An agricultural row-clearing unit for use with an agricultural row unit attached to a towing frame hitched to a tractor comprises an attachment frame adapted to be rigidly connected to the towing frame, a support element having a leading end pivotally connected to the attachment frame for vertical pivoting movement relative to the attachment frame, at least one agricultural tool mounted on the trailing end of the support element, and a hydraulic cylinder connected between the attachment frame and the support element for pivoting the support element around the pivotal connection to the attachment frame. The hydraulic cylinder includes a movable rod coupling the cylinder to the support element, a cavity within the cylinder for receiving pressurized hydraulic fluid for advancing the rod in a direction that pivots the support element downwardly toward the soil, and an energy storage device coupled to the rod and the cylinder to apply a retracting force to the rod to bias the support element in a direction that urges the agricultural tool(s) upwardly away from the soil.

Patent
   RE45091
Priority
Dec 01 2008
Filed
Nov 08 2013
Issued
Aug 26 2014
Expiry
Dec 01 2028
Assg.orig
Entity
Small
31
352
all paid
8. An agricultural implement for use with a towing frame adapted to be hitched to a tractor, said implement comprising
an attachment frame adapted to be rigidly connected to said towing frame,
a support element having a leading end pivotally connected to said attachment frame at a pivotal connection for vertical pivoting movement relative to said attachment frame,
at least one agricultural tool mounted on the trailing end of said support element,
a hydraulic cylinder pivotally connected between said attachment frame and said support element for pivoting said support element around said pivotal connection to said attachment frame, said hydraulic cylinder including
a movable rod coupling said cylinder to said support element,
a cavity within said cylinder for receiving pressurized hydraulic fluid for advancing said rod in a direction that pivots said support element downwardly toward the soil, and
an energy storage device coupled to said rod and said cylinder to apply a retracting force to said rod to pivotally bias said support element in a direction that urges said at least one agricultural tool upwardly away from the soil.
1. An agricultural row-clearing unit for use with an agricultural planting row unit attached to a towing frame hitched to a tractor, said row clearing unit comprising:
an attachment frame adapted to be rigidly connected to said towing frame,
a support element having a leading end pivotally connected to said attachment frame at a pivotal connection for vertical pivoting movement relative to said attachment frame,
at least one row-clearing wheel mounted on the trailing end of said support element,
a hydraulic cylinder pivotally connected between said attachment frame and said support element for pivoting said support element around said pivotal connection to said attachment frame, said hydraulic cylinder including
a movable rod coupling said cylinder to said support element,
a cavity within said cylinder for receiving pressurized hydraulic fluid for advancing said rod in a direction that pivots said support element downwardly toward the soil, and
an energy storage device coupled to said rod and said cylinder to apply a retracting force to said rod to pivotally bias said support element in a direction that urges said at least one row-clearing wheel upwardly away from the soil.
9. An agricultural implement for use with a towing frame adapted to be hitched to a tractor, said implement comprising
a planting row unit having
a frame element rigidly adapted to be rigidly attached to said towing frame, and
a planting assembly pivotally connected to said frame element, and
a row-clearing unit having
a frame element adapted to be rigidly connected to said towing frame,
a support element having a leading end pivotally connected to said frame element of said row-clearing unit at a pivotal connection for vertical pivoting movement of said support element,
at least one clearing wheel mounted on the trailing end of said support element,
a hydraulic cylinder pivotally connected between said frame element of said row-clearing unit and said support element for pivoting said support element around said pivotal connection, said hydraulic cylinder including
a movable rod coupling said cylinder to said support element,
a cavity within said cylinder for receiving pressurized hydraulic fluid for advancing said rod in a direction that pivots said support element downwardly, and
an energy storage device coupled to said rod and said cylinder to apply a retracting force to said rod to pivotally bias said support element in a direction that urges said at least one clearing wheel upwardly away from the soil to be cleared.
2. The row-clearing unit of claim 1 which includes an accumulator having a fluid chamber containing a diaphragm, the portion of said chamber on one side of said diaphragm connected to said hydraulic-fluid cavity in said hydraulic cylinder, and the portion of said chamber on the other side of said diaphragm containing a pressurized gas.
3. The row-clearing unit of claim 2 in which said cavity is closed so that the volume of hydraulic fluid in said cylinder and accumulator is fixed.
4. The row-clearing unit of claim 1 in which said energy storage device is a compressed coil spring disposed around a portion of said rod with one end of said spring coupled to said rod and the other end of said spring coupled to said cylinder so that said spring continuously biases said movable rod in a retracting direction relative to said cylinder.
5. The row-clearing unit of claim 1 in which said rod forms a shoulder within said cavity so that the pressure of said hydraulic fluid urges said rod in an advancing direction.
6. The row-clearing unit of claim 1 in which said agricultural row unit is a planting row unit.
7. The row-clearing unit of claim 6 which said attachment frame is adapted to be rigidly connected to said towing frame via an attachment frame of a planting row unit.
10. The agricultural implement of claim 9 in which said frame element of said row-clearing unit is adapted to be rigidly connected to said towing frame via said frame element of said planting row unit.
0. 11. The agricultural implement of claim 8, in which said energy storage device is a compressed coil spring.
0. 12. The agricultural implement of claim 11, in which a bias force of said compressed coil spring is adjustable.
0. 13. The agricultural implement of claim 12, in which said compressed coil spring is configured to provide an upward bias force.
0. 14. The agricultural implement of claim 11, in which said compressed coil spring is disposed around a portion of said rod with one end of said spring coupled to said rod and the other end of said spring coupled to said cylinder so that said spring continuously biases said movable rod in a retracting direction relative to said cylinder.
0. 15. The agricultural implement of claim 11, in which said compressed spring coil is disposed between a flange attached to an inner end of said rod and a flange attached to an interior of said cylinder.
0. 16. The agricultural implement of claim 8, in which said agricultural implement is part of a planting row unit or a row-clearing unit.
0. 17. The agricultural implement of claim 15, in which a downward force is a function of a weight of the planting row unit.
0. 18. The agricultural implement of claim 8, in combination with a hydraulic control system having a controller, said hydraulic cylinder including a control valve coupled via a line to the controller to control a supply of said pressurized hydraulic fluid.
0. 19. The agricultural implement of claim 8, in which a bias force of said energy storage device is adjustable.
0. 20. The agricultural implement of claim 8, in which said hydraulic cylinder is configured to apply said retracting force as a function of a force exerted on the at least one agricultural tool.
0. 21. The agricultural implement of claim 8, in which said hydraulic cylinder is configured to apply a compression force as a function of a resistance offered by the soil on the at least one agricultural tool.
0. 22. The agricultural implement of claim 8, in which the at least one agricultural tool includes a clearing wheel, a fertilizer opener, or a roller for firming loose soil.
0. 23. The agricultural implement of claim 8, in which the agricultural implement is an agricultural planter, a seeder, a fertilizer applicator, or a tillage equipment.
0. 24. The agricultural implement of claim 8, in which a downward force is held on the at least one agricultural tool to prevent uncontrolled bouncing of the at least one agricultural tool over the soil.
0. 25. The agricultural implement of claim 8, in combination with a GPS system that tracks a location of the tractor.
0. 26. The agricultural implement of claim 25, in combination with a control system that avoids double-planting of rows.
0. 27. The agricultural implement of claim 26, wherein the control system is configured to selectively turn off the supply of the hydraulic fluid to avoid disrupting a row already planted.
0. 28. The agricultural implement of claim 8, wherein the hydraulic fluid includes oil.
0. 29. The agricultural implement of claim 28, wherein the oil is displaced by the energy storage device.
0. 30. The agricultural implement of claim 29, wherein the energy storage device is configured to displace the oil.
0. 31. The agricultural implement of claim 28, wherein the energy storage device includes an accumulator diaphragm or piston that supplies or accepts the oil.
0. 32. The agricultural implement of claim 31, wherein the accumulator diaphragm or piston operates at a relatively constant pressure.
0. 33. The agricultural implement of claim 31, wherein the hydraulic cylinder is pneumatic.
0. 34. The agricultural implement of claim 8, further comprising one or more springs to urge the implement downwardly with a controllable force.
0. 35. The agricultural implement of claim 8, wherein the energy storage device includes a piston that supplies or accepts the hydraulic fluid.
0. 36. The agricultural implement of claim 35, wherein the energy stored by the energy storage device includes oil or a gas.
0. 37. The agricultural implement of claim 8, wherein the cavity includes a hydraulic-fluid chamber and a gas-filled chamber.
0. 38. The agricultural implement of claim 37, wherein a gas or fluid or both a gas and fluid is stored with the energy storage device.
0. 39. The agricultural implement of claim 8, wherein the energy storage device is coupled to said rod, and wherein a retracting movement of said rod raises said at least one agricultural tool.
0. 40. The agricultural implement of claim 8, in combination with a hydraulic control system and at least one other agricultural implement, wherein the hydraulic control system comprises a plurality of ports supplied by a plurality of feed lines separately controllable via separate control signals supplied by a controller.
0. 41. The agricultural implement of claim 40, wherein a downforce on the agricultural implement is remotely adjustable and a downforce on the at least one other agricultural implement is remotely adjustable.
0. 42. The agricultural implement of claim 41, wherein the downforce is adjustable from a cab of the tractor.
0. 43. The agricultural implement of claim 40, wherein a downforce on the agricultural implement and the at least one other agricultural implement is releasable to allow the agricultural implement and the at least one other agricultural implement to rise quickly.
0. 44. The agricultural implement of claim 40, wherein the controller is configured to control the supply of the hydraulic fluid at different times to selective ones of the feed lines.
0. 45. The agricultural implement of claim 40, wherein a down force is selected manually or automatically by the hydraulic control system.
0. 46. The agricultural implement of claim 45, wherein the down force is remotely adjustable from a cab of the tractor.

The present invention relates to agricultural implements and, more particularly, to an agricultural row-clearing unit for use with agricultural implements such as planting row units.

In one embodiment, an agricultural row clearing unit for use with an agricultural planter row unit attached to a towing frame hitched to a tractor comprises an attachment frame adapted to be rigidly connected to the towing frame, a support element having a leading end pivotally connected to the attachment frame for vertical pivoting movement relative to the attachment frame, at least one agricultural tool mounted on the trailing end of the support element, and a hydraulic cylinder connected between the attachment frame and the support element for pivoting the support element around the pivotal connection to the attachment frame. The hydraulic cylinder includes a movable rod coupling the cylinder to the support element, a cavity within the cylinder for receiving pressurized hydraulic fluid for advancing the rod in a direction that pivots the support element downwardly, and an energy storage device coupled to the rod and the cylinder to apply a retracting force to the rod to bias the support element in a direction that urges the agricultural tool(s) upwardly away from the soil.

One implementation also includes an accumulator having a fluid chamber containing a diaphragm. The portion of the chamber on one side of the diaphragm is connected to the hydraulic-fluid cavity in said hydraulic cylinder, and the portion of the chamber on the other side of the diaphragm contains a pressurized gas.

In one particular implementation, the energy storage device is a compressed coil spring disposed around a portion of the movable rod with one end of the spring coupled to said rod and the other end of the spring coupled to the cylinder so that the spring continuously biases the movable rod in a retracting direction relative to the cylinder.

In modified embodiments, the row-clearing wheels may be replaced with other agricultural tools, such as fertilizer openers or rollers to firm loose soil. With the row-clearing wheels or any other agricultural tools, the unit may be used without a planting row unit, or any other row unit, and the frame element may be connected directly to the towing frame.

The invention may best be understood by reference to the following description taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a side elevation of a planting row unit and a row-clearing unit, both attached to a towing frame, with the row-clearing unit in a lowered position.

FIG. 2 is the same side elevation shown in FIG. 1 with the row-clearing unit in a raised position.

FIG. 3 is an enlarged perspective of the row-clearing unit shown in FIGS. 1 and 2.

FIGS. 4, 5 and 6 are side elevations of the main components of the row-clearing unit shown in FIGS. 1-3 in three different vertical positions.

FIGS. 7, 8 and 9 are side elevations of the hydraulic cylinder of the row-clearing unit shown in FIGS. 1-6 with the cylinder rod in three different positions corresponding to the positions shown in FIGS. 5, 6 and 4, respectively.

FIG. 10 is a schematic diagram of a first hydraulic control system for use in the row-clearing unit shown in FIGS. 1-6.

FIG. 11 is a schematic diagram of a second hydraulic control system for use in the row-clearing unit shown in FIGS. 1-6.

FIG. 12 is a diagram illustrating one application of the hydraulic control system of FIG. 11.

Although the invention will be described in connection with certain preferred embodiments, it will be understood that the invention is not limited to those particular embodiments. On the contrary, the invention is intended to cover all alternatives, modifications, and equivalent arrangements as may be included within the spirit and scope of the invention as defined by the appended claims.

Turning now to the drawings, the illustrative implement includes a row-clearing unit 10 mounted in front of a planting row unit 11. A common elongated hollow towing frame 12 (typically hitched to a tractor by a draw bar) is rigidly attached to the front frame 13 of a four-bar linkage assembly 14 that is part of the row unit 11. The four-bar (sometimes referred to as “parallel-bar”) linkage assembly 14 is a conventional and well known linkage used in agricultural implements to permit the raising and lowering of tools attached thereto.

As the planting row unit 11 is advanced by the tractor, a coulter wheel 15 works the soil and then other portions of the row unit part the cleared soil to form a seed slot, deposit seed in the seed slot and fertilizer adjacent to the seed slot, and close the seed slot by distributing loosened soil into the seed slot with a closing wheel 18. A gauge wheel 19 determines the planting depth for the seed and the height of introduction of fertilizer, etc. Bins 16 and 17 on the row unit carry the chemicals and seed which are directed into the soil. The planting row unit 11 is urged downwardly against the soil by its own weight. If it is desired to have the ability to increase this downward force, or to be able to adjust the force, a hydraulic or pneumatic cylinder and/or one or more springs may be added between the front frame 13 and the linkage 14 to urge the row unit downwardly with a controllable force. Such a hydraulic cylinder may also be used to lift the row unit off the ground for transport by a heavier, stronger, fixed-height frame that is also used to transport large quantities of fertilizer for application via multiple residue-clearing and tillage row units. This hydraulic or pneumatic cylinder may be controlled to adjust the downward force for different soil conditions such as is described in U.S. Pat. Nos. 5,709,271, 5,685,245 and 5,479,992.

The row-clearing unit 10 includes an attachment frame that includes a pair of rigid arms 20 and 21 adapted to be rigidly connected to the towing frame 12. In the illustrative embodiment, the arms 20 and 21 are bolted to opposite sides of the front frame 13 of the row unit 11, which in turn is rigidly attached to the towing frame 12. An alternative is to attach the row-clearing unit 10 directly to the towing frame 12. At the bottom of the row-clearing unit 10, a pair of cooperating toothed clearing wheels 22 and 23 are positioned upstream of the coulter wheel 15 of the planting row unit 11.

The clearing wheels 22, 23 are arranged for rotation about transverse axes and are driven by the underlying soil as the wheels are advanced over the soil. The illustrative wheels 22, 23 are a type currently sold by the assignee of the present invention under the trademark TRASHWHEEL. The toothed wheels 22, 23 cooperate to produce a scissors action that breaks up compacted soil and simultaneously clears residue out of the path of planting. The wheels 21 and 22 kick residue off to opposite sides, thus clearing a row for planting. To this end, the lower edges are tilted outwardly to assist in clearing the row to be planted. This arrangement is particularly well suited for strip tilling, where the strip cleared for planting is typically only about 10 inches of the 30-inch center-to-center spacing between planting rows.

In FIGS. 1 and 2, the clearing wheels 22 and 23 are shown in two different vertical positions. Specifically, the wheels 22, 23 are in a lower position in FIG. 1, where the elevation of the soil is decreasing, than in FIG. 2, where the soil elevation is increasing.

The row-clearing unit 10 is shown in more detail in FIGS. 3-9. The two frame arms 20, 21 are interconnected by an arched crossbar 24 that includes a pair of journals 25 and 26 for receiving the leading ends of a pair of laterally spaced support arms 30 and 31. The support arms 30, 31 are thus pivotally suspended from the crossbar 24 of the attachment frame, so that the trailing ends of the support arms 30, 31 can be pivoted in an arc around a horizontal axis 32 extending through the two journals 25, 26.

The row-clearing wheels 22 and 23 are mounted on the trailing ends of the support arms 30 and 31, which are bolted or welded together. As can be seen in FIGS. 4-6, the wheels 22, 23 can be raised and lowered by pivoting the support arms 30, 31 around the horizontal axis 32. The pivoting movement of the support arms 30, 31 is controlled by a hydraulic cylinder 70 connected between the fixed crossbar 24 and the trailing ends of the support arms 30, 31. FIGS. 4-6 show the support arms 30, 31, and thus the clearing wheels 22, 23, in progressively lower positions. The downward pressure applied to the support arms 30, 31 to urge the clearing wheels 22, 23 against the soil is also controlled by the hydraulic cylinder 70.

The hydraulic cylinder 70 is shown in more detail in FIGS. 7-9. Pressurized hydraulic fluid from the tractor is supplied by a hose (not shown) to a port 71 that leads into an annular cavity 72 surrounding a rod 73, and then on into an accumulator 79. After the internal cavities connected to the port 71 are filled with pressurized hydraulic fluid, the port is closed by a valve, as will be described in more detail below. The lower end of the annular cavity 72 is formed by a shoulder 74 on the rod 73, so that the hydraulic pressure exerted by the hydraulic fluid on the surface of the shoulder 74 urges the rod 73 downwardly (as viewed in FIGS. 7-9), with a force determined by the pressure of the hydraulic fluid and the area of the exposed surface of the shoulder 74. The hydraulic fluid thus urges the rod 73 in an advancing direction (see FIG. 8).

When the rod 73 is advanced outwardly from the cylinder 70, the rod pivots the support arms 30, 31 downwardly, thereby lowering the clearing wheels 22, 23. Conversely, retracting movement of the rod 73 pivots the support arms 30, 31 upwardly, thereby raising the clearing wheels 22, 23.

The accumulator 79 includes a diaphragm that divides the interior of the accumulator into a hydraulic-fluid chamber 79a and a gas-filled chamber 79b, e.g., filled with pressurized nitrogen. FIG. 7 shows the rod 73 in a position where the diaphragm is not deflected in either direction, indicating that the pressures exerted on opposite sides of the diaphragm are substantially equal. In FIG. 8, the hydraulic force has advanced the rod 73 to its most advanced position, which occurs when the resistance offered by the soil to downward movement of the clearing wheels 22, 23 is reduced (e.g., by softer soil or a depression in the soil).

As can be seen in FIG. 8, advancing movement of the rod 73 is limited by the “bottoming out” of a coil spring 75 located between a flange 76 attached to the inner end of the rod 73 and a flange 77 attached to the interior of the cylinder 70. As the rod 73 is advanced, the coil spring 75 is progressively compressed until it reaches its fully compressed condition illustrated in FIG. 8, which prevents any further advancement of the rod 73. Advancing movement of the rod 73 also expands the size of the annular cavity 72 (see FIG. 8), which causes the diaphragm 78 in the accumulator 79 to deflect to the position illustrated in FIG. 8 and reduce the amount of hydraulic fluid in the accumulator 80. When the rod 73 is in this advanced position, the support arms 30, 31 and the clearing wheels 22, 23 are pivoted to their lowermost positions relative to the row unit 11.

In FIG. 9, the rod 73 has been withdrawn to its most retracted position, which can occur when the clearing wheels 22, 23 encounter a rock or other obstruction, for example. When the rod 73 is in this retracted position, the support arms 30, 31 and the clearing wheels 22, 23 are pivoted to their uppermost positions relative to the row unit. As can be seen in FIG. 9, retracting movement of the rod 73 is limited by engagement of a shoulder 80 on the rod 73 with a ring 81 on the trailing end of the cylinder 70. As the rod 73 is retracted by forces exerted on the clearing wheels 22, 23, the coil spring 75 is progressively expanded, as illustrated in FIG. 9, but still applies a retracting bias to the rod 73.

Retracting movement of the rod 73 virtually eliminates the annular cavity 72 (see FIG. 9), which causes a portion of the fixed volume of hydraulic fluid in the cylinder 70 to flow into the chamber 79a of the accumulator 79, causing the diaphragm 78 to deflect to the position illustrated in FIG. 9. This deflection of the diaphragm 78 into the chamber 79b compresses the gas in that chamber. To enter the chamber 79a, the hydraulic fluid must flow through a restriction 82, which limits the rate at which the hydraulic fluid flows into the accumulator. This controlled rate of flow of the hydraulic fluid has a damping effect on the rate at which the rod 73 retracts or advances, thereby avoiding sudden large movements of the moving parts of the row-clearing unit.

When the external obstruction causing the row cleaners to rise is removed from the clearing wheels, the combined effects of the pressurized gas in the accumulator 79 on the diaphragm 78 and the pressure of the hydraulic fluid move the rod 73 to a more advanced position. This downward force on the clearing wheels 22, 23 holds them against the soil and prevents uncontrolled bouncing of the wheels over irregular terrain, but is not so excessive as to leave a trench in the soil. The downward force applied to the clearing wheels 22, 23 can be adjusted by changing the pressure of the hydraulic fluid supplied to the cylinder 70.

FIG. 10 is a schematic of a hydraulic control system for supplying pressurized hydraulic fluid to the cylinders 70 of multiple row-clearing units. A source 100 of pressurized hydraulic fluid, typically located on a tractor, supplies hydraulic fluid under pressure to a valve 101 via supply line 102 and receives returned fluid through a return line 103. The valve 101 can be set by an electrical control signal S1 on line 104 to deliver hydraulic fluid to an output line 105 at a desired constant pressure. The output line is connected to a manifold 106 that in turn delivers the pressurized hydraulic fluid to individual feed lines 107 connected to the ports 71 of the respective hydraulic cylinders 70 of the individual row-clearing units. With this control system, the valve 101 is turned off, preferably by a manually controlled on/off valve V, after all the cylinders 70 have been filled with pressurized hydraulic fluid, to maintain a fixed volume of fluid in each cylinder.

FIG. 11 is a schematic of a modified hydraulic control system that permits individual control of the supply of hydraulic fluid to the cylinder 70 each separate row-clearing unit via feed lines 107 connected to the ports 71 of the respective cylinders 70. Portions of this system that are common to those of the system of FIG. 10 are identified by the same reference numbers. The difference in this system is that each separate feed line 107 leading to one of the row-clearing units is provided with a separate control valve 110 that receives its own separate control signal on a line 111 from a controller 112. This arrangement permits the supply of pressurized hydraulic fluid to each row-clearing unit to be turned off and on at different times by the separate valve 110 for each unit, with the times being controlled by the separate control signals supplied to the valves 110 by the controller 112. The individual valves 110 receive pressurized hydraulic fluid via the manifold 106, and return hydraulic fluid to a sump on the tractor via separate return line 113 connected to a return manifold 114 connected back to the hydraulic system 100 of the tractor.

FIG. 12 illustrates on application for the controllable hydraulic control system of FIG. 11. Modern agricultural equipment often includes GPS systems that enable the user to know precisely where a tractor is located in real time. Thus, when a gang of planting row units 120 towed by a tractor 121 begins to cross a headland 122 in which the rows 123 are not orthogonal to the main rows 124 of a field, each planting row unit 120 can be turned off just as it enters the headland 122, to avoid double-planting while the tractor 121 makes a turn through the headland. With the control system of FIG. 11, the hydraulic cylinder 70 of each row unit can also be separately controlled to turn off the supply of pressurized hydraulic fluid at a different time for each row-clearing unit, so that each row-clearing unit is raised just as it enters the headland, to avoid disrupting the rows already planted in the headland.

One benefit of the system of FIG. 11 is that as agricultural planters, seeders, fertilizer applicators, tillage equipment and the like become wider with more row units on each frame, often 36 30-inch rows or 54 20-inch rows on a single 90-foot wide toolbar, is that each row-clearing unit can float vertically independently of every other row-clearing unit. Yet the following row units still have the down force remotely adjustable from the cab of the tractor or other selected location. This permits very efficient operation of a wide planter or other agricultural machine in varying terrain without having to stop to make manual adjustment to a large number of row-clearing units, resulting in a reduction in the number of acres planted in a given time period. One of the most important factors in obtaining a maximum crop yield is timely planting. By permitting remote down force adjustment of each row-clearing unit (or group of units), including the ability to quickly release all down force and let the row cleaner quickly rise, e.g., when approaching a wet spot in the field, one can significantly increase the planter productivity or acres planted per day, thereby improving yields and reducing costs of production.

On wide planters or other equipment, at times 90 feet wide or more and planting at 6 mph or more forward speed, one row-clearing unit must often rise or fall quickly to clear a rock or plant into an abrupt soil depression. Any resistance to quick movement results in either gouging of the soil or an uncleared portion of the field and reduced yield. With the row-clearing unit having its own hydraulic accumulator, the clearing wheels and the rod of the hydraulic cylinder can move quickly and with a nearly constant down force. Oil displaced by or required by quick movement of the rod and clearing wheels (or other agricultural tool) is quickly moved into or out of the closely mounted accumulator which is an integral part of each row-clearing unit. The accumulator diaphragm or piston supplies or accepts fluid as required at a relatively constant pressure and down force as selected manually or automatically by the hydraulic control system. By following the soil profile closely and leaving a more uniform surface, the toolbar-frame-mounted row-clearing unit permits the planter row unit following independently behind to use less down force for its function, resulting in more uniform seed depth control and more uniform seedling emergence. More uniform seedling stands usually result in higher yields than less uniform seedling stands produced by planters with less accurate row cleaner ground following.

Although the illustrative embodiments described above utilize clearing wheels as the agricultural tools, it should be understood that the invention is also applicable to row units that utilize other agricultural tools, such as fertilizer openers or rollers for firming loose soil.

It will be evident to those skilled in the art that the invention is not limited to the details of the foregoing illustrated embodiments and that the present invention may be embodied in other specific forms without departing from the spirit or essential attributes thereof. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Bassett, Joseph D.

Patent Priority Assignee Title
10238024, Sep 15 2010 Deere & Company Row unit for agricultural implement
10251324, Jul 01 2011 Agricultural field preparation device
10251333, Nov 07 2014 Dawn Equipment Company Agricultural system
10433472, Feb 05 2014 Dawn Equipment Company Agricultural system for field preparation
10444774, Nov 07 2014 Dawn Equipment Company Agricultural system
10477752, Sep 15 2010 Deere & Company Row unit for agricultural implement
10477760, Dec 28 2015 Underground Agriculture, LLC Agricultural organic device for weed control
10485153, Feb 21 2014 Dawn Equipment Company Modular autonomous farm vehicle
10506755, Sep 15 2010 Deere & Company Agricultural systems
10548260, May 04 2017 Dawn Equipment Company System for automatically setting the set point of a planter automatic down pressure control system with a seed furrow sidewall compaction measurement device
10582653, Nov 07 2014 Dawn Equipment Company Agricultural planting system with automatic depth control
10645865, May 04 2017 Dawn Equipment Company Agricultural row unit with automatic control system for furrow closing device
10721855, Feb 05 2014 Dawn Equipment Company Agricultural system for field preparation
10806064, Jul 01 2011 Agricultural field preparation device
10980174, Dec 28 2015 Underground Agriculture, LLC Agricultural mowing device
11006563, May 04 2017 Dawn Equipment Company Seed firming device for improving seed to soil contact in a planter furrow with feature designed to prevent the buildup of soil on the outer surfaces by discharging pressurized fluid
11083134, Dec 28 2015 Underground Agriculture, LLC Agricultural inter-row mowing device
11122726, Sep 15 2010 Deere & Company Agricultural systems
11140812, Dec 15 2017 Kinze Manufacturing, Inc. Systems, methods, and apparatus for controlling downforce of an agricultural implement
11197411, Nov 07 2014 Dawn Equipment Company Agricultural planting system with automatic depth control
11224153, Jul 28 2017 Kinze Manufacturing, Inc. Agricultural implement and row units including double acting actuator systems, methods, and apparatus
11375653, Jul 01 2011 Agricultural field preparation device
11470754, Feb 04 2013 Deere & Company Agricultural systems
11730077, Jun 03 2011 Precision Planting LLC Agricultural toolbar apparatus, systems and methods
12058944, Jul 01 2011 Agricultural field preparation device
9615497, Feb 21 2014 Dawn Equipment Company Modular autonomous farm vehicle
9668398, Feb 05 2014 Dawn Equipment Company Agricultural system for field preparation
9723778, Nov 07 2014 Dawn Equipment Company Agricultural system
9788472, Sep 15 2010 Deere & Company Row unit for agricultural implement
9848522, Nov 07 2014 Dawn Equipment Company Agricultural system
9861022, Feb 01 2013 Dawn Equipment Company Agricultural apparatus with hybrid single-disk, double-disk coulter arrangement
Patent Priority Assignee Title
1134462,
114002,
1158023,
1247744,
1260752,
1321040,
1391593,
1398668,
1791462,
1901299,
1901778,
2014334,
2058539,
2269051,
2341143,
2505276,
2561763,
2593176,
2611306,
2612827,
2691353,
2692544,
2715286,
2754622,
2771044,
2773343,
2777373,
2799234,
2805574,
2925872,
2960358,
3010744,
3014547,
3038424,
3042121,
3057092,
3058243,
3065879,
3110973,
3122901,
3123152,
3188989,
3213514,
3250109,
3314278,
3319589,
3351139,
3355930,
3370450,
3420273,
3433474,
3447495,
353491,
3539020,
3543603,
3561541,
3576098,
3581685,
3593720,
3606745,
3635495,
3653446,
3701327,
3708019,
3718191,
3749035,
3753341,
3766988,
3774446,
3939846, Jun 27 1974 Device for monitoring and controlling the relative flows and losses of grain in a grain combine thresher
3945532, May 29 1973 Transmatic Fyllan Limited Metering device for flowable materials
3975890, Mar 18 1974 Slattery Manufacturing (Proprietary) Ltd. Automatic height control for harvesting machine
4009668, Jul 07 1975 Deere & Company Planter apparatus and method for planting
4018101, Aug 28 1975 SIGNET SYSTEMS, INC Positioning device for adjustable steering columns
4044697, Apr 28 1975 SWANSON SPRAY AND MANUFACTURING, INC , PALOUSE, WASHINGTON, A CORP OF WA No till seed drill
4055126, May 16 1975 ALLIED PRODUCTS CORPORATION 10 SOUTH RIVERSIDE PLAZA CHICAGO ILLINOIS 60606 A CORP OF DE Sub-soil breaking, surface-soil conditioning and planter machine
4058171, Jan 31 1974 Mounting of soil working tines
4063597, Oct 29 1976 Ward A., Warren Row marker with marker arm folded by servo motor
4096730, Jul 01 1976 USX CORPORATION, A CORP OF DE Forging press and method
4099576, Jun 27 1977 MARKTILL CORPORATION, A CORP OF IN High-speed agricultural disc
4122715, Feb 16 1976 Kabushiki Kaisha Hosokawa Funtai Kogaku Kenkyusho Apparatus for measuring flow rate of powdery and/or granular material
4129082, Jan 12 1977 Chem-Farm Inc. Earth working and fluid distribution apparatus
4141200, Oct 27 1976 Johnson Farm Machinery Co., Inc. Automatic header adjustment for harvesters
4141302, Oct 02 1975 The United States of America as represented by the Secretary of Furrow opener and apparatus for no-tillage transplanters and planters
4141676, Jun 02 1977 G ARMOUR ARIZONA COMPANY Pump for soil fumigant
4142589, May 16 1977 CROY, DONALD L Cultivator disk shield assembly
4147305, Sep 12 1977 Spray drawbar
4149475, Mar 29 1977 Massey-Ferguson Services N.V. Seed and fertilizer drill with spring loaded coulters counter-mounted on vertically adjustable beam
4157661, Mar 07 1978 MILLTRONICS LTD Flowmeters
4173259, Dec 29 1977 DEUTZ-ALLIS CORPORATION A CORP OF DE Rear drive assembly with load sensing
4182099, Nov 21 1977 Deere & Company Impeller mower-conditioner rotor
4187916, Oct 13 1977 Bush Hog Corporation Soil conditioning and seed bed preparing apparatus
4191262, Sep 01 1978 Agriculture light tillage implement and tool mounting mechanism therefor
4196567, May 04 1978 Deere & Company Side sheet for an impeller mower-conditioner
4196917, Jul 05 1978 Deere & Company Hydraulic lock for the swingable tongue of a towed machine
4206817, Sep 18 1978 Scraper blade mechanism for double disc
4208974, Sep 10 1976 Amazonen-Werke Seed drill having parallel guide means for the movable shank
4213408, Jul 07 1978 W. & A. Manufacturing Co., Inc. Combination ripper, mixer and planter
4225191, Mar 29 1979 Quick change wheel assembly
4233803, May 04 1978 Deere & Company Adjustable conditioning plate for an impeller mower-conditioner
4241674, Jan 11 1979 Mellinger Manufacturing Co., Inc. Sub-soil planter
4280419, Mar 21 1977 Case Corporation Pneumatic system for conveying granular material
4295532, Nov 02 1979 COMMERCE BANK, N A Planter with cooperating trash clearing discs
4301870, Sep 08 1978 Regie Nationale des Usines Renault Device for electrohydraulically lifting agricultural implements
4307674, Jan 08 1979 Case Corporation Agricultural implement for planting seeds
4311104, Jan 21 1977 Deere & Company Press grain drill
4317355, Mar 19 1979 Diesel Kiki Co., Ltd. Forging of a camshaft
4359101, Oct 12 1979 Ground preparation tool for reforestation
4375837, Jan 12 1979 C. van der Lely N.V. Soil cultivating machine with axially displaceable adjusting rod
4377979, Mar 31 1981 Hiniker Company Conservation tillage row crop planter system
4407371, Jun 29 1981 Coulter attachment for seed planting apparatus
4430952, Sep 07 1982 Landoll Corporation Planter gauge wheels with adjustable equalizer mechanism
4433568, May 21 1980 Kabushiki Kaisha Wako Precision closed-die forging method
4438710, Mar 24 1982 Timberland Equipment Limited Seedling planter
4445445, May 28 1982 Apparatus for fertilizing soil with a V-blade plow
4461355, Jun 01 1982 Hiniker Company Cultivator row unit with ridger/bedder implement
4481830, Jan 04 1983 The United States of America as represented by the United States Apparatus for measuring fluid flow
4499775, Feb 23 1981 MASSEY-FERGUSON SERVICES N V , Tractor draft sensing apparatus with sensing unit positioned outboard of each link
4506610, Apr 08 1983 J. E. Love Co. Subsoil rotary cultivator
4508178, Sep 28 1981 Tractor linkage with pitch altitude control connected to sensor ram
4528920, Oct 19 1983 Deere & Company Tillage and seeding implement with trailing opener and press wheel gangs
4530405, Mar 23 1984 Deere & Co. Planter row marker
4537262, Jun 23 1982 Soil cultivation
4538688, Mar 02 1984 INGERSOLL HOLDING CO Fluted coulter blade
4550122, Jul 18 1983 Fleischer Manufacturing, Inc. Attachment for removing residue in front of a planter
4553607, Oct 17 1983 Ridge cleaning attachment for planters
4580506, Jun 25 1984 Fleischer Manufacturing, Inc. Liquid fertilizer attachment
4596200, Sep 02 1982 Landoll Corporation Row crop planter
4603746, Jul 19 1984 Deere & Company Disk blade scraper
4604906, Sep 24 1984 Flowmeter
4630773, Nov 06 1984 ORTLIP, DARLENE E ; SOIL TEQ, INC ; LARKIN, HOFFMAN, DALY & LINDGREN, LTD Method and apparatus for spreading fertilizer
4643043, Feb 11 1983 Aisin Seiki Kabushiki Kaisha; Toyota Jidosha Kubushiki Kaisha Stick type vehicle hand brake lever means
4646620, Jul 01 1983 Automatic depth control system
4650005, Dec 27 1983 Row crop cultivator with setting indicator
4669550, Aug 30 1985 Rotary scraper for planter disks
4671193, Dec 27 1985 Planting tool
4674578, Jan 09 1986 CNH America LLC Floating marker arm mechanism
4703809, Feb 12 1985 501 Vandenende B.V. Borssele Apparatus for soil working
4726304, Oct 27 1984 AMAZONEN WERKE H DREYER GMBH & CO KG, A CORP OF GERMANY Seed drill
4738461, Nov 06 1986 Deere & Company Implement hitch adaptor and transmission assembly for allowing towing tractor to turn sharply
4744316, Oct 24 1986 CNH America LLC; BLUE LEAF I P , INC Furrow forming apparatus for a seed planter
4762075, Jun 19 1984 Seed/fertilizer minimum tillage planter
4765190, Jul 12 1985 BLUE LEAF I P , INC Flow metering device
4768387, May 13 1987 SIEMENS MILLTRONICS PROCESS INSTRUMENTS INC Flowmeter
4779684, Jun 13 1986 ARIZONA DRIP SYSTEMS, INC Method and apparatus for extracting plant stalks and for reshaping beds
4785890, Sep 10 1986 DEERE & CO , A CORP OF DE Ground-driven rotary row cleaner
4825957, Mar 23 1984 Deere & Company Breakaway mechanism for a row marker
4825959, Nov 13 1987 Fertilizer system
4920901, Jul 27 1988 Pounds Motor Company, Inc. Double disc seed drill with V-shaped frame
4926767, Oct 24 1988 No-till drill providing seed and fertilizer separation
4930431, Jul 10 1989 MADISON PARK CHRISTIAN CHURCH No-till field implement
4986367, Dec 04 1989 Kinze Manufacturing, Inc. Folding row marker
4998488, Feb 19 1987 Agricultural combined drill dispenser
5015997, Apr 26 1988 BLUE LEAF I P , INC Method and apparatus for measuring combine grain loss
5027525, Oct 02 1989 Field marker
5033397, Jul 31 1990 Aguila Corporation; AQUILA CORPORATION, A CORP OF MA Soil chemical sensor and precision agricultural chemical delivery system and method
5065632, Aug 04 1987 Flow line weighing device
5074227, Jul 06 1990 CONCORD, INC Seed planting apparatus
5076180, Oct 15 1990 Yetter Manufacture Company Trash clearing brush unit for a planter unit
5092255, Jan 22 1991 Deere & Company Seed boot extension
5129282, Jul 24 1991 Dawn Equipment Company Mechanism for selectively repositioning a farm implement
5136934, Apr 01 1991 Compactor for automotive oil filter with support frame
5190112, Oct 04 1991 Yetter Manufacturing Company Rotary hoe extension
5234060, Feb 21 1992 The United States of America as represnted by the Secretary of Pressure and depth control in agricultural implement
523508,
5240080, Feb 25 1991 Dawn Equipment Company Adjustable attachment for mounting a farming tool on a drawing vehicle
5255617, Feb 14 1992 ACRA-PRODUCTS, LLC; Acra Products, LLC Ridge preparation tool for seed planting equipment
5269237, Mar 01 1991 CHRISTOPHER JOHN BAKER Seed sowing apparatus
5282389, Sep 16 1992 MICRO-TRAK SYSTEMS, INC Apparatus for measuring agricultural yield
5285854, Apr 15 1992 Gary, Thacker Stalk and root embedding apparatus
5333694, May 01 1992 Strip-till seed bed preparation apparatus
5337832, Aug 06 1992 Repositioning mechanism for an agricultural implement
5341754, Apr 03 1992 Farmer's Factory Co. Rotary row cleaner for a planter
5346019, Feb 26 1993 Kinze Manufacturing, Inc. Agricultural implement with common mechanism for raising/lowering and rotating a lift frame about a vertical axis
5346020, Aug 04 1992 Forged clearing wheel for agricultural residue
5349911, Dec 06 1991 UNVERFERTH MANUFACTURING CO ,INC Assembly used in farm implements to clear mulch for minimum tillage
5351635, Jul 30 1992 Agricultural seeder
5379847, Aug 24 1993 Deere & Company Tri-fold row marker
5394946, Jun 16 1993 Deere & Company Row cleaning attachment
5398771, Feb 23 1993 Crustbuster/Speed King, Inc. Grain Drill
5419402, Jun 07 1993 Rotary hoe
5427192, Nov 16 1992 Deere & Company Sliding pedestal shaft for PTO driven implements
5443023, Mar 15 1993 Seed furrow closing apparatus for agricultural planters
5443125, May 02 1994 Deere & Company Scraper for planting mechanism gauge wheel
5461995, Feb 25 1994 Dean A., Winterton; Paw Paw Farmer's Factory Co. Rotary row cleaner with reversible spring
5462124, Sep 01 1993 Unverferth Manufacturing Co., Inc. Dual coulter device
5473999, Dec 08 1992 Unverferth Manufacturing Co., Inc. One pass seedbed preparation device and system
5477682, Jan 27 1992 Automotive Products France, SA Hydraulic master cylinder and reservoir assembly
5477792, Jul 27 1993 Dawn Equipment Company Apparatus for preparing soil for seed and method of using the apparatus
5479868, Jun 08 1993 Dawn Equipment Co. Wheels hub mount
5479992, Jul 27 1993 Dawn Equipment Company Agricultural implement controller to compensate for soil hardness variation
5485796, Mar 22 1994 Dawn Equipment Company Apparatus for marking soil
5485886, Dec 09 1993 Dawn Equipment Company Adjustable agricultural tool holder
5497717, Nov 19 1993 Furrow closing device
5497837, Mar 31 1994 Dawn Equipment Company Apparatus for controlling down pressure on agricultural implements
5499683, Jul 27 1993 Dawn Equipment Company Soil treating system with hydraulically actuated implement controller
5499685, Jul 13 1993 Strip tillage soil conditioner apparatus and method
5517932, Apr 11 1994 Deere & Company Scalloped closing wheel for a seeding machine
5524525, May 23 1994 A.I.L. Inc. Rotary servo valve and guidance system apparatus for controlling the same
5531171, Dec 09 1991 Etablissements Mauguin SA Liquid product device
5542362, Aug 05 1992 Dawn Equipment Company Apparatus for continuously planting seed and applying a soil additive
5544709, Apr 17 1995 Deere & Company Down pressure spring adjustment
5562165, Mar 14 1994 ST-AGRITECH Hydraulic floating system for downpressure control of seeding tools
5590611, Mar 01 1995 Liquid fertilizer injection system
5603269, Feb 01 1994 Dawn Equipment Company Mechanism for planting agricultural seed
5623997, Aug 29 1995 UNVERFERTH MANUFACTURING COMPANY, INC Soil zone-builder coulter closer/tiller
5640914, Apr 05 1995 UNVERFERTH MANUFACTURING COMPANY, INC Debris manipulating and clearing assembly for clearing crop residue from soil
5657707, Jul 17 1995 Great Plains Manufacturing, Incorporated Spring-tine residue wheel for planters
5660126, Jan 19 1994 Agricommunication and Technology, Inc. Method and apparatus for no-till planting
5685245, Jun 08 1993 Planter unit
5704430, May 03 1995 UNVERFERTH MANUFACTURING CO ,INC Ground driven row cleaning apparatus
5709271, Jul 27 1993 Dawn Equipment Company Agricultural planter
5727638, Aug 01 1996 Deere & Company Down pressure system with free float extension
5852982, Jun 07 1996 Farmer Fabrications, Inc.; FARMER FABRICATIONS, INC Liquid dispenser for seed planter
5868207, Mar 29 1995 Kverneland Klepp AS Agricultural implement having a set of ground working tools
5878678, Jul 30 1997 Deere & Company Trash cleaning structure for a furrow opening device
5970891, Jun 05 1997 Schlagel Manufacturing, Inc. Seed planter with gauge wheels and closing wheels having horizontal fingers
5970892, Jul 30 1997 Deere & Company Trash cleaning structure for a furrow opening device
5988293, May 12 1998 Deere & Company Gauge structure for a cylinder operated depth control
6067918, May 08 1998 Soil contacting finger wheel
6164385, Jul 01 1999 Automatic depth control system and method
6223663, Nov 06 1997 Deere & Company Trash cleaning structure for a furrow opening device
6223828, Aug 24 1999 CATERPILLAR S A R L Landscape rake with fluid controlled float capability
6237696, Oct 20 1998 CNH Industrial Canada, Ltd Ground opener with disc scraper mounting
6253692, Feb 24 1999 Deere & Company Row cleaner suspension
6314897, Nov 02 1999 Furrow closing system and method for no-till agricultural seeders
6325156, Feb 26 1999 KINZE MANUFACTURING, INC Gauge wheel and coulter arrangement for agricultural implement
6330922, Jul 14 1999 Bedding plow featuring a center-cut disk assembly having resilient relief means
6331142, Feb 16 1999 Deere & Company Straw chopper for a combine
6343661, Jul 16 1999 CNH Industrial Canada, Ltd Suspension system for a work vehicle
6347594, Jan 28 2000 Deere & Company Narrow profile opener capable of high speed operation
6382326, Mar 20 2001 Deere & Company Implement suspension with accumulator
6389999, Nov 02 2001 Dynamic controller of excess downpressure for surface engaging implement
6453832, Jun 23 1997 Liquid distribution apparatus for distributing liquid into a seed furrow
6454019, Jun 28 2000 CNH America LLC; BLUE LEAF I P , INC Agricultural implement down pressure system
6460623, Oct 20 2000 Caterpillar Inc. Hydraulic system providing down force on a work implement
6516595, Dec 03 1999 CLAAS Industrietechnik GmbH Harvesting machine having an obstacle sensing device
6530334, May 24 2001 Depth-limited furrow closing arrangement and method for no-till agricultural seeders
6575104, Dec 21 2000 Apparatus and method for clearing trash from furrow opener path
6644224, Jun 08 1993 Deere & Company Apparatus for preparing soil for the placement of seed and additive
6701856, Sep 24 2001 Winske, Inc. Farming applicator
6701857, Jan 16 2003 AG LEADER TECHNOLOGY, INC Depth control device for planting implement
6786130, Oct 25 2002 Deere & Company Directly actuated depth control
6834598, Jun 28 2000 Deere & Company Agricultural ground working implement
6840853, Jun 16 2000 Deere & Company Distributing device having continuously moving guide vanes
6886650, Nov 13 2002 Deere & Company Active seat suspension control system
6912963, Jun 08 1993 Deere & Company Apparatus for preparing soil for the placement of seed and additive
6986313, Sep 04 2003 Deere & Company Dual material agricultural delivery system for seeder
6997400, Jul 17 2002 IOWA STATE UNIVERSITY RESEARCH FOUNDATION, INC Apparatus and method for reducing anhydrous ammonia application by optimizing distribution
7004090, Sep 09 2003 Exactrix LLC Fertilizer injector wing for disc openers
7044070, Feb 05 2004 KASCO MANUFACTURING COMPANY, INC Seed drill with walking beam assembly
7063167, Jun 16 2000 BLUE LEAF I P INC Self leveling towed implement
7159523, Jan 24 2005 Bourgault Industries Ltd. Method and apparatus of agricultural field seeding
7222575, Jun 08 1993 Deere & Company Apparatus for preparing soil for the placement of seed and additive
7290491, Jul 31 2000 CNH Industrial Canada, Ltd Minimum till seeding knife
7360494, Jul 14 2006 Howard D., Martin Apparatus for planter depth monitoring
7360495, Dec 18 2006 Howard D., Martin Method for planter depth monitoring
736369,
7438006, Oct 27 2005 Deere & Company Agricultural seeding machine with compact furrow opener/closer
7451712, May 12 2004 Dawn Equipment Company Agricultural tillage device
7523709, Apr 06 2007 360 YIELD CENTER, LLC Apparatus for prevention of freezing of soil and crop residue to knife applying liquid anhydrous ammonia to the ground
7540333, Aug 18 2005 BLUE LEAF I P INC Row unit down pressure assembly
7575066, Sep 28 2004 ENVIRONMENTAL TILLAGE SYSTEMS, INC Zone tillage tool and method
7584707, Aug 19 2005 Precision Planting LLC Wear resistant seed tube for an agricultural planter
7665539, May 12 2004 Dawn Equipment Company Agricultural tillage device
7743718, Jul 24 2007 Dawn Equipment Company Agricultural tillage device
7870827, Dec 24 2008 Dawn Equipment Company Agricultural implement for delivering ammonia gas to soil
7938074, Jan 22 2009 Deere & Company Pressure sensing system for a planter
7946231, Jul 03 2008 Single arm row cleaner
803088,
8146519, Dec 24 2008 Dawn Equipment Company Agricultural implement for delivering multiple media to soil
8151717, Jul 24 2007 Dawn Equipment Company Agricultural tillage device
8327780, Oct 16 2009 Dawn Equipment Company Agricultural implement having fluid delivery features
8359988, Jul 24 2007 Dawn Equipment Company Agricultural tillage device
8380356, Jun 12 2012 Ag Leader Technology Seeder downforce section control
8386137, Jan 08 2007 CLIMATE LLC Planter monitor system and method
8393407, Apr 12 2010 AG FOCUS LLC Crop residue clearing device
8408149, May 20 2011 Deere & Company Ground working machine with a blockage clearing system and method of operation
8544397, Sep 15 2010 Deere & Company Row unit for agricultural implement
8544398, Sep 15 2010 Deere & Company Hydraulic down pressure control system for closing wheels of an agricultural implement
8550020, Dec 16 2010 Precision Planting LLC Variable pressure control system for dual acting actuators
8573319, Jun 20 2012 Deere & Company Position and pressure depth control system for an agricultural implement
8634992, Jan 26 2011 Precision Planting LLC Dynamic supplemental downforce control system for planter row units
8636077, May 22 2012 Dawn Equipment Company Agricultural tool with structural housing for hydraulic actuator
20020162492,
20060102058,
20060191695,
20060237203,
20070044694,
20070272134,
20080093093,
20080236461,
20080256916,
20100019471,
20100108336,
20100180695,
20100198529,
20100282480,
20110247537,
20110313575,
20120167809,
20120186216,
20120210920,
20120216731,
20120232691,
20120255475,
20120305274,
20130000535,
20130032363,
20130112121,
20130112124,
20130133904,
20130146318,
20130192186,
20130199808,
20130213676,
20130248212,
20130264078,
20130306337,
20130333599,
20140026748,
20140026792,
20140033958,
20140034339,
20140034343,
20140034344,
20140048001,
20140048295,
20140048296,
20140048297,
20140060864,
BE551372,
CA530673,
DE1108971,
DE2402411,
DE335464,
EP2497348,
GB1574412,
GB2056238,
JP5457726,
RE36243, Sep 26 1988 Unverferth Manufacturing Co., Inc. Coulter wheel assembly including applying dry or liquid fertilizer
SU1410884,
SU1466674,
SU392897,
SU436778,
SU611201,
SU625648,
WO2011161140,
WO2012149367,
WO2012149415,
WO2012167244,
WO2013025898,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 08 2013Dawn Equipment Company(assignment on the face of the patent)
Sep 17 2018DAWN EQUIPMENT COMPANY, INCRESOURCE BANK, N A SECURITY INTEREST SEE DOCUMENT FOR DETAILS 0613560527 pdf
Oct 31 2022RESOURCE BANK, N A DAWN EQUIPMENT COMPANY, INCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0618230057 pdf
Date Maintenance Fee Events
Aug 31 2017M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Aug 25 2021M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Aug 26 20174 years fee payment window open
Feb 26 20186 months grace period start (w surcharge)
Aug 26 2018patent expiry (for year 4)
Aug 26 20202 years to revive unintentionally abandoned end. (for year 4)
Aug 26 20218 years fee payment window open
Feb 26 20226 months grace period start (w surcharge)
Aug 26 2022patent expiry (for year 8)
Aug 26 20242 years to revive unintentionally abandoned end. (for year 8)
Aug 26 202512 years fee payment window open
Feb 26 20266 months grace period start (w surcharge)
Aug 26 2026patent expiry (for year 12)
Aug 26 20282 years to revive unintentionally abandoned end. (for year 12)