss will be incurred at each cache in the memory hierarchy. Each cache miss causes the processor to stall while the referenced value is fetched from lower levels of the memory hierarchy. Because this is likely to be the case for a significant fraction of the nodes traversed in the data structure, processor utilization will be low.
The inability to reliably predict which node in a linked data structure will be traversed next sufficiently far in advance of such time as the node is used effectively renders prefetching impotent as a means of hiding memory latency in such applications. The invention allows compilers and/or programmers to predict memory references by buffering transactions on the data structures, and then performing multiple traversals simultaneously. By buffering transactions, pointers can be dereferenced in a pipelined manner, thereby making it possible to schedule prefetch operations in a consistent fashion.
2. Description of Prior Art
Multi-threading and multiple context processors have been described in prior art as a means of hiding memory latency in applications. The context of a thread typically consists of the value of its registers at a given point in time. The scheduling of threads can occur dynamically or via cycle-by-cycle interleaving. Neither approach has proven practical in modern microprocessor designs. Their usefulness is bounded by the context switch time (i.e. the amount of time required to drain the execution pipelines) and the number of contexts that can be supported in hardware. The higher the miss rate of an application, the more contexts must be supported in hardware. Similarly, the longer the memory latency, the more work must be performed by other threads in order to hide memory latency. The more time that expires before a stalled thread is scheduled to execute again, the greater the likelihood that one of the other threads has caused a future operand of the stalled thread to be evacuated from the cache, thereby increasing the miss rater, and so creating a vicious cycle.
Non-blocking loads are similar to software controlled prefetch operations, in that the programmer or compiler attempts to move the register load operation sufficiently far in advance of the first utilization of said register so as to hide a potential cache miss. Non-blocking loads bind a memory operand to a register early in the instruction stream. Early binding has the drawback that it is difficult to maintain program correctness in pointer based codes because loads cannot be moved ahead of a store unless it is certain that they are to different memory locations. Memory disambiguation is a difficult problem for compilers to solve, especially in pointer-based codes.
Prior art has addressed prefetching data structures with regular access patterns such as arrays and matrices. Prior attempts to prefetch linked data structures have been restricted to transactions on those data structures in which the traversal path is largely predictable, such as the traversal of a linked list or the post-order traversal of a tree. The invention described herein addresses the problem of prefetching in systems in which the traversal path is not known a priori, such as hash table lookup and tree search requests. Both of these traversals are frequently found in database applications, operating systems, engineering codes, and transaction processing systems.
The present invention significantly increases the cache hit rates of many important data structure traversals, and thereby the potential throughput of the computer system and application in which it is employed. The invention is applicable to those data structure accesses in which the traversal path is dynamically determined. The invention does this by aggregating traversal requests and then pipelining the traversal of aggregated requests on the data structure. Once enough traversal requests have been accumulated so that most of the memory latency can be hidden by prefetching the accumulated requests, the data structure is traversed by performing software pipelining on some or all of the accumulated requests. As requests are completed and retired from the set of requests that are being traversed, additional accumulated requests are added to that set. This process is repeated until either an upper threshold of processed requests or a lower threshold of residual accumulated requests has been reached. At that point, the traversal results may be processed.
Prefetching pointer-based data structures is much more difficult than prefetching data structures with regular access patterns. In order to prefetch array based data structures, Klaiber and Levy1 proposed using software pipelining—a method of issuing a prefetch request during one loop iteration for a memory operand that would be used in a future iteration. For example, during loop iteration j in which an array X[j] is processed, a prefetch request is issued for the operand X[j+d], where d is the number of loop iterations required to hide the memory latency of a cache miss. The problem with this loop scheduling technique, prior to the introduction of this invention, is that it could not be applied to pointer-based data structures. A concurrently submitted application addresses this problem for data structures in which the traversal path is predefined, such as linked list traversal and post-order traversal of a tree. This invention addresses the problem for data structure traversals in which the traversal path is dynamically determined, such as in hash table lookup and binary tree search traversals. The application of the invention is then illustrated by means of binary search trees and hash table lookup. 1 Klaiber and H. M. Levy, An Architecture for Software-Controlled Data Prefetching, Proceedings of the 18th International Symposium on Computer Architecture 1991, pp. 43-53.
The invention consists of the following method. Step 1 is to homogenize the data structure(s) to be traversed, where applicable. This process is described for open hash tables below and illustrated in
The data structures and traversal algorithms addressed in the concurrently submitted application have a common feature: only a single traversal path is taken through the data structure. Data dependencies may affect whether the path is taken to completion, which does not materially affect the choice of prefetch targets. The property that the path through a data structure is independent of the values of the nodes within the data structure makes it possible to modify the data structure so that the necessary parallelism to support software pipelining can be exposed. This condition does not hold for tree and hash table searches. In this application I discuss a method of aggregating temporally distributed data structure traversals in order to support software pipelined prefetching, which I refer to as temporal restructuring.
TABLE 1
definition of variables
d
Prefetch distance
l
Prefetch latency
n
Node on a traversal path.
nr
Root or startup node
nt
Termination node of traversal
K
Startup threshold
P
Pipeline depth
Z
Completion threshold
AQ
Accumulation buffer
IQ
Prefetch issued buffer
RQ
Result buffer
R
Request <k, r, a>
k
Search key
a
Node address
r
Request id
Search paths through a tree are not generally predictable. Consider a path P from the root node nr to a termination node nt, P=nr, nl, . . . , ni. In the case of a binary search tree, the value of ni depends on the value of the key field of ni-1.
If both the left and right node of a tree are always prefetched, then one prefetch target will usually have been prefetched in vain. Prefetching can only be effective if the prefetch address is identifiable far enough in advance so that it can be prefetched into near memory by the time it is first referenced. Thus even if both children are prefetched, a single pass of the inner loop of the search below does not require enough cycles to hide any significant latency:
Node SEARCH(Tree tree, Key k)
begin
Node n;
n ← tree.root;
while ( node != NULL) do
if ( k = n.key ) then return n; endif
if ( k < n.key ) then
n ← n.left;
else
n ← n.right;
endif
end while
return NIL;
end
Consequently, the ability to prefetch only the children of the current node is unlikely to provide sufficient computation between the time the prefetch is issued and the time it arrives. In general, software pipelining schedules prefetch operations d≧[l/s] loop iterations ahead in order to completely hide latency, where s is the execution time of the shortest path through the loop and l is the prefetch latency. If the prefetch distance d is small, and the tree has been mapped to an array, it may be possible to employ greedy prefetching of the entire sub-tree of depth d. I refer to this subtree at node ni as the prefetch subtree of ni. For the root node, the entire subtree of 2d−1 nodes would have to be prefetched, of which all but d are prefetched in vain. For each of the subsequent p−d−1 nodes on the path, 2d−1 nodes are prefetched, resulting in (p−d−1)×2d−1−1 extraneous prefetches. The last d−1 nodes on P correspond to the epilogue in traditional software pipelined prefetching, requiring no additional prefetch commands. These numbers may actually be optimistic, since they assume that the application can avoid prefetching the entire subtree of 2d−1 nodes at each node in the path, issuing prefetches only for the newly discovered 2d−1 leaf nodes of the prefetch subtree. It is obviously not desirable to prefetch up to 2d−1 nodes when only 1 is required at each node along the path.
While a single traversal of the tree does not provide sufficient opportunity to exploit software pipelining, I show how temporally scattered, independent search requests can be aggregated so that software pipelining can be applied across multiple requests. The premise behind the approach is that a single unit of work performed on a given data structure may not provide sufficient opportunity to hide the latency via software pipelining, so work is allowed to accumulate until a threshold is reached, or a request for immediate resumption forces work to proceed. I refer to this process of aggregating and collectively processing independent data structure traversals as temporal restructuring.
In an online transaction processing environment, for instance, multiple temporally proximate transactions can be grouped for simultaneous traversal of the data structure. The amount of time that any particular search can be postponed in a transaction processing system may be limited by system response time requirements. Since the number of search requests that must be accumulated in order to ensure a software pipeline depth adequate to effectively hide memory latency is relatively small (in the tens of requests), this should not be an issue in a high throughput system. A system with real-time constraints must be able to ensure completion even when the system is not very busy. Since the number of search requests can be adjusted dynamically, the startup threshold, K in
The general structure of the accumulation process is illustrated in
Search requests are accumulated in AQ, the accumulation queue. When the number of elements in the queue reaches the startup threshold, K, then D search requests are dequeued from the accumulation queue. The address portion of each request is submitted to the prefetch hardware along with the prefetch parameters from the prefetch descriptor, and the request is enqueued on the prefetch issued queue. This sequence of actions corresponds to the prologue of software-controlled prefetching.
The accumulation process for a binary search tree is illustrated in
When the application is ready to process a search result, it extracts a search result descriptor <k,r, ax> from the result queue, where ax is the address of the node containing k. Applications that perform searches typically return a value of N
If the number of cycles that is required to process the result is small, it may make sense to process each result immediately, rather than adding it to the result queue for later processing. It is not generally desirable to process results right away, since result processing may increase the amount of time spent at a single beat of the software pipeline. Increasing the amount of processing spent at one beat increases the danger that previously prefetched memory locations will again be displaced from the cache. If processing the result requires any I/O, for instance, the processor is likely to suspend the current process and perform other work. It is quite possible that all outstanding prefetches will be overwritten in the cache before the process that issued them is scheduled to run again. In the worst case, it is scheduled to run in a different CPU2. 2 For example, Xia found that some operating system activity involves clearing large buffers, which invalidates a large number of cache entries.
Binary Search Trees
The method can be demonstrated by applying it to a binary tree search. In order for the technique to be applicable, multiple independent search requests must be available for processing. To provide a context for a set of search tree traversals, consider a generic processor-bound client/server application that processes account debit requests. A non-pipelined version is illustrated in high-level pseudo-code below: A request arrives at the server formatted as a query that includes routing information, a request type, a
GENERIC-SERVER( )
begin
loop forever
request ← GetNextRequest( );
case request.type of
DEBIT: begin
FindAcct( request );
display ← OtherWork( request );
Reply( display );
end
OTHER: ...
end case
end loop
end Server
search key, and a pointer to an account-record that is used to hold the search result. This query data structure strongly associates the query result with the answer, making it easier to support multiple outstanding queries. A viable alternative implementation might have the search routine return a pointer to the caller. A prerequisite of temporal restructuring is the ability to strongly associate a request with a request result, so that downstream code can work on a different request than that submitted to the search routine. Rather than cluttering the examples with implementation details of the straightforward process of associating requests with results, the example starts with an implementation in which the search result is bound to the search request as a pre-existing condition. Thus, the server searches a database for an account record corresponding to the search key, and the account pointer is initially set to N
A version of the server that processes DEBIT requests in a pipelined manner is illustrated below:
PIPELINED-SERVER ( )
begin
loop forever
request ← CheckNextRequest( );
case request.type of
DEBIT: begin
qPipeSubmit (WorkQ,request);
result ← qPipeExtract (ResultQ);
if result ≠ NIL then
display ← OtherWork (result);
Reply (display);
endif
OTHER: ...
end case
end loop
end
The search tree traversals in this version are performed as part of qPipeSubmit, but only once the number of requests in the pipeline has reached K. When fewer than K requests occupy the pipeline, no search requests are processed, and qPipeExtract returns the reserved address NONE_AVAILABLE. Otherwise, qPipeExtract returns the first request for which a search result is available.
In an online transaction processing (OLTP) environment, GetNextRequest is a blocking call, stalling the server thread or process until another request becomes available. CheckNextRequest is a modified version of GetNextRequest which returns a synthetic DEBIT request containing a completion descriptor that forces any pending accumulated requests to complete if the result queue is empty. If the result queue is not empty, the application extracts a completed request as before, albeit without enqueuing a new request. Thus the server stalls only when all accumulation queues and result queues are empty, which avoids delaying replies when the request arrival rate is low. Although the system would not achieve maximal efficiency unless the pipeline is filled, the decrease in the arrival rate indicates that the system is otherwise idle, and wasted cycles less precious. In an offline data processing environment, completion is forced after the last request has been submitted.
If all requested keys are represented in the tree, calls to qPipeSubmit simply return until the number of requests submitted to qPipeSubmit reaches K. Once K requests have accumulated, prefetches are submitted for the first D requests in the accumulation queue. Each time a prefetch is submitted, the corresponding request is removed from the accumulation queue and added to the prefetch issued queue. This sequence of events constitutes the prologue. Once the prologue has completed, the head of the prefetch issued queue is removed and the corresponding node is processed. If the keys of the request and the node match, then the node address is saved and the descriptor is added to the result queue. Otherwise, the current descriptor is updated with the appropriate child pointer. At this point, the implementor or compiler has several choices of prefetch strategies:
The latter two options have similar interference and throughput characteristics. In any case, the head of the prefetch issued queue is removed to replace the current request, and the process repeats itself until no more requests occupy the prefetch issued queue.
If an address for which a prefetch request has been issued is referenced before it has arrived in the cache, the CPU stalls until the prefetch for the corresponding line completes. The cache hardware checks if there is an outstanding prefetch request for the line, in which case it does not issue a second request. Consequently, a reference to an address for which a prefetch is in progress incurs only a partial miss penalty. Cache misses always bypass pending prefetches in the reference system, so that a cache miss never has to wait for the prefetch issue queue to empty before it is submitted to the memory hierarchy. A prefetched address may be evicted before it is referenced for the first time, either by another prefetched cache line or by another data reference. In this case the CPU stalls until the corresponding line is brought into the cache through the normal cache miss mechanism, incurring the full miss penalty.
As the number of elements in the result queue increases to the point where fewer than D requests remain in the accumulation and prefetch issued queues, not enough work is left to hide the latency. Consider the point in the search process where all but a single search request has been resolved. The request is dequeued from the issued queue, it's node pointer updated, and a prefetch issued. It is added to the prefetch issued queue, and almost immediately dequeued again. A prefetch that goes all the way to memory is unlikely to have completed by the time this last search request has been dequeued again, causing the processor to stall.
To avert this problem, I employ a completion threshold Z. As long as the combined number of requests remaining in the issued queue and the accumulation queue remains above Z, a prefetch request is issued for the child pointer, and its descriptor is added to the end of the prefetch issued queue. Once the completion threshold Z has been reached, the current descriptor is added to the accumulation queue instead, without issuing a prefetch request. Inserting the descriptor at the head of the queue, instead of the tail allows search requests that have been waiting longest complete sooner. The remaining elements in the prefetch issued queue are then processed, so that the prefetch issued queue is empty by the time the application exits the epilogue. When there is little danger that the temporarily abandoned prefetch requests will be evicted before the corresponding search requests are resumed, then there is no need for an epilogue. This information is not generally predictable at compile time, and since the epilogue has only a moderate impact on the instruction cache footprint of the application, it is generally included. This process may bring the actual number of remaining requests below Z, since some of requests in the issued queue may move to the result queue. All other requests are available on the result queue, and will be dequeued and returned by repeated calls to the result extraction routine, qPipeExtract, until the result queue is empty. The P
Intuitively, it would appear that D is a natural choice for the value of the completion threshold Z, with K some small multiple of D. Yet, in experiments where Z was varied from 0 to D and K was kept constant, a relative performance declined notably well before the completion threshold Z reached the pipeline depth D. This is a consequence of the fact that the amount of work performed per set of accumulated traversals decreases as Z approaches D. The amount of work performed each time traversal is triggered is a function of K-Z. For a fixed value of K, the amount of work performed at each traversal decreases as Z increases. If the amount of work performed with each traversal is decreased, then more traversals are required to accomplish the same total amount of work. For instance, if there are 1000 requests and D=22, Z=22, and K=32, then only 10 requests are completed per traversal, requiring 100 traversals. Part of the startup cost of each traversal is a function of D. Another portion of the startup cost is bringing the working set that is not prefetched, such as instructions that have been evicted between traversals, into cache. The startup overhead is incurred 100 times for 1000 requests. If Z is reduced to 12, then the startup cost is incurred only half as often, although each traversal will have to endure at least partial latency due to a partially empty software pipeline. The application effectively trades off some latency for a reduction in startup overhead.
Because search traversals of data structures typically perform very little work at each node, the optimal pipeline depth can be quite long. A tree search achieved optimal performance at a pipeline depth of 32, while the optimal pipeline depth for Quicksort was only four. Quicksort performs significantly more work per iteration. Response time constraints and interference effects may limit the practical size of the accumulation queue. If queue management is supported by hardware, hardware constraints will further curtail the total number of outstanding requests that can be accommodated.
The startup threshold used to begin a round of searching is adjusted so that most of the latency can be hidden most of the time without violating other system requirements such as service response time. For software-managed queues, an accumulation scheme that attempts to accumulate too many requests may also introduce self-interference, since the queues also increase the cache footprint of the application.
When the first round of searches is triggered, the node set will contain only pointers to the root of the tree. This will result in multiple prefetch instructions for the same node. The memory hierarchy keeps track of pending prefetch requests, ensuring that only one memory request is outstanding to the same cache line at any given time. Consequently, multiple prefetch requests to the root node do not generate additional memory traffic. After the initial cold start, a diverse set of partially completed requests will populate the set of nodes in the accumulation queue. Some of the search requests in the accumulation queue may be the result of a traversal that reached the completion threshold, and thus refer to arbitrary nodes within the tree. Maintaining this state may impose some restrictions on insertion of nodes into the tree and deletion of nodes from the tree, as is discussed below.
If program semantics allow search requests to intermingle with insertion and deletion requests, then software pipelining introduces some new timing issues, especially in the presence of completion thresholds. When node insertion and deletion are supported, then the fact that there may be search requests already in progress may impact the outcome of the searches. Consider a search tree undergoing insertion of a node with key kn, and that key does not exist in the tree at the time of the insertion. There may be an outstanding search for kn, invoked prior to the insertion. Had the request been processed immediately, it may have returned a N
For balanced binary tree schemes, where the table is modified with each insertion, it may be prudent to force completion of extant search requests. Consider the insertion of node A in
Recursion
Recursion is often a natural way to express an algorithm. Recursive tree searches can be performed in a manner similar to the loop-based tree search described above.
For applications that rely on maintaining the state of the stack variables from prior procedure invocations, allowing the recursion to unravel could prove more of a problem. In these cases, all searches in the pipeline can be allowed to complete, without regard for the completion threshold, and at the expense of more memory stalls.
A more general version of the tree traversal algorithm would have to place all nodes and keys onto the stack, considerably increasing the amount of stack space required to complete the search, and thus the data cache footprint of the application.
Hash Tables
Hash tables and other data structures with short pointer chains pose a particular challenge to prefetching. The problem is two-fold: short pointer chains do not provide much to prefetch, and the amount of work performed at each iteration in the process of prefetching them is negligible, therefore actually requiring a significant prefetch distance in order to hide memory latency. This patent includes several methods to cope with this problem.
The hash table data structure is modified so that, instead of storing a pointer to a list of hash buckets, each hash table slot contains the first bucket of each chain in the hash table directly. Empty entries are indicated by an invalid key. If there are no invalid keys, an empty entry can be indicated via a reserved address in the pointer to the next hash bucket. This optimization serves two purposes. First, it eliminates one unnecessary level of indirection by allowing the hash function to directly supply the address of the first bucket in the chain. Second, it has the effect of homogenizing prefetch targets. Homogeneous prefetch targets eliminate the need for separate code to prefetch the initial hash table entry. This has the effect of increasing the size of each hash table slot, which should only prove disadvantageous if there are a preponderance of empty hash table slots. If the hash table is fully populated, then I've actually reduced the memory requirements by the size of the hash table.
The homogenized hash table can be subjected to several locality optimizations. An obvious means of eliminating cache misses is to ensure that each hash bucket is aligned on a cache boundary. Hash buckets in the benchmarks that I used to evaluate the efficacy of the approach consist of a key, a pointer to the next element on the hash table, and a pointer to a data record, for a total of 12 bytes. If each L1 data cache line supports 16 bytes, half of the hash table slots will span two L1 cache lines, and every third hash table slot will span two 32 byte L2 cache lines, as illustrated in
Cache line sizes in modern microprocessors are 32 bytes or more in size for primary caches, and 64 bytes or more for secondary caches. Large line sizes are an invitation to pack more data into each cache line. Additional performance benefits can be derived by packing as much of a bucket chain into each cache line as possible. This approach appears attractive when the hash chains contain more than a single element. Note that long hash chains run contrary to the philosophy of hashing. Adjacency lists employed by many graph algorithms, on the other hand, may maintain an arbitrarily long list of references to adjacent nodes in the graph.
Alignment and homogenization help reduce the number of cache misses incurred in a hash table lookup. When a hash chain achieves any significant length, the hash chain can be packed into a buffer that fits into a cache line. The buffer is structured as an array of hash chain elements followed by a pointer to the next buffer. For a buffer containing n elements, the pointer to the next hash element can be eliminated for the first n−1 elements, allowing more hash chain entries to be accommodated in each buffer. A reserved key can be used to indicate the end of the array, or the pad word can be used to hold the number of valid hash chain entries in the array. The last word in the buffer is used to hold the address of the next buffer, allowing for the possibility that the length of the hash chain may exceed the number of elements that can be accommodated in a single buffer. In a sense, the implicit prefetch inherent to large cache lines is being employed for buckets that share a cache line. Explicit prefetching can be applied to prefetch each packed buffer, thereby increasing the likelihood that a cache line will be available if the number of collisions should exceed the capacity of a single packed hash line, with the added benefit that each prefetch operation can actually prefetch up to n hash chain elements.
The number of hash collisions per bucket can be expected to remain small under ordinary hashing conditions and given a good hash function. Aligned hash chains have the disadvantage that the minimum size of a hash chain is relatively large. A packed buffer for an 8 word cache line contains 3 entries of 2 words each for the example, in addition to a word of padding and a pointer to the next hash bucket.
Experimental results show that packed hashing afforded similar benefit to alignment. Packing improved hash lookup performance by 4% to 17%, while alignment, alone, improved hash lookup performance by 2% to 16% when the average hash chain contained a single element. This significant improvement indicates that hash elements that span multiple cache lines have a significant negative impact on hash lookup performance. When the average hash chain length increases to 1.5, alignment affords an 8% to 10% performance improvement. Temporal restructuring, when applied to hash tables without specialized hardware support, did not perform well, since the overhead is amortized over few memory references. Performance improved from 4% to 14%, depending on hash interference assumptions between requests. Combining alignment and prefetching did not significantly improve the performance, showing a 12% to 20% performance improvement over the non-prefetching implementation. Experiments showed that hardware buffers, as illustrated in
Hardware Buffer
The mechanism for buffering transactions described thus far employ buffers allocated from general memory. System throughput can be significantly improved by providing this buffer in hardware, along with a few operations on the buffer.
The application writes request tuplets to the accumulation queue port, represented by register A of
The application has the option of placing the result in the result queue via the result register, R. The result queue is present to allow the application to maintain software pipeline semantics. The presence of the result queue does not prevent the application from processing a result immediately, in which case it may be neither necessary, nor desirable, to add the result to the result queue. A system library provides the necessary interfaces to the prefetch unit. Table2 provides an overview of the interface macros provided to support temporal restructuring in hardware.
TABLE 2
accumulate
writes the request to the accumulation queue port.
A NULL request indicates to the prefetch unit that the
pipeline is to be forced.
iterate
returns the prefetch address of the active request register.
result
moves the active request to the result queue.
replace
replaces the prefetch address in the active request field and
moves the active request to the prefetch issued queue.
key
returns the search key value of the active request.
request
returns the request id of the the active request
extract
returns the request at the head of the result queue.
Having described and illustrated the principles of the invention in a preferred embodiment thereof, it should be apparent that the invention can be modified in arrangement and detail without departing from such principles. I claim all modifications and variations coming within the spirit and scope of the following claims.
Patent | Priority | Assignee | Title |
10684857, | Feb 01 2018 | International Business Machines Corporation | Data prefetching that stores memory addresses in a first table and responsive to the occurrence of loads corresponding to the memory addresses stores the memory addresses in a second table |
11573743, | Nov 25 2019 | Micron Technology, Inc. | Pointer dereferencing within memory sub-system |
Patent | Priority | Assignee | Title |
5305389, | Aug 30 1991 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Predictive cache system |
5305424, | Jul 26 1990 | Pixelworks, Inc | Data forming method for a multi-stage fuzzy processing system |
5317727, | May 19 1988 | Hitachi Software Engineering Co., Ltd.; Hitachi, Ltd. | Method apparatus for determining prefetch operating for a data base |
5412799, | Feb 27 1990 | Massachusetts Institute of Technology | Efficient data processor instrumentation for systematic program debugging and development |
5414704, | Oct 22 1992 | ENTERASYS NETWORKS, INC | Address lookup in packet data communications link, using hashing and content-addressable memory |
5704053, | May 18 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Efficient explicit data prefetching analysis and code generation in a low-level optimizer for inserting prefetch instructions into loops of applications |
5793994, | Jan 31 1996 | Hewlett Packard Enterprise Development LP | Synchronous event posting by a high throughput bus |
5892935, | Jun 30 1994 | Intel Corporation | Data pre-fetch for script-based multimedia systems |
5951663, | Dec 17 1997 | Intel Corporation | Method and apparatus for tracking bus transactions |
5978858, | Sep 30 1997 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Packet protocol and distributed burst engine |
6009265, | Feb 25 1994 | International Business Machines Corporation | Program product for optimizing parallel processing of database queries |
6014655, | Mar 13 1996 | Hitachi, Ltd. | Method of retrieving database |
6047338, | Jul 30 1997 | TERADATA US, INC | System for transferring a data directly from/to an address space of a calling program upon the calling program invoking a high performance interface for computer networks |
6105119, | Apr 04 1997 | Texas Instruments Incorporated | Data transfer circuitry, DSP wrapper circuitry and improved processor devices, methods and systems |
6154826, | Nov 16 1994 | VIRGINIA PATENT FOUNDATION, UNIVERSITY OF | Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order |
6237079, | Mar 30 1997 | Canon Kabushiki Kaisha | Coprocessor interface having pending instructions queue and clean-up queue and dynamically allocating memory |
6266733, | Nov 12 1998 | Terarecon, INC | Two-level mini-block storage system for volume data sets |
6295594, | Oct 10 1997 | Advanced Micro Devices, Inc. | Dynamic memory allocation suitable for stride-based prefetching |
6301652, | Jan 31 1996 | International Business Machines Corporation | Instruction cache alignment mechanism for branch targets based on predicted execution frequencies |
6381677, | Aug 19 1998 | International Business Machines Corporation | Method and system for staging data into cache |
6393026, | Sep 17 1998 | RPX CLEARINGHOUSE LLC | Data packet processing system and method for a router |
6463067, | Dec 13 1999 | Ascend Communications, Inc. | Submission and response architecture for route lookup and packet classification requests |
6493837, | Jul 16 1999 | Microsoft Technology Licensing, LLC | Using log buffers to trace an event in a computer system |
6502157, | Mar 24 1999 | LinkedIn Corporation | Method and system for perfetching data in a bridge system |
6507898, | Apr 30 1997 | Canon Kabushiki Kaisha | Reconfigurable data cache controller |
6523093, | Sep 29 2000 | Intel Corporation | Prefetch buffer allocation and filtering system |
6634024, | Apr 24 1998 | Sun Microsystems, Inc. | Integration of data prefetching and modulo scheduling using postpass prefetch insertion |
6675374, | Oct 12 1999 | Hewlett Packard Enterprise Development LP | Insertion of prefetch instructions into computer program code |
6678674, | Jul 09 1998 | DYNATREK, INC | Data retrieving method and apparatus data retrieving system and storage medium |
6701324, | Jun 30 1999 | Western Digital Technologies, INC | Data collector for use in a scalable, distributed, asynchronous data collection mechanism |
6717576, | Aug 20 1998 | Apple Inc | Deferred shading graphics pipeline processor having advanced features |
6760902, | Aug 31 1999 | Method and apparatus for implicitly generating and supporting a user interface | |
6772179, | Dec 28 2001 | WSOU Investments, LLC | System and method for improving index performance through prefetching |
6801209, | Dec 30 1999 | Intel Corporation | Method and apparatus for storing data in a block-based memory arrangement |
6832223, | Apr 23 1996 | Oracle America, Inc | Method and system for facilitating access to a lookup service |
6848029, | Jan 03 2000 | DIGITAL CACHE, LLC | Method and apparatus for prefetching recursive data structures |
6868414, | Jan 03 2001 | International Business Machines Corporation | Technique for serializing data structure updates and retrievals without requiring searchers to use locks |
6928520, | Apr 30 2000 | SK HYNIX INC | Memory controller that provides memory line caching and memory transaction coherency by using at least one memory controller agent |
7028297, | Nov 17 2000 | ADAPTEC INC | System and method of scalable transaction processing |
7058636, | Jan 03 2000 | DIGITAL CACHE, LLC | Method for prefetching recursive data structure traversals |
7080060, | Jan 08 2003 | SBC Properties, L.P. | System and method for intelligent data caching |
7103631, | Aug 26 1998 | Malikie Innovations Limited | Symmetric multi-processor system |
7137111, | Nov 28 2001 | Oracle America, Inc | Aggressive prefetch of address chains |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 06 2006 | COLDEWEY, DIRK B | Paonessa Research, Limited Liability Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018996 | /0260 | |
Oct 06 2006 | COLDEWEY, DIRK B , MR | Paonessa Research, Limited Liability Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025590 | /0333 | |
Jan 24 2007 | Paonessa Research, Limited Liability Company | (assignment on the face of the patent) | / | |||
Aug 12 2015 | Paonessa Research, Limited Liability Company | S AQUA SEMICONDUCTOR, LLC | MERGER SEE DOCUMENT FOR DETAILS | 036803 | /0956 | |
Mar 16 2020 | S AQUA SEMICONDUCTOR, LLC | INTELLECTUAL VENTURES ASSETS 155 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052624 | /0725 | |
May 05 2020 | INTELLECTUAL VENTURES ASSETS 155 LLC | DIGITAL CACHE, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 055280 | /0865 |
Date | Maintenance Fee Events |
Jun 27 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 19 2017 | 4 years fee payment window open |
Feb 19 2018 | 6 months grace period start (w surcharge) |
Aug 19 2018 | patent expiry (for year 4) |
Aug 19 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 19 2021 | 8 years fee payment window open |
Feb 19 2022 | 6 months grace period start (w surcharge) |
Aug 19 2022 | patent expiry (for year 8) |
Aug 19 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 19 2025 | 12 years fee payment window open |
Feb 19 2026 | 6 months grace period start (w surcharge) |
Aug 19 2026 | patent expiry (for year 12) |
Aug 19 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |