Disclosed is a method and an apparatus for transmitting and receiving data via a mac protocol in a mobile communication system. The method includes inputting at least one service data unit (SDU) containing transmission data through a corresponding logical channel and generating at least one first protocol data unit (pdu) that includes said at least one SDU without including multiplexing information for identification of the logical channel, by a first transmission entity; acquiring the first pdu and generating a second pdu including the first pdu in a payload of the second pdu, by a second transmission entity that operates between the first transmission entity and a physical layer; inserting the multiplexing information for identification of the logical channel corresponding to said at least one first pdu into header information of the second pdu; and transmitting the second pdu through the physical layer. The method can reduce load due to additional processing, such as a bit operation or memory copying, in a receiver requiring high speed data transmission.
|
7. A method for receiving data via a mac protocol in a mobile communication system, the method comprising the steps of:
receiving, by a first reception entity, a first pdu including header information and a payload through a physical layer;
reading multiplexing information for identification of a logical channel corresponding to at least one second pdu contained in the payload and format information of said at least one second pdu, from the header information of the first pdu; and
identifying the second pdu from the payload based on the format information and delivering the identified second pdu to a second reception entity.
19. An apparatus for receiving data via a mac protocol in a mobile communication system, the apparatus comprising:
a first reception entity for receiving a first pdu including header information and a payload through a physical layer, reading multiplexing information for identification of a logical channel corresponding to at least one second pdu contained in the payload and format information of said at least one second pdu, from the header information of the first pdu, identifying the second pdu from the payload based on the format information, and outputting the second pdu; and
a second reception entity for delivering the second pdu to a higher layer entity.
1. A method for transmitting data via a mac (Media access control) protocol in a mobile communication system, the method comprising the steps of:
inputting at least one service data unit (SDU) containing transmission data through a corresponding logical channel and generating at least one first protocol data unit (pdu) that includes said at least one SDU without including multiplexing information for identification of the logical channel, by a first transmission entity;
acquiring the first pdu and generating a second pdu including the first pdu in a payload of the second pdu, by a second transmission entity that operates between the first transmission entity and a physical layer;
inserting the multiplexing information for identification of the logical channel corresponding to said at least one first pdu into header information of the second pdu; and
transmitting the second pdu through the physical layer.
13. An apparatus for transmitting data via a mac protocol in a mobile communication system, the method apparatus comprising:
a first transmission entity for inputting at least one service data unit (SDU) containing transmission data through a corresponding logical channel and generating at least one first protocol data unit (pdu) that includes said at least one SDU without including multiplexing information for identification of the logical channel; and
a second transmission entity for acquiring the first pdu and generating a second pdu including the first pdu in a payload of the second pdu, inserting the multiplexing information for identification of the logical channel corresponding to said at least one first pdu into header information of the second pdu, and transmitting the second pdu through the physical layer, the second transmission entity operating between the first transmission entity and a physical layer.
0. 28. A method for receiving data via a Media access control (mac) protocol in a mobile communication system, the method comprising the steps of:
receiving, by a first reception entity, a first protocol data unit (pdu) including a header and a payload from a physical layer;
reading information for identifying a logical channel corresponding to a second pdu included in the payload of the first pdu and format information of the second pdu, from the header of the first pdu;
identifying the second pdu from the payload of the first pdu, based on the format information; and
delivering the identified second pdu to a second reception entity,
wherein the header of the first pdu and the first pdu are byte aligned in length, and
wherein the format information comprises a length field indicating a length of the second pdu and an information field indicating whether or not more fields are present in the header of the first pdu.
0. 34. An apparatus for receiving data via a Media access control (mac) protocol in a mobile communication system, the apparatus comprising:
a first reception entity for receiving a first protocol data unit (pdu) including a header and a payload from a physical layer, reading information for identifying a logical channel corresponding to a second pdu included in the payload of the first pdu and format information of the second pdu, from the header of the first pdu, identifying the second pdu from the payload of the first pdu, based on the format information, and outputting the second pdu; and
a second reception entity for delivering the second pdu to a higher layer entity,
wherein the header of the first pdu and the first pdu are byte aligned in length, and
wherein the format information comprises a length field indicating a length of the second pdu and an information field indicating whether or not more fields are present in the header of the first pdu.
0. 25. A method for transmitting data via a Media access control (mac) protocol in a mobile communication system, the method comprising the steps of:
receiving, by a first transmission entity, a service data unit (SDU) including transmission data to be transmitted, and generating a first protocol data unit (pdu) including the SDU; and
receiving, by a second transmission entity that operates between the first transmission entity and a physical layer, the first pdu, generating a second pdu including a payload that includes the first pdu, and transmitting the second pdu to the physical layer,
wherein a header of the second pdu includes a first information field identifying a logical channel corresponding to the first pdu,
wherein the header of the second pdu and the second pdu are byte aligned in length, and
wherein the header of the second pdu further includes a length field indicating a length of the first pdu and a second information field indicating whether or not more fields are present in the header of the second pdu.
0. 31. An apparatus for transmitting data via a Media access control (mac) protocol in a mobile communication system, the apparatus comprising:
a first transmission entity for receiving a service data unit (SDU) including transmission data to be transmitted and generating a first protocol data unit (pdu) that includes the SDU; and
a second transmission entity, which operates between the first transmission entity and a physical layer, for receiving the first pdu and generating a second pdu including a payload that includes the first pdu, and transmitting the second pdu to the physical layer,
wherein a header of the second pdu includes a first information field identifying a logical channel corresponding to the first pdu,
wherein the header of the second pdu and the second pdu are byte aligned in length, and
wherein the header of the second pdu further includes a length field indicating a length of the first pdu and a second information field indicating whether or not more fields are present in the header of the second pdu.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
18. The apparatus of
20. The apparatus of
21. The apparatus of
22. The apparatus of
23. The apparatus of
24. The apparatus of
0. 26. The method of claim 25, wherein the payload of the second pdu further includes a plurality of the first pdus, and
wherein the header of the second pdu further includes a plurality of the first information fields for identifying logical channels corresponding to each of the plurality of the first pdus, respectively, and
wherein the length field indicates a length of each of the plurality of the first pdus.
0. 27. The method of claim 25, wherein the header of the second pdu further includes a field corresponding to padding.
0. 29. The method of claim 28, wherein the payload of the first pdu further includes a plurality of the second pdus, and
wherein the header of the first pdu further includes a plurality of the information for identifying logical channels corresponding to each of the plurality of the second pdus, respectively, and
wherein the length field indicates a length of each of the plurality of the second pdus.
0. 30. The method of claim 28, wherein the header of the first pdu further includes a field corresponding to padding.
0. 32. The apparatus of claim 31, wherein the payload of the second pdu further includes a plurality of the first pdus, and
wherein the header of the second pdu further includes a plurality of the first information fields for identifying logical channels corresponding to each of the plurality of the first pdus, respectively, and
wherein the length field indicates a length of each of the plurality of the first pdus.
0. 33. The apparatus of claim 31, wherein the header of the second pdu further includes a field corresponding to padding.
0. 35. The apparatus of claim 34, wherein the payload of the first pdu further includes a plurality of the second pdus, and
wherein the header of the first pdu further includes a plurality of the information for identifying logical channels corresponding to each of the plurality of the second pdus, respectively, and
wherein the length field indicates a length of each of the plurality of the second pdus.
0. 36. The apparatus of claim 34, wherein the header of the first pdu further includes a field corresponding to padding.
|
This application claims priority under 35 U.S.C. §119(a) to an application entitled “Method And Apparatus For Transmitting And Receiving Data Via Media Access Control Protocol In Mobile Communication System” filed in the Korean Industrial Property Office on Jan. 24, 2007 and assigned Serial No. 2007-7466, the contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates to a mobile communication system, and more particularly to a method and an apparatus for transmitting and receiving data in a Media Access Control (MAC) layer.
2. Description of the Related Art
A UMTS (Universal Mobile Telecommunication Service) system, known as the 3rd Generation mobile communication system, employs a Wideband Code Division Multiple Access (WCDMA) based on General Packet Radio Services (GPRS) and Global System for Mobile Communications (GSM), which are European mobile communication systems. Based on the 3GPP (3rd Generation Partnership Project) standard, the UMTS system can provide a consistent service by which a user of a mobile phone or a computer can transmit packet-based text, digitized voice or video data, or multimedia data at a high speed of at least 2 Mbps wherever the user is located in the world. The UMTS uses a concept of virtual access, that is, a packet exchange-based access using a packet protocol such as an Internet Protocol (IP). The UMTS can always connect to any terminal within its network.
In order to support a High Data Rate (HDR), a High Speed Packet Access (HSPA) system such as 3rd Generation Partnership Project (3GPP) requires performance improvement for a Radio Link Control (RLC) and a Media Access Control (MAC) corresponding to a layer-2 protocol.
The MAC layer is connected to RLC layer entities and/or Packet Data Convergence Protocol (PDCP) layer entities through Logical Channels (LCHs), and generates a Protocol Data Unit (PDU) by multiplexing Service Data Units (SDUs) delivered from the RLC layer entities and then attaching a MAC header to the multiplexed SDUs. Such a PDU output from the MAC layer is called a MAC-PDU.
A MAC header includes information fields relating to the SDUs within the MAC-PDU. Herein, since each of the information fields has a size of one or more bits, the entire size of the MAC header does not correspond to a multiple of 8 bits (one byte) in most instances. In this case, the remaining PDU after removal of the MAC header is in a state in which byte alignment is broken. Therefore, in order to process a PDU with unaligned bytes within a memory, a receiver must perform a bit operation in which the start and end of the PDU are bit-masked and the resultant data is then read. As a result, the bit operation is performed twice for each PDU. Accordingly, the receiver spends excessive processing time over the whole layer-2 stack, which results in unnecessary consumption of Control Processing Unit (CPU) clock and power.
The most widely used solution for avoiding a bit operation during data processing is to perform a memory copy. However, the memory copy in a mobile communication system requiring a high data rate may increase consumption of system resources, which results in reduction of the data rate.
Accordingly, the present invention has been made to solve the above-mentioned problems occurring in the prior art, and the present invention provides a method and an apparatus for improving efficiency in a MAC layer operation for High Speed Packet Access (HSPA).
Also, the present invention provides a method and an apparatus for reducing load and delay due to an additional processing of a receiver in a MAC layer.
Also, the present invention provides a method and an apparatus for efficiently constructing header information in a MAC layer, so as to identify logical channels by using a small number of bits.
Also, the present invention provides a method and an apparatus for byte-aligning a header of a MAC PDU in a MAC layer.
In accordance with another aspect of the present invention, there is provided a method for transmitting data via a MAC protocol in a mobile communication system, the method including inputting at least one Service Data Unit (SDU) containing transmission data through a corresponding logical channel and generating at least one first Protocol Data Unit (PDU) that includes said at least one SDU without including multiplexing information for identification of the logical channel, by a first transmission entity; acquiring the first PDU and generating a second PDU including the first PDU in a payload of the second PDU, by a second transmission entity that operates between the first transmission entity and a physical layer; inserting the multiplexing information for identification of the logical channel corresponding to said at least one first PDU into header information of the second PDU; and transmitting the second PDU through the physical layer.
In accordance with another aspect of the present invention, there is provided a method for receiving data via a MAC protocol in a mobile communication system, the method including receiving, by a first reception entity, a first PDU including header information and a payload through a physical layer; reading multiplexing information for identification of a logical channel corresponding to at least one second PDU contained in the payload and format information of said at least one second PDU, from the header information of the first PDU; and identifying the second PDU from the payload based on the format information and delivering the identified second PDU to a second reception entity.
In accordance with another aspect of the present invention, there is provided an apparatus for transmitting data via a MAC protocol in a mobile communication system, the apparatus including a first transmission entity for inputting at least one Service Data Unit (SDU) containing transmission data through a corresponding logical channel and generating at least one first Protocol Data Unit (PDU) that includes said at least one SDU without including multiplexing information for identification of the logical channel; and a second transmission entity for acquiring the first PDU and generating a second PDU including the first PDU in a payload of the second PDU, inserting the multiplexing information for identification of the logical channel corresponding to said at least one first PDU into header information of the second PDU, and transmitting the second PDU through the physical layer, the second transmission entity operating between the first transmission entity and a physical layer.
In accordance with another aspect of the present invention, there is provided an apparatus for receiving data via a MAC protocol in a mobile communication system, the apparatus including a first reception entity for receiving a first PDU including header information and a payload through a physical layer, reading multiplexing information for identification of a logical channel corresponding to at least one second PDU contained in the payload and format information of said at least one second PDU, from the header information of the first PDU, identifying the second PDU from the payload based on the format information, and outputting the second PDU; and a second reception entity for delivering the second PDU to a higher layer entity.
The above and other aspects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings. In the following description, a detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. Terms used herein are defined in consideration of their functions in the present invention and may change depending on an intention or custom of a user or an operator. Therefore, those terms should be defined on the basis of the entire contents of the present specification.
A main idea of the present invention is to achieve byte alignment of a MAC header by efficiently identifying logical channels in a MAC header contained within a MAC Protocol Data Unit (PDU) in a MAC layer of a mobile communication system supporting HSPA.
The following detailed description of the present invention is based on a 3GPP (3rd Generation Partnership Project) LTE (Long-Term Evolution) system. However, a MAC operation for HSPA according to the present invention is also applicable to other mobile communication systems having similar technical backgrounds and channel types, with slight modification without departing from the scope of the present invention.
As one example of a MAC layer operation, a MAC structure for supporting High Speed Downlink Packet Access (HSDPA) of the 3GPP system will now be described. When the HSDPA is employed, the MAC layer is classified into a MAC-d sub-layer that controls dedicated transmission channels in order to support the typical multiplexing operation according to a MAC protocol, and a MAC-hs sub-layer that controls High Speed Downlink Shared Channel (HS-DSCH) in order to additionally support the HSDPA operation.
Referring to
The ciphering block 114 encodes MAC-d PDUs, and the UL TFC selecting block 112 selects a TFC indicating transport formats of transmission channels used for UL transmission. The C/T MUXs 110 and 106 analyze header information of the MAC-d PDUs, so as to demultiplex the MAC-d PDUs into MAC-d SDUs or generate MAC-d PDUs by multiplexing the MAC-d SDUs with header information. The deciphering block 108 decodes the encoded MAC-d SDUs. The switching block 104 maps MAC-d SDUs (which are also called “MAC SDUs”) of a Dedicated Control Channel (DCCH) and a Dedicated Traffic Channel (DTCH), which are logical channels, to corresponding transmission channels according to the transmission channel types.
Referring to
The HARQ processor 210 receives MAC-hs PDUs from the physical layer through an HS-DSCH for supporting HSDPA and performs an HARQ operation. Then, the HARQ processor 210 delivers MAC-hs PDUs successfully received through the HARQ operation to the reordering queue distribution block 208. The reordering queue distribution block 208 analyzes header information of the MAC-hs PDUs and delivers the analyzed MAC-hs PDUs to the reordering queues 206 corresponding to associated DCHs. The reordering queues 206 store the MAC-hs PDUs until the disassembly blocks 204 make a request for reading of the MAC-hs PDUs. The disassembly blocks 204 read the MAC-hs PDUs stored in the reordering queues 206, disassemble the read MAC-hs PDUs into MAC-hs SDUs, and then outputs the disassembled MAC-hs SDUs as MAC-d PDUs to the MAC-d entity.
Referring to
The number of MAC-d PDUs (N) 322 has a length of 7 bits and indicates the number of successive MAC-d PDUs with the same size.
Herein, the combination of the SID field 320, the N field 322, and the F field 324 represents a format of each of the multiplexed logical channels The combination is repeated within the MAC-hs header 302 as many times as the number of multiplexed logical channels.
Referring to
Since the padding appended to the MAC-hs PDU shown in
70(MAC-d PDU)+70(RLC PDU)+70(PDCP PDU)=210(PDUs)
Moreover, when a MAC-d PDU includes a C/T field having a size of 4 bits, even though a MAC header has a size corresponding to a multiple of one byte, the byte alignment is broken again, which causes unnecessary processing load within the UE.
Furthermore, in the case of employing the structure of
Referring to
The ciphering block 514 encodes MAC-d PDUs and the UL TFC selecting block 512 selects a TFC indicating transport formats of transmission channels used for UL transmission. The C/T MUXs 510 and 506 analyze header information of the MAC-d PDUs, so as to demultiplex the MAC-d PDUs into MAC-d SDUs or generate MAC-d PDUs by multiplexing the MAC-d SDUs with header information. The deciphering block 508 decodes the encoded MAC-d SDUs. The switching block 504 maps MAC-d SDUs (which are also called “MAC SDUs”) of a Dedicated Control Channel (DCCH) and a Dedicated Traffic Channel (DTCH), which are logical channels, to corresponding transmission channels according to the transmission channel types.
Referring to
The HARQ processor 610 receives MAC-hs PDUs from the physical layer on an HS-DSCH for supporting HSDPA and performs an HARQ operation. Then, the HARQ processor 610 delivers the MAC-hs PDUs successfully received through the HARQ operation to the reordering queue distribution block 608. The reordering queue distribution block 608 analyzes header information of the MAC-hs PDUs and delivers the analyzed MAC-hs PDUs to the reordering queues 606 corresponding to the associated DCHs. The reordering queues 606 store the MAC-hs PDUs until the C/T MUXs 612 read the MAC-hs PDUs. The C/T MUXs 612 located between the reordering queues 606 and the disassembly blocks 604 refer to C/T fields contained in MAC-hs headers of the MAC-hs PDUs, so as to identify and demultiplex MAC-hs SDUs contained in the MAC-hs PDU based on corresponding logical channels. The disassembly blocks 604 disassemble the demultiplexed data delivered from the C/T MUXs 612 into MAC-hs SDUs corresponding to each of the logical channels, and then outputs the disassembled MAC-hs SDUs as MAC-d PDUs to the MAC-d entity.
As described above, according to the embodiment of the present invention, a C/T field is inserted into each MAC-hs header, and a MAC-hs entity identifies the multiplexed logical channels within a MAC-hs PDU by using the inserted C/T fields. Since MAC-d PDUs having the same size are used during one TTI for the logical channels, the MAC-d PDUs of the logical channels identified by the C/T fields have the same size. Therefore, MAC-d PDUs included in a data part corresponding to one logical channel identified by a C/T field have the same SID/N/F field values.
As described above, the MAC-hs entity performs identification of the logical channels. Therefore, the MAC-d PDU does not have to contain header information for identification of logical channels.
Referring to
Herein, the combination of the SID field 820, the N field 822, the F field 824, and the C/T field 826 represents a format of each of the multiplexed logical channels. The combination is repeated within the MAC-hs header 802 as many times as the number of multiplexed logical channels. By using the structure of the MAC-hs header 802 as described above, it is possible to construct the MAC-d PDU format while identifying logical channels, even without repeatedly using a plurality of identical fields for multiple MAC-d PDUs of one logical channel.
The order of the information fields located in the above-described combination can be variously selected according to the design of a system. As shown in
A Header Padding (HP) field 830 is appended to the end of the MAC-hs header 802. The HP field 830 is a variable field having a bit size of 0 to 7. The bit size is determined from among values of 0 to 7 such that the entire MAC-hs header has a size corresponding to a multiple of one byte (8 bits). All of the bit values contained in the HP field 830 usually have a value of zero (all ‘0’). The end of the MAC-hs header 802 except for the HP field 830 is identified by an F field having a value of “1”. Therefore, a UE can recognize that the first MAC-hs SDU (i.e. MAC-hs payload 804) starts from the first byte directly following the F field having a value of “1.”
Meanwhile, when the MAC-hs PDU does not include plural multiplexed logical channels, the MAC-hs header 802 does not have to contain C/T fields for identification of the logical channels. Therefore, a C/T field is set to have a particular value that is not used for identification of a logical channel, for example, “1111”, as a value for indicating “No multiplexing (Non MUX).” When a UE identifies that the first C/T field has a value of “1111”, the UE determines that there exists no more C/T field. For example, Table 1 below shows definition of values of the C/T field.
TABLE 1
C/T field
definition
0000
LC 1
0001
LC 2
. . .
. . .
1110
LC 15
1111
Non Mux
Referring to
Herein, only one combination of the SID field 920, the N field 922, the F field 924, and the C/T field 926 exists within the MAC-hs header 302, and the C/T field 926 is set to “1111,” which indicates that no logical channel multiplexing is used, and the F field 924 is set to have a value of “1” in order to indicate that it is the end of the MAC-hs header.
A Header Padding (HP) field 930 is appended to the end of the MAC-hs header 902. The HP field 930 is a variable field having a bit size of 0 to 7. The bit size is determined from among values of 0 to 7 such that the entire MAC-hs header has a size corresponding to a multiple of one byte (8 bits).
A MAC-d transmission entity provided at a transmitter in order to support the MAC-hs formats as shown in
Referring to
On the other hand, when logical channel multiplexing has been used, the receiver initializes a variable “n” for identification of logical channels to zero in step 1012. Then, in step 1014, the receiver increases the value of the variable “n” by one. In step 1016, the receiver reads a combination of CTn, SIDn, and Nn from the MAC-hs header and stores the read combination. Then, in step 1018, the receiver determines if an Fn field subsequent to the read combination of the information fields has a value of “1,” in order to determine if it is the end of the MAC-hs header. As a result of the determination in step 1018, when the Fn field does not have a value of “1”, the receiver returns to step 1014 in order to read a next information field of the MAC-hs header. Otherwise, the receiver proceeds to step 1008.
In step 1008, the receiver decodes at least one combination of the stored CTk, SIDk, and Nk (wherein k=0, 1, . . . , n), identifies at least one MAC-d PDU contained in the MAC-hs PDU according to the decoded CTk, SIDk, and Nk, and delivers the at least one MAC-d PDU to a MAC-d entity, which is a higher layer entity. In this case, the MAC-hs entity of the receiver delivers the C/T field extracted from the MAC-hs header to the MAC-d entity, so that the MAC-d entity can refer to the extracted C/T field in delivering the MAC-d PDU to an RLC layer entity through a corresponding logical channel. In step 1010, the receiver removes the information fields, the HP field, and the padding of the stored MAC-hs header, and then terminates the operation.
In the present invention as described above, it is possible to remove a bit operation and a bit offset managing operation, which may occur due to unaligned bytes in a header field, and it is possible to prevent waste of system resources due to memory copying, in a mobile communication system. That is, in the present invention, identification of logical channels is performed by a MAC-hs entity, and appending of a header padding (HP) field guarantees byte alignment for layer-2 PDUs. Moreover, the present invention can reduce load due to additional processing, such as a bit operation or memory copying, in a receiver requiring high speed data transmission.
While the present invention has been shown and described with reference to certain exemplary embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Oh, Jin-Young, Lee, Seung-hyun
Patent | Priority | Assignee | Title |
RE49004, | Jan 24 2007 | Samsung Electronics Co., Ltd | Method and apparatus for transmitting and receiving data via media access control protocol in mobile communication system |
Patent | Priority | Assignee | Title |
6128490, | May 08 1997 | Apple Inc | Wireless communication system that supports selection of operation from multiple frequency bands and multiple protocols and method of operation therefor |
7200135, | Mar 30 2002 | Samsung Electronics Co., Ltd. | Method for minimizing searching time for a transport format selection in a code division multiple access mobile communication system |
7545807, | Oct 01 1998 | AEGIS 11 S A | Method for formatting signal in mobile communication system |
7675942, | Jun 14 2004 | LG Electronics Inc | Reducing overheads of a protocol data unit in a wireless communication system |
7760820, | Aug 28 2002 | Agency for Science, Technology and Research | Receiver having a signal reconstructing section for noise reduction, system and method thereof |
7792149, | Sep 30 1999 | AEGIS 11 S A | Method for formatting signal in mobile communication system |
7978640, | Jan 24 2007 | Samsung Electronics Co., Ltd | Method and apparatus for transmitting and receiving data via media access control protocol in mobile communication system |
8451767, | Jan 24 2007 | Samsung Electronics Co., Ltd | Method and apparatus for transmitting and receiving data via media access control protocol in mobile communication system |
20020048281, | |||
20030131124, | |||
20050013272, | |||
20060007886, | |||
20060146761, | |||
20060165045, | |||
EP1566925, | |||
KR1020030060026, | |||
KR1020060042858, | |||
KR1020060077521, | |||
KR1020060079784, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 12 2013 | Samsung Electronics Co., Ltd | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 06 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 10 2015 | ASPN: Payor Number Assigned. |
Dec 19 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 19 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 30 2017 | 4 years fee payment window open |
Mar 30 2018 | 6 months grace period start (w surcharge) |
Sep 30 2018 | patent expiry (for year 4) |
Sep 30 2020 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 30 2021 | 8 years fee payment window open |
Mar 30 2022 | 6 months grace period start (w surcharge) |
Sep 30 2022 | patent expiry (for year 8) |
Sep 30 2024 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 30 2025 | 12 years fee payment window open |
Mar 30 2026 | 6 months grace period start (w surcharge) |
Sep 30 2026 | patent expiry (for year 12) |
Sep 30 2028 | 2 years to revive unintentionally abandoned end. (for year 12) |