A posterior spinal fusion system may include a plurality of cannulas that mate with cages polyaxially coupled to pedicle screws. The cannulas maintain access to the pedicle screws to facilitate percutaneous insertion of a fusion rod into engagement with the cages. Each cannula has a pair of blades that may be held together by an abutment member that at least partially encircles the blades. Each abutment member abuts the skin to define a variable subcutaneous length of the corresponding cannula. Each abutment members is also lockably removable from the corresponding blades to enable the blades to pivot with respect to the connecting element to a position in which they can be withdrawn from the connecting element. The blades of each cannula are spaced apart to provide first and second slots of each cannula, through which the fusion rod can be percutaneously inserted.
|
18. A system for providing access to a spine of a patient, the system comprising:
a cannula adapted to receive at least a portion of a spinal fusion rod therealong, the cannula comprising a proximal end and a distal end insertable into the patient proximate the spine, the distal end comprising a docking element discrete from and securable to a connecting element implantable in a first vertebra of the spine;
wherein the docking element is receivable by the connecting element in both a docked configuration and an undocked configuration, the distal end being secured to the connecting element in the docked configuration, and the distal end being received by and removable from the connecting element in the undocked configuration, and wherein the docking element is movable between the docked and undocked configurations in response to rotation about an axis substantially perpendicular to a longitudinal axis of the cannula.
1. A system for providing access to a spine of a patient, the system comprising:
a first connecting element implantable in a first vertebra of a spine; and
a first cannula adapted to receive at least a portion of a spinal fusion rod therealong, the first cannula comprising:
a first blade; and
a second blade discrete from the first blade;
wherein the first and second blades are configured to be assembled together substantially parallel to each other and mated with the first connecting element, without being directly connected to one another, in order to provide the first cannula such that the first cannula has a distal end terminating at the connecting element, whereby the first cannula provides access to the spine when the first connecting element is implanted in the first vertebra of the spine; and
wherein the first and second blades are independently detachable from the first connecting element such that the first and second blades are independently removable from the patient.
37. A system for providing access to a spine of a patient, the system comprising:
a cannula adapted to receive at least a portion of a spinal fusion rod therealong, the cannula having a longitudinal axis and comprising a distal end insertable into the patient proximate the spine, and a proximal end, the distal end comprising a docking element securable to a connecting element implantable in a first vertebra of the spine; and
an abutment member encircling at least a portion of the cannula, the abutment member having an abutment surface substantially normal to the longitudinal axis, the abutment surface adapted to abut an exterior skin surface of the patient, wherein the abutment member is adapted to move along the cannula from the proximal end to the distal end such that the abutment member can be moved to a position wherein the abutment surface abuts the exterior skin surface when the docking element is secured to the connecting element implanted in the first vertebra of the spine, whereby a variable subcutaneous length of the cannula is defined.
32. A system for providing access to a spine of a patient, the system comprising:
a cannula comprising:
a first component; and
a second component discrete from the first component;
and
an abutment member;
wherein the first and second components are configured to be assembled to a connecting element implantable in a first vertebra of the spine, wherein each of the first and second components has a distal end receivable in the connecting element in a receiving position and a locked position, each of the first and second components being movable between the receiving position and the locked position in response to rotation about an axis substantially perpendicular to a longitudinal axis of the cannula, wherein the abutment member configured to engage the first and second components to restrict relative motion between the first and second components, and wherein the abutment member is lockable with respect to the first and second components by a locking mechanism that restricts withdrawal of the abutment member from the first and second blades.
47. A system for providing access to a spine of a patient, the system comprising:
a cannula adapted to receive at least a portion of a spinal fusion rod therealong, the cannula comprising a distal end insertable into the patient proximate the spine and securable to a connecting element implantable in a first vertebra of the spine, the cannula further comprising a proximal end and a first slot extending longitudinally between the distal and proximal ends; and
an abutment member encircling at least a portion of the cannula, the abutment member having an abutment surface extending substantially laterally from an outer surface of the cannula, the abutment surface adapted to abut an exterior skin surface of the patient, wherein the abutment member is adapted to move along the cannula from the proximal end to the distal end such that the abutment member can be moved to a position wherein the abutment surface abuts the exterior skin surface when the distal end of the cannula is secured to the connecting element implanted in the first vertebra of the spine, whereby a variable subcutaneous length of the cannula is defined.
25. A system for providing access to a spine of a patient, the system comprising:
a cannula adapted to receive at least a portion of a spinal fusion rod therealong, the cannula comprising a distal end insertable into the patient proximate the spine and securable to a connecting element implantable in a first vertebra of the spine, the cannula further comprising a proximal end and a longitudinal axis extending between the proximal and distal ends; and
an abutment member encircling at least a portion of the cannula and adapted to abut an outward facing surface of skin of the patient, the entire length of the abutment member along the longitudinal axis of the cannula being disposed between the proximal and distal ends of the cannula, wherein the abutment member is adapted to move along the cannula from the proximal end to the distal end such that the abutment member can be moved to a position abutting the outward facing surface of skin when the distal end of the cannula is secured to the connecting element, whereby a variable subcutaneous length of the cannula is defined, and wherein a combined length of the cannula and the abutment member does not change in response to motion of the abutment member along the cannula.
2. The system of
3. The system of
4. The system of
5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
10. The system of
11. The system of
12. The system of
13. The system of
14. The system of
15. The system of
16. The system of
17. The system of
19. The system of
20. The system of
a first blade; and
a second blade discrete from the first blade;
wherein the first and second blades are positionable substantially parallel to each other to provide the first cannula;
wherein each of the first and second blades comprises a locked configuration, in which the blade is secured to the connecting element, and an unlocked configuration, in which the blade is removable from the connecting element.
21. The system of
22. The system of
23. The system of
24. The system of
26. The system of
a first blade; and
a second blade discrete from the first blade;
wherein the first and second blades are positionable substantially parallel to each other to provide the cannula.
27. The system of
28. The system of
29. The system of
30. The system of
31. The system of
33. The system of
34. The system of
35. The system of
36. The system of
38. The system of
39. The system of
40. The system of
41. The system of
42. The system of
43. The system of
44. The system of
45. The system of
46. The system of
a first blade; and
a second blade discrete from the first blade;
wherein the first and second blades are positionable substantially parallel to each other to provide the cannula, and wherein the abutment member is configured to engage the first and second blades to restrict relative motion between the first and second blades.
48. The system of
49. The system of
50. The system of
51. The system of
52. The system of
53. The system of
54. The system of
a first blade; and
a second blade discrete from the first blade;
wherein the first and second blades are positionable substantially parallel to each other to provide the cannula, and wherein the abutment member is configured to engage the first and second blades to restrict relative motion between the first and second blades.
0. 55. The system of claim 25, wherein the abutment member has a C-shaped wall partially surrounding a central opening and defining an open side.
0. 56. The system of claim 55, wherein the abutment member includes a curved recess formed therein.
0. 57. The system of claim 56, wherein the curved recess is located on an opposite side of the abutment member from the open side.
0. 58. The system of claim 26, wherein the abutment member includes a first passage and a second passage defined therethrough, the first and second passages being sized to receive the respective first and second blades therein.
0. 59. The system of claim 58, wherein the first and second blades have arcuate profiles.
0. 60. The system of claim 31, wherein the frangible coupling is defined by a necked-down region.
0. 61. The system of claim 60, wherein the cannula is defined by:
a first blade having a distal end coupled to the connecting element; and
a second blade having a distal end coupled to the connecting element;
wherein the first and second blades are positioned substantially parallel to one another, and wherein the necked-down region is defined by a first set of opposing recesses at the distal end of the first blade and by a second set of opposing recesses at the distal end of the second blade.
0. 62. The system of claim 37, wherein the abutment member has a C-shaped wall partially surrounding a central opening and defining an open side.
0. 63. The system of claim 62, wherein the abutment member includes a curved recess formed therein.
0. 64. The system of claim 63, wherein the curved recess is located on an opposite side of the abutment member from the open side.
0. 65. The system of claim 46, wherein the abutment member includes a first passage and a second passage defined therethrough, the first and second passages being sized to receive the respective first and second blades therein.
0. 66. The system of claim 65, wherein the first and second blades have arcuate profiles.
0. 67. The system of claim 45, wherein the frangible coupling is defined by a necked-down region.
0. 68. The system of claim 67, wherein the cannula is defined by:
a first blade having a distal end coupled to the connecting element; and
a second blade having a distal end coupled to the connecting element;
wherein the first and second blades are positioned substantially parallel to one another, and wherein the necked-down region is defined by a first set of opposing recesses at the distal end of the first blade and by a second set of opposing recesses at the distal end of the second blade.
0. 69. The system of claim 47, wherein the abutment member has a C-shaped wall partially surrounding a central opening and defining an open side.
0. 70. The system of claim 69, wherein the abutment member includes a curved recess formed therein.
0. 71. The system of claim 70, wherein the curved recess is located on an opposite side of the abutment member from the open side.
0. 72. The system of claim 54, wherein the abutment member includes a first passage and a second passage defined therethrough, the first and second passages being sized to receive the respective first and second blades therein.
0. 73. The system of claim 72, wherein the first and second blades have arcuate profiles.
0. 74. The system of claim 53, wherein the frangible coupling is defined by a necked-down region.
0. 75. The system of claim 74, wherein the cannula is defined by:
a first blade having a distal end coupled to the connecting element; and
a second blade having a distal end coupled to the connecting element;
wherein the first and second blades are positioned substantially parallel to one another, and wherein the necked-down region is defined by a first set of opposing recesses at the distal end of the first blade and by a second set of opposing recesses at the distal end of the second blade.
|
This Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,002,798. The reissue applications are U.S. application Ser. No. 13/972,493 (the present application) and U.S. application Ser. No. 13/973,462, filed on Aug. 22, 2013, which is a continuation reissue of the present application. The present application is an application for reissue of U.S. Pat. No. 8,002,798, which is a continuation-in-part of U.S. application Ser. No. 10/868,075, filed on Jun. 15, 2004, which claims the benefir benefit of U.S. Provisional Application No. 60/518,580, filed Nov. 8, 2003, the disclosure disclosures of which are incorporated herein by reference. This application claims U.S. Pat. No. 8,002,798 claims the benefit of U.S. Provisional Application No. 60/682,783, filed on May 19, 2005, the disclosure of which is incorporated herein by reference.
This application relates to U.S. Application Ser. No. 10/669,927, filed on Sep. 24, 2003, the disclosure of which is hereby incorporated herein by reference.
1. The Field of the Invention
The present invention relates generally to implantable devices, and more precisely, to posterior spinal fusion systems.
2. The Relevant Technology
Many people experience joint pain in one form or another. In particular, back pain may result from the occurrence of a wide variety of spinal pathologies. Some such pathologies are currently treated by fusing adjacent vertebrae to prevent their relative motion. According to one known method, pedicle screws are implanted in the pedicles and are rigidly secured to a rod passing posterior to the pedicles.
Unfortunately, current procedures often involve the exposure of a relatively large area to permit implantation of the rod. Some current procedures cannot be used to implant a rod that secures more than two vertebrae together. Other known procedures are somewhat complex, and therefore require many parts and surgical steps. Accordingly, there is a need for new fusion rod implantation systems and methods that remedy the shortcomings of the prior art.
Various embodiments of the present invention will now be discussed with reference to the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope.
The present invention relates to systems and methods for implantation of orthopedic devices. Although the examples provided herein generally relate to insertion of a rod for a posterior spinal fusion system, the present invention may be applied to any procedure in which a device is to be implanted in the body in a minimally invasive manner. Accordingly, the scope of the present invention is not intended to be limited by the examples discussed herein, but only by the appended claims.
As used herein, a “cannula” is an elongated structure having a hollow interior that provides communication between opposite ends of the elongated structure. A “subcutaneous length” is the portion of an object that lies below the surface of a patient's skin. “Transverse” refers to an object or direction that is not parallel with, and not nearly parallel with, another object or direction. A “connecting element” is any man-made structure that is implantable to remain in the body, and is connectable to an anatomic feature and/or another implantable structure. The term “percutaneous” refers to an action carried out at least partially underneath unbroken skin.
The term “discrete” refers to parts that are not formed as a single piece, but are separate pieces from each other. The term “coupled” refers to two elements that are secured together, whether they have been formed separately and secured together via a secondary operation, or they have been formed as a single piece (i.e., formed in a coupled state). The term “securable” refers to elements that are capable of being coupled together, or are already coupled together. A “blade” is an elongated, thin structure. “Polyaxial motion” refers to motion along or about multiple orthogonal axes.
Referring to
As shown, the portion of the spine 10 illustrated in
As shown, the first vertebra 24 has a body 28 with a generally disc-like shape and two pedicles 30 that extend posteriorly from the body 28. A posterior arch, or lamina 32, extends between the posterior ends of the pedicles 30 to couple the pedicles 30 together. The first vertebra 24 also has a pair of transverse processes 34 that extend laterally from the pedicles 30 generally along the medial/lateral axis 20, and a spinous process 36 that extends from the lamina 32 along the posterior direction 18.
The first vertebra 24 also has a pair of superior facets 38, which are positioned toward the top of the first vertebra 24 and face generally medially. Additionally, the first vertebra 24 has inferior facets 40, which are positioned toward the bottom of the first vertebra 24 and face generally laterally. Each of the pedicles 30 of the first vertebra 24 has a saddle point 42, which is positioned generally at the center of the juncture of each superior facet 38 with the adjacent transverse process 34.
Similarly, the second vertebra 26 has a body 48 from which two pedicles 50 extend posteriorly. A posterior arch, or lamina 52, extends between the posterior ends of the pedicles 50 to couple the pedicles 50 together. The second vertebra 26 also has a pair of transverse processes 54, each of which extends from the corresponding pedicle 50 generally along the medial/lateral axis 20, and a spinous process 56 that extends from the lamina 52 along the posterior direction 18.
The second vertebra 26 also has a pair of superior facets 58, which are positioned toward the top of the second vertebra 26 and face generally inward. Additionally, the second vertebra 26 has inferior facets 60, which are positioned toward the bottom of the second vertebra 26 and face generally outward. Each of the pedicles 60 of the second vertebra 26 has a saddle point 62, which is positioned generally at the center of the juncture of each superior facet 58 with the adjacent transverse process 54.
The superior facets 38 of the first vertebra 24 articulate (i.e., slide and/or press) with the inferior facets 60 of the second vertebra 26 to limit relative motion between the first and second vertebrae 24, 26. Thus, the combination of each superior facet 38 with the adjacent inferior facet 60 provides a facet joint 64. The first and second vertebrae 24, 26 thus define two facet joints 64 that span the distance between the first and second vertebrae 24, 26. The inferior facets 40 of the first vertebra 40 and the superior facets 58 of the second vertebra 26 are part of other facet joints that control motion between the first and second vertebrae 24, 26 and adjacent vertebrae (not shown) and/or the sacrum (also not shown).
The vertebrae 24, 26 and/or the intervertebral disc (not shown) between them, may be damaged or diseased in some manner that makes it desirable to secure the vertebrae 24, 26 together in a manner that prevents relative motion between them. Accordingly, posterior spinal fusion may be employed to secure the pedicles 30, 50 together.
As further illustrated in
Referring to
Referring to
Each of the dilators 80, 82, 88 has a bore sized to receive the proximal end 74 of the corresponding guide wire 70, 72, or 78, so that the dilators 80, 82, 88 are able to slide along the guide wires 70, 72, 78 toward the distal ends 74, thereby spreading the tissues away from the guide wires 70, 72, 78. Each of the dilators 80, 82, 88 may optionally include a plurality of nesting elements that permit discretely gradual dilation. As an alternative to the guide wires 70, 72, 78 and the dilators 80, 82, 88, a variety of other guiding devices and/or dilation devices may be used within the scope of the present invention.
Referring to
Accordingly, the hollow dilators 100, 102, 104 may simply slide along the anterior direction 16 between the outward-facing surfaces of the dilators 80, 82, 88 and the adjoining tissues. The hollow dilators 100, 102, 104 then reach the positions shown in
Referring to
Referring to
The tapping tool 120 also has a bore (not shown) extending through the shank 124 and through at least a portion of the handle 122. The bore is sized to receive any of the guide wires 70, 72, 78 so that the tapping tool 120 can be guided sequentially along each of the guide wires 70, 72, 78 to tap the pedicle 30 of the first vertebra 24, the pedicle 50 of the second vertebra 26, and the pedicle of the third vertebra (not shown in
Referring to
As embodied in
The pedicle screw 150 has a head 160 and a shank 162. The head 160 has a convex semispherical underside that engages the cage 152 in any of a variety of relative orientations to provide the polyaxial coupling described previously. The head 160 also has a hexagonal recess 164 designed to receive a hexagonal end of a pedicle screw driver (not shown in
The cage 152 has a base 168 in which an aperture 170 is formed. The aperture 170 is sized such that the shank 162 of the pedicle screw 150 may be inserted through the aperture 170. The head 160 of the pedicle screw 150 then rests on a concave semispherical surface of the base 168, within which the head 160 is polyaxially rotatable. The cage 152 also has a pair of arms 172 that extend from the base 168, generally parallel to each other. Each of the arms 172 has a slot 174 and an exterior recess 176. The slots 174 pass through the arms 172 to communicate with the slots 174. Each of the arms 172 has an inward-facing surface on which a plurality of threads 178 are formed to receive the set screw 154. The arms 172 define recesses therebetween, and the recesses form ends of a trough in which the rod portion 146 is able to rest.
As shown, the set screw 154 has a hexagonal recess 180 that enables the set screw 154 to be rotated by a driver that will be shown and described subsequently. The set screw 154 also has an outward-facing surface on which a plurality of threads 182 are formed to enable the set screw 154 to rotate into threaded engagement with the cage 152. Once the rod portion 146 is positioned between the arms 172 of the cage 152, the set screw 154 may be tightened to press the rod portion 146 against the head 160 of the pedicle screw 150, thereby resisting further relative rotation between the cage 152 and the pedicle screw 150.
Upon assembly, the cannula 142, which is shown in exploded form in
Each proximal end 198 has a proximal tab 202, and each distal end 200 has a distal tab 204. Each proximal tab 202 has a locking ridge 206 that protrudes generally outward, and extends generally circumferentially. Each proximal tab 202 is also elongated, with a thin cross section that permits bending toward and away from the axis (not shown) of the cannula. Each distal tab 204 has bends 208 that cause the distal tab 204 to jut outward, while remaining generally parallel with the remainder of the corresponding blade 194 or 196.
Each of the distal tabs 204 is insertable through the slot 174 of the adjacent arm 172 of the cage 152 when the corresponding blade 194 or 196 is tilted to position the proximal end 198 inward relative to the distal end 200. Once the distal tabs 204 have passed through the slots 174, rotation of the blades 194 or 196 back to a position generally parallel to each other, and to the axis of the cage 152, causes the distal tabs 204 to lie within the exterior recesses 176 of the arms 172 such that the bends 208 are unable to slide back through the slots 174. Thus, the blades 194, 196 are then in a locked configuration, and cannot be detached from the cage 152 until they are again moved to the unlocked configuration, i.e., tilted to position the proximal ends 198 inward.
As long as the blades 194, 196 remain generally parallel to each other, the distal end 192 of the cannula 142 remains secured to the cage 152. Thus, the distal tabs 204 form a docking element that removably secures the cannula 142 to the connecting element 140. The abutment member 144 serves to keep the blades 194, 196 parallel to each other to keep the cannula 142 in assembled form and to simultaneously keep the cannula 142 secured to the cage 152 by keeping the blades 194, 196 from rotating into the unlocked configuration. When the cannula 142 is secured to the cage 152, the cannula 142 is in its “docked configuration.” When the cannula 142 is removed from the cage 152, the cannula 142 is in its “undocked configuration.”
As shown, the abutment member 144 is generally disc-shaped with a central opening 212 and an open side 214 that provides access to the central opening 212. The abutment member 144 also has an interior recess 216 in communication with the central opening 212. Furthermore, the abutment member 144 has a pair of arcuate slots 218 that extend around opposing portions of the central opening 212 and are generally coaxial with the central opening 212. The arcuate slots 218 are sized to receive the first and second blades 194, 196 and to keep the first and second blades 194, 196 generally parallel to each other, and perpendicular to the abutment member 144. Thus, the blades 194, 196 are unable to pivot to the unlocked configuration and the cannula 142 maintains a generally tubular shape.
After the distal ends 200 of the blades 194, 196 are coupled to the cage 152, the proximal ends 198 may be inserted through the arcuate slots 218 of the abutment member 144. Each of the locking ridges 206 has a wedge-like profile. Accordingly, as the locking ridges 206 pass through the arcuate slots 218, the proximal tabs 202 are urged to bend inward. Once the locking ridges 206 move out of the arcuate slots 218, the proximal tabs 202 snap back to an undeflected orientation, and the locking ridges 206 are then positioned outboard of the arcuate slots 218 to interfere with withdrawal of the proximal tabs 202 from the arcuate slots 218. Thus, the proximal tabs 202 act as a locking mechanism that restricts withdrawal of the abutment member 144 from around the cannula 142.
After the blades 194, 196 have been inserted into the arcuate slots 218, the abutment member 144 may be positioned at any of a range of positions along the cannula 142. Thus, upon implantation of the pedicle screw 150 in the corresponding pedicle, the abutment member 144 will abut the outward-facing surface of the patient's skin through which the cannula 142 passes. The abutment member 144 helps to stabilize the cannula 142 with respect to the tissues it passes through.
Referring to
The distal tabs 204 have also been inserted through the slots 174 of the arms 172 of the cage 152, and the blades 194, 196 have been rotated into the locked configuration. The proximal ends 198 of the blades 194, 196 have been inserted through the arcuate slots 218 of the abutment member 144 to keep the blades 194, 196 in assembled form to define the cannula 142, and to keep the cannula 142 secured to the cage 152. When one or both of the blades 194, 196 are oriented in the unlocked configuration, the blades 194, 196 may still be said to define the cannula 142, although the cannula 142 then has a tapered shape.
Once assembled, the cannula 142 has slots 220 extending along its entire longitudinal length, along opposite sides of the cannula 142. The slots 220 extend to the cage 152, and are therefore contiguous with the recesses defined by the arms 172 of the cage 152. Upon implantation of the pedicle screw 150, the slots 220 will extend along the entire subcutaneous length of the cannula 142. Therefore, the rod portion 146 may be inserted percutaneously through the slots 220 along a direction transverse to the axis of the cannula 146, and may then be moved through the slots 220 along the anterior direction 16, directly into the trough of the cage 152.
Referring to
The driver 232 has a handle 236 designed to be rotated by hand, and a shank 238 extending from the handle 236. The shank 238 has a proximal end 240 and distal end 242 shaped to drive the pedicle screw 150. The distal end 242 has a hexagonal projection 244 that fits into the hexagonal recess 164 of the head 160 of the pedicle screw 150. The driver 232 also has a bore 246 sized to receive any of the guide wires 70, 72, 78; the bore 246 extends through at least a portion of the shank 238 and, optionally, through all or part of the handle 236 to permit the screw insertion tool 230 to be easily guided along each of the guide wires 70, 72, 78.
The countertorque member 234 has a bore 248 that extends along its entire length, through which the shank 238 of the driver 232 passes. The bore 248 is large enough to permit easy relative rotation between the driver 232 and the countertorque member 234. The countertorque member 234 also has a generally tubular shape with a proximal end 250 and a distal end 252. The proximal end 250 has a plurality of longitudinal ridges 254 designed to be gripped by a user's fingers to restrict rotation of the countertorque member 234. The distal end 252 has a plurality of threads 256 designed to threadably engage the threads 178 of the arms 172 of the cage 152.
Thus, the distal end 252 of the countertorque member 234 can be rotated into engagement with the cage 152 to secure the countertorque member 234 to the cage 152, thereby allowing a user to hold the longitudinal ridges 254 to keep the cage 152 stationary during rotation of the driver 232. The countertorque member 234 also has longitudinal slots 258 that provide access to the bore 248 of the countertorque member 234 for cleaning or other purposes.
Referring to
In the alternative to the embodiment illustrated in
Referring to
As also shown, a second connecting element 260 has been implanted in the pedicle 50 of the second vertebra 26 (not shown in
Referring to
Referring to
Referring to
More precisely, the distal end 310 may have a rod coupling 312 securable to the rod through the use of a mechanism such as a collet or gripper. Such a mechanism may be actuated by rotating the knob 306. According to alternative embodiments of the invention, an interference fit or another similar mechanism may be used to retain the rod in such a manner that the rod can be removed when a threshold removal force is applied. The shank 304 has a plurality of slots 314 distributed along the length of the shank 304 to provide access to a bore (not shown) of the shank 304 for cleaning or other purposes.
Referring to
The leading end 317 is first inserted through the skin (not shown) of the patient by inserting the leading end 317 through the proximal end 190 of the cannula 142, and through the central opening 212 of the abutment member 144. Once underneath the skin, the handle 302 is manipulated to insert the leading end 317 through the opening formed in the fascia, through the slots 220 of the second cannula 262, and through at least one slot 220 of the third cannula 272 and/or through at least one recess of the cage 152 of the third connecting element 270. Then, the rod 316 may be detached from the rod insertion tool 300.
Referring to
Referring to
Referring to
The first handle 342 has a proximal end 360 and a distal end 362. The proximal end 360 has a transverse extension 364 that facilitates gripping of the first handle 342, for example, with the fingers of one hand. The proximal end 360 also has a hole 366 with threads designed to receive threads (not shown) of the corresponding screw 356. The distal end 362 has a blade 368 that is pivotably coupled to the central body 346 by the pin 350.
The second handle 344 has a proximal end 370 and a distal end 372. The proximal end 370 has a hole (not shown) similar to the hole 366 of the proximal end 360 of the first handle 342. The distal end 372 may be formed as a single piece with the central body 346. The central body 346 has a slot 374 that receives the blade 368 of the distal end 362 of the first handle 342. The pin 350 passes through the slot 374 to extend through the blade 368, thereby providing the pivotable coupling between the central body 346 and the first handle 342. The central body 346 also has a projection 376 that extends generally distally.
The shank 348 has a proximal end 380 at which the shank 348 is secured to the projection 376 of the central body 346, and a distal end 382 designed to grip the rod 316 in response to pressure applied to squeeze the first and second handles 342, 344 together. More precisely, the distal end 382 has an arcuate recess 384 with a radius matched to that of the rod 316, and an arcuate extension 386 with a radius equal or similar to that of the arcuate recess 384.
The shank 348 also has a stationary arm 387 and a sliding arm 388, each of which has a generally half-circular cross sectional shape. The stationary arm 387 is rigidly attached to the projection 376, and the sliding arm 388 is slidably coupled to the stationary arm 387. The arcuate extension 386 is on the stationary arm 387, and the arcuate recess 384 is on the sliding arm 388. The sliding arm 388 is coupled to the blade 368 of the first handle 342 within the central body 346 such that pivotal motion of the first handle 342 urges the sliding arm 388 to slide distally along the stationary arm 387.
The first leaf spring 352 has a fixed end 390 secured to the first handle 342 by the corresponding screw 356, and a coupled end 392 coupled to the second leaf spring 354. Similarly, the second leaf spring 354 has a fixed end 394 secured to the second handle 344 by the other screw 356, and a coupled end 396 coupled to the coupled end 392 of the first leaf spring 352. The coupled ends 392, 396 may be interlocked in an interdigitated manner that permits relative rotation of the coupled ends 392, 396. Thus, the leaf springs 352, 354 cooperate to provide resilient force urging the first and second handles 342, 344 to move apart, thereby urging the distal end 382 of the shank 348 to release the rod 316 in the absence of force urging the handles 342, 344 together.
In order to use the rod holding tool 340, a portion of the rod 316 may first be positioned to abut the arcuate surface of the arcuate extension 386. When the first and second handles 342, 344 are squeezed together, for example, by hand, the sliding arm 388 slides distally along the stationary arm 387. As the sliding arm 388 slides along the stationary arm 387, the arcuate recess 384 moves toward the arcuate extension 386 until the arcuate surface of the arcuate recess 384 is contiguous with the arcuate surface of the arcuate extension 386. The arcuate recess 384 then cooperates with the arcuate extension 386 to capture the rod 316 so that the rod holding tool 340 can be used to axially rotate or translate the rod 316, as desired.
Referring to
Referring to
Referring to
The hexagonal projection 412 may first be inserted into the hexagonal recess 180 of the set screw 154. Then, the handle 402 may be gripped and used to insert the set screw 154 into position adjacent to the threads 178 of the arms 172 of the cage 152 of the connecting element 140. The handle 402 may then be rotated clockwise to cause the threads 182 of the set screw 154 to rotate into engagement with the threads 178. The handle 402 may be rotated clockwise until the set screw 154 presses firmly against the rod 316 to keep the rod 316 in place within the corresponding cage 152, and to restrict further rotation of the cage 152 with respect to the corresponding pedicle screw 150. All three of the set screws 154 may be positioned and tightened in this manner to complete assembly of the posterior spinal fusion system.
In addition to the set screw driver 400 of
Referring to
As mentioned previously, once the abutment members 144, 264, 274 have been removed, the blades 194, 196 of each cannula 142, 262, 272 may be pivoted into the unlocked configuration. The distal tabs 204 may then be withdrawn from the slots 174 of the arms 172 of the cages 152, and out of the patient's body. Then, the incisions made to accommodate the cannulas 142, 262, 272 may be closed and treated through the use of methods known in the art.
Referring to
As shown, the pedicle screw 150 of the first connecting element 140 is implanted in the pedicle 30 of the right side of the first vertebra 24, the pedicle screw 150 of the second connecting element 260 is implanted in the pedicle 50 of the right side of the second vertebra 26, and the pedicle screw 150 of the third connecting element 270 is implanted in the pedicle 430 of the right side of the third vertebra 428. The rod 316 passes through the troughs of the cages 152 in a manner that preserves the proper lordosis of the spine 10. The set screws 154 have been rotated into engagement with the cages 152 and tightened to keep the rod 316 in place within the troughs of the cages 152 and to substantially eliminate rotation of the cages 152 relative to their respective vertebrae 24, 26, 428.
The connecting elements 140, 260, 270 thus cooperate with the rod 316 to restrict relative motion of the vertebrae 24, 26, 428 to form a posterior vertebral fusion system. If desired, a similar system may be implanted in the left-side pedicles 30, 50, 430 of the vertebrae 24, 26, 428 through the method set forth previously to provide a bilateral system. Additionally, the present invention is not limited to a three-level fusion system, but may be used to fuse any number of vertebrae together. To fuse more than three vertebrae together, the steps set forth above may simply be repeated for each additional vertebra, and the rod may be inserted through the skin via a first cannula, and then percutaneously inserted through three or more additional cannulas.
A variety of alternative embodiments of the invention may be used in place of the method and components illustrated in
A variety of different docking elements may be used in place of the distal tabs 204 and the slots 174. Such docking elements may include threaded engagement, collets, pin-and-locking-groove systems, interference fit couplings, snap-fit couplings, and the like. Additionally, a variety of locking mechanisms may be used in place of the proximal tabs 202. Such locking mechanisms may include locking members securable to the proximal ends 190 of the cannulas 142, 262, 272 to interfere with withdrawal of the abutment members 144, 264, 274 therefrom, or locking members movably coupled to the proximal ends 190. Additionally, a wide variety of interfaces may be provided between each cannula 142, 262, 272 and the corresponding abutment member 144, 164, 274 to restrict withdrawal of the abutment members 144, 264, 274 from the cannulas 142, 262, 272.
Furthermore, each of the instruments set forth previously, including the screw insertion tool 230, the fascia clipping tool 280, the rod insertion tool 300, the rod seating tool 320, the rod holding tool 340, and the set screw driver 400, may be replaced with an alternatively configured tool that performs a similar function. The steps recited above need not necessarily be performed in the order provided, but may instead be rearranged, and some steps may be omitted and/or other steps may be added, to provide alternative methods within the scope of the invention.
According to one alternative embodiment of the invention, a connecting element may have a cage pre-attached to a cannula that provides access to the cage. Such an alternative embodiment will be shown and described in greater detail in connection with
Referring to
As shown in
The cannula 442 has a generally tubular shape with a proximal end 490 and a distal end 492. The cannula 442 includes a first blade 494 and a second blade 496 positioned opposite the first blade 494. Each of the blades 494, 496 has a proximal end 498 that is substantially free, and a distal end 500 pre-attached to the corresponding arm 472 of the cage 452. In the embodiment of
Each frangible portion 504 may take the form of a necked-down region designed to fracture in response to application of a certain pre-established threshold linear force or angular moment. More precisely, each frangible portion 504 may fracture in response to force tending to tilt the blades 494, 496 to push the proximal ends 498 inward, toward the axis of the cannula 442. Thus, the frangible portions 504 define a frangible coupling between the cannula 442 and the cage 452.
In use, the cannula 442 and the cage 452 may be used in a manner similar to that set forth in
According to other alternative embodiments (not shown), blades may be pre-attached to a cage in a manner that does not require the blades to be formed as a single piece with the cage. For example, the blades may be welded, mechanically fastened, or otherwise pre-attached to the cage. Such embodiments may optionally have frangible portions. Alternatively, the blades may be removable in other ways, such as via removal of a mechanical fastener.
The foregoing description discloses a number of different elements that may be combined in various ways to provide a number of alternative implantable systems. Although the foregoing examples relate to implantation of a posterior spinal fusion system, the present invention may be applied to a wide variety of implants, within and outside the orthopedic area.
The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. It is appreciated that various features of the systems and methods described above can be mixed and matched to form a variety of other alternatives. As such the described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
Justin, Daniel F., Fallin, T. Wade, Butters, Joshua A., Chin, Kingsley Richard
Patent | Priority | Assignee | Title |
10070936, | Feb 06 2006 | STRYKER EUROPEAN HOLDINGS III, LLC | Rod contouring apparatus for percutaneous pedicle screw extension |
10143502, | Nov 08 2003 | STRYKER EUROPEAN HOLDINGS III, LLC | Methods and devices for improving percutaneous access in minimally invasive surgeries |
10441325, | Apr 11 2006 | DePuy Synthes Products, Inc. | Minimally invasive fixation system |
10765488, | Feb 06 2006 | STRYKER EUROPEAN HOLDINGS III, LLC | Rod contouring apparatus for percutaneous pedicle screw extension |
10779866, | Dec 29 2016 | K2M, INC | Rod reducer assembly |
10888360, | Apr 23 2010 | DePuy Synthes Products, Inc. | Minimally invasive instrument set, devices, and related methods |
10993739, | May 20 2009 | DePuy Synthes Products, Inc. | Patient-mounted retraction |
10993747, | Nov 08 2003 | STRYKER EUROPEAN HOLDINGS III, LLC | Methods and devices for improving percutaneous access in minimally invasive surgeries |
11134994, | Jan 30 2020 | Warsaw Orthopedic, Inc. | Spinal-correction system having threaded extender tabs and reduction tab extenders |
11284927, | Feb 02 2018 | Stryker European Operations Holdings LLC | Orthopedic screw and porous structures thereof |
11389213, | Apr 23 2010 | DePuy Synthes Products, Inc. | Minimally invasive instrument set, devices, and related methods |
11925398, | Feb 02 2018 | Stryker European Operations Holdings LLC | Orthopedic screw and porous structures thereof |
9655685, | Feb 06 2006 | STRYKER EUROPEAN HOLDINGS III, LLC | Rod contouring apparatus for percutaneous pedicle screw extension |
9700357, | Nov 08 2003 | STRYKER EUROPEAN HOLDINGS III, LLC | Methods and devices for improving percutaneous access in minimally invasive surgeries |
9801667, | Nov 16 2015 | NEXUS SPINE, L L C | Instruments, tools, and methods for presson pedicle screws |
9999451, | Jun 16 2015 | BIEDERMANN TECHNOLOGIES GMBH & CO KG; BIEDERMANN MOTECH GMBH & CO KG | Extension device for a bone anchor |
RE46432, | Nov 08 2003 | STRYKER EUROPEAN HOLDINGS III, LLC | System and method for spinal implant placement |
RE47348, | Nov 08 2003 | STRYKER EUROPEAN HOLDINGS III, LLC | System and method for spinal implant placement |
RE48376, | Nov 08 2003 | STRYKER EUROPEAN HOLDINGS III, LLC | System and method for spinal implant placement |
RE49432, | Nov 08 2003 | Stryker European Operations Holdings LLC | System and method for spinal implant placement |
Patent | Priority | Assignee | Title |
3788318, | |||
3789852, | |||
3892232, | |||
4269184, | Feb 28 1980 | SAFETY FUND NATIONAL BANK | Silicone tracheal cannula |
4350151, | Mar 12 1981 | COOPERSURGICAL, INC | Expanding dilator |
4409968, | Feb 04 1980 | Method and apparatus for engaging a hook assembly to a spinal column | |
4411259, | Feb 04 1980 | Apparatus for engaging a hook assembly to a spinal column | |
4448191, | Jul 07 1981 | Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature | |
4449532, | Jul 08 1980 | Dilator to facilitate endoscope insertion into the body | |
4545374, | Sep 03 1982 | Method and instruments for performing a percutaneous lumbar diskectomy | |
4562832, | May 21 1984 | Medical instrument and light pipe illumination assembly | |
4611581, | Dec 16 1983 | DEPUY ACROMED, INC | Apparatus for straightening spinal columns |
4790297, | Jul 24 1987 | SDGI Holdings, Inc | Spinal fixation method and system |
4817587, | Aug 31 1987 | Ring para-spinal retractor | |
4862891, | Mar 14 1988 | FARRELL, EDWARD M | Device for sequential percutaneous dilation |
4899729, | May 29 1986 | Expansible cannula | |
4913134, | Jul 24 1987 | SDGI Holdings, Inc | Spinal fixation system |
4984564, | Sep 27 1989 | Surgical retractor device | |
5010879, | Mar 31 1989 | Tanaka Medical Instrument Manufacturing Co. | Device for correcting spinal deformities |
5027793, | Mar 30 1990 | DE PUY, INC | Surgical retractor |
5035232, | Oct 24 1987 | AESCULAP AG & CO KG | Retractor |
5125396, | Oct 05 1990 | Holmed Corporation | Surgical retractor |
5139487, | Nov 28 1990 | Laparoscopic surgical instrument apparatus | |
5171279, | Mar 17 1992 | SDGI Holdings, Inc | Method for subcutaneous suprafascial pedicular internal fixation |
5183464, | May 17 1991 | Tyco Healthcare Group LP | Radially expandable dilator |
5195541, | Oct 18 1991 | Method of performing laparoscopic lumbar discectomy | |
5197971, | Mar 02 1990 | General Surgical Innovations, Inc | Arthroscopic retractor and method of using the same |
5242443, | Aug 15 1991 | VERTEBRAL SYSTEMS, LLC | Percutaneous fixation of vertebrae |
5293863, | May 08 1992 | LOMA LINDA NEUROSURGERY, INC | Bladed endoscopic retractor |
5295994, | Nov 15 1991 | General Surgical Innovations, Inc | Active cannulas |
5312417, | Jul 29 1992 | Laparoscopic cannula assembly and associated method | |
5357983, | Sep 01 1992 | SDGI Holdings, Inc | Method for subcutaneous suprafascial pedicular internal fixation |
5377667, | Dec 03 1992 | Michael T., Patton | Speculum for dilating a body cavity |
5381788, | Aug 05 1991 | United States Surgical Corporation | Surgical retractor |
5395317, | Oct 30 1991 | HOWMEDICA OSTEONICS CORP | Unilateral biportal percutaneous surgical procedure |
5409488, | Apr 02 1991 | Spondylodesis implant | |
5425732, | Jan 16 1992 | Implant for internal fixation, particularly spondylodesis implant | |
5439464, | Mar 09 1993 | Shapiro Partners Limited | Method and instruments for performing arthroscopic spinal surgery |
5454365, | Nov 05 1990 | BONUTTI 2003 TRUST-A, THE | Mechanically expandable arthroscopic retractors |
5464011, | Oct 24 1994 | Tracheostomy tube | |
5480440, | Mar 26 1993 | VERTEBRAL SYSTEMS, LLC | Open surgical technique for vertebral fixation with subcutaneous fixators positioned between the skin and the lumbar fascia of a patient |
5496322, | Mar 17 1992 | SDGI Holdings, Inc | Method for subcutaneous suprafascial pedicular internal fixation |
5545228, | Oct 23 1992 | Altiva Corporation | Offset bone bolt |
5569248, | Mar 17 1992 | SDGI Holdings, Inc | Apparatus for subcutaneous suprafascial pedicular internal fixation |
5569290, | Jan 30 1995 | Ethicon Endo-Surgery, Inc | Method of and apparatus for laparoscopic or endoscopic spinal surgery using an unsealed anteriorly inserted transparent trochar |
5584887, | Aug 15 1991 | Altiva Corporation | Percutaneous screw adapter |
5601562, | Feb 14 1995 | Arthrex, Inc. | Forked insertion tool and metnod of arthroscopic surgery using the same |
5601590, | Jun 06 1994 | General Surgical Innovations, Inc | Expandable cannulas |
5707359, | Nov 14 1995 | Expanding trocar assembly | |
5720751, | Nov 27 1996 | SDGI Holdings, Inc | Tools for use in seating spinal rods in open ended implants |
5728097, | Mar 17 1992 | SDGI Holdings, Inc | Method for subcutaneous suprafascial internal fixation |
5741261, | Jun 25 1996 | Warsaw Orthopedic, Inc | Minimally invasive spinal surgical methods and instruments |
5743907, | Jul 24 1990 | DEPUY ACROMED, INC | Spinal column retaining method and apparatus |
5746720, | Oct 18 1995 | Method and apparatus for insertion of a cannula and trocar | |
5762629, | Oct 30 1991 | HOWMEDICA OSTEONICS CORP | Oval cannula assembly and method of use |
5772594, | Oct 16 1996 | SOFAMOR DANEK HOLDINGS, INC | Fluoroscopic image guided orthopaedic surgery system with intraoperative registration |
5792044, | Mar 22 1996 | SDGI Holdings, Inc | Devices and methods for percutaneous surgery |
5795289, | Jul 28 1997 | Speculum | |
5882344, | Oct 18 1995 | Adjustable length cannula and trocar | |
5885291, | Jun 25 1996 | SDGI Holdings, Inc. | Minimally invasive spinal surgical methods and instruments |
5885292, | Jun 25 1996 | SDGI Holdings, Inc. | Minimally invasive spinal surgical methods and instruments |
5891147, | Jun 25 1996 | SDGI Holdings, Inc. | Minimally invasive spinal surgical methods & instruments |
5902231, | Mar 22 1996 | Warsaw Orthopedic, Inc | Devices and methods for percutaneous surgery |
5928139, | Apr 24 1998 | Retractor with adjustable length blades and light pipe guides | |
5944658, | Sep 23 1997 | Lumbar spinal fusion retractor and distractor system | |
5954635, | Mar 22 1996 | SDGI Holdings Inc. | Devices and methods for percutaneous surgery |
5957888, | Oct 10 1995 | United States Surgical Corporation | Surgical cannula having a variable length |
5961499, | Feb 04 1993 | Bonutti Skeletal Innovations LLC | Expandable cannula |
5964761, | Jul 15 1997 | ZIMMER SPINE, INC | Method and instruments for percutaneous arthroscopic disc removal, bone biopsy and fixation of vertebrae |
5976146, | Jul 11 1997 | Olympus Corporation | Surgical operation system and method of securing working space for surgical operation in body |
6007487, | Mar 22 1996 | SDGI Holdings, Inc. | Tissue retractor for use through a cannula |
6033406, | Mar 17 1992 | SDGI Holdings, Inc. | Method for subcutaneous suprafascial pedicular internal fixation |
6036692, | Feb 12 1997 | SDGI Holdings, Inc. | Rod introducer forceps |
6080156, | Jul 24 1990 | Depuy Acromed, Inc. | Spinal column retaining method and apparatus |
6127597, | Mar 07 1997 | Kyphon SARL | Systems for percutaneous bone and spinal stabilization, fixation and repair |
6152871, | Mar 22 1996 | Warsaw Orthopedic, Inc | Apparatus for percutaneous surgery |
6159179, | Mar 12 1999 | DEPUY SYNTHES PRODUCTS, INC | Cannula and sizing and insertion method |
6162170, | Mar 22 1996 | SDGI Holdings, Inc. | Devices and methods for percutaneous surgery |
6175758, | Jul 15 1997 | ZIMMER SPINE, INC | Method for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebrae |
6176823, | Mar 22 1996 | SDGI Holdings, Inc. | Fixture for supporting a viewing element within a cannula |
6183472, | Apr 09 1998 | STRYKER EUROPEAN HOLDINGS III, LLC | Pedicle screw and an assembly aid therefor |
6187000, | Aug 20 1998 | ZIMMER SPINE, INC | Cannula for receiving surgical instruments |
6197002, | Dec 12 1997 | Ethicon Endo-Surgery, Inc | Laparoscopic tool and method |
6200322, | Aug 13 1999 | Warsaw Orthopedic, Inc | Minimal exposure posterior spinal interbody instrumentation and technique |
6206822, | Mar 22 1996 | SDGI Holdings, Inc. | Devices and methods for percutaneous surgery |
6206826, | Dec 18 1997 | Warsaw Orthopedic, Inc | Devices and methods for percutaneous surgery |
6217509, | Mar 22 1996 | SDGI Holdings, Inc. | Devices and methods for percutaneous surgery |
6226548, | Sep 24 1997 | Medtronic Navigation, Inc | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation |
6235028, | Feb 14 2000 | Warsaw Orthopedic, Inc | Surgical guide rod |
6287313, | Nov 23 1999 | Warsaw Orthopedic, Inc | Screw delivery system and method |
6338730, | Feb 04 1993 | Bonutti Skeletal Innovations LLC | Method of using expandable cannula |
6358266, | Mar 02 1990 | General Surgical Innovations, Inc. | Active cannulas |
6371968, | May 09 1996 | Olympus Optical Co., Ltd. | Cavity retaining tool for bone surgery, a cavity retaining tool for general surgery, an endoscopic surgery system involving the use of a cavity retaining tool, and a procedure for surgery |
6425859, | Mar 22 1996 | SDGI Holdings, Inc. | Cannula and a retractor for percutaneous surgery |
6475218, | Jul 02 2001 | SOFAMOR S N C | Spinal implant for an osteosynthesis device |
6485518, | Dec 10 1999 | NuVasive, Inc | Facet screw and bone allograft intervertebral support and fusion system |
6506151, | Apr 09 1998 | SDGI Holdings, Inc. | Method and instrumentation for posterior interbody fusion |
6520907, | Mar 22 1996 | SDGI Holdings, Inc. | Methods for accessing the spinal column |
6524320, | May 15 2001 | ZIMMER SPINE, INC | Cannula for receiving surgical instruments |
6530926, | Aug 01 2000 | ZIMMER SPINE, INC | Method of securing vertebrae |
6530929, | Oct 20 1999 | Warsaw Orthopedic, Inc | Instruments for stabilization of bony structures |
6558386, | Feb 16 2000 | MIS IP HOLDINGS LLC | Axial spinal implant and method and apparatus for implanting an axial spinal implant within the vertebrae of the spine |
6558390, | Feb 16 2000 | MIS IP HOLDINGS LLC | Methods and apparatus for performing therapeutic procedures in the spine |
6562046, | Nov 23 1999 | SDGI Holdings, Inc. | Screw delivery system and method |
6575979, | Feb 16 2000 | MIS IP HOLDINGS LLC | Method and apparatus for providing posterior or anterior trans-sacral access to spinal vertebrae |
6596008, | Jul 15 1997 | ZIMMER SPINE, INC | Method and instruments for percutaneous arthroscopic disc removal, bone biopsy and fixation of the vertebral |
6605095, | Jun 13 2000 | Warsaw Orthopedic, Inc | Percutaneous needle alignment system and associated method |
6607530, | May 10 1999 | K2M, INC | Systems and methods for spinal fixation |
6613050, | Oct 24 1996 | ZIMMER SPINE, INC | Method and apparatus for spinal fixation |
6652553, | Aug 20 1998 | ZIMMER SPINE, INC | Surgical tool for use in expanding a cannula |
6660006, | Apr 17 2002 | STRYKER EUROPEAN HOLDINGS III, LLC | Rod persuader |
6692434, | Sep 29 2000 | Method and device for retractor for microsurgical intermuscular lumbar arthrodesis | |
6692473, | May 24 2001 | JACQMAR, INC | Dual lumen adjustable length cannulae for liquid perfusion or lavage |
6723095, | Dec 28 2001 | HEMODYNAMICS, INC | Method of spinal fixation using adhesive media |
6740089, | Jan 10 2002 | Orthopedic hook system | |
6740090, | Feb 16 2000 | MIS IP HOLDINGS LLC | Methods and apparatus for forming shaped axial bores through spinal vertebrae |
6746449, | Sep 12 2001 | ZIMMER BIOMET SPINE, INC | Spinal rod translation instrument |
6749614, | Jun 23 2000 | Warsaw Orthopedic, Inc | Formable orthopedic fixation system with cross linking |
6770074, | Feb 27 1995 | Warsaw Orthopedic, Inc | Apparatus for use in inserting spinal implants |
6790210, | Feb 16 2000 | MIS IP HOLDINGS LLC | Methods and apparatus for forming curved axial bores through spinal vertebrae |
6793656, | Mar 17 1992 | SDGI Holdings, Inc. | Systems and methods for fixation of adjacent vertebrae |
6800084, | Aug 20 1998 | ZIMMER SPINE, INC | Method for performing a surgical procedure and a cannula for use in performing the surgical procedure |
6811558, | Aug 20 1998 | ZIMMER SPINE, INC | Method for performing a surgical procedure and a cannula for use in performing the surgical procedure |
6821277, | Jun 23 2000 | University of Southern California Patent and Copyright Administration | Percutaneous vertebral fusion system |
6837891, | Aug 20 1998 | ZIMMER SPINE, INC | Cannula for receiving surgical instruments |
6849064, | Oct 25 2002 | K2M, INC | Minimal access lumbar diskectomy instrumentation and method |
6923811, | May 10 1999 | K2M, INC | Systems and methods for spinal fixation |
6929647, | Feb 21 2001 | HOWMEDICA OSTEONICS CORP | Instrumentation and method for implant insertion |
7011660, | Oct 20 1999 | Warsaw Orthopedic, Inc | Instruments and methods for stabilization of bony structures |
7083621, | Aug 15 2003 | Warsaw Orthopedic, Inc | Articulating spinal fixation rod and system |
7160300, | Feb 27 2004 | NuVasive, Inc | Orthopedic implant rod reduction tool set and method |
7250052, | Oct 30 2002 | ZIMMER BIOMET SPINE, INC | Spinal stabilization systems and methods |
7261714, | Apr 18 2002 | AESCULAP IMPLANT SYSTEMS, INC | Screw and rod fixation assembly and device |
7306603, | Aug 21 2002 | Theken Spine, LLC | Device and method for percutaneous placement of lumbar pedicle screws and connecting rods |
7758617, | Apr 27 2005 | Globus Medical, Inc | Percutaneous vertebral stabilization system |
7811288, | Dec 02 2004 | ZIMMER BIOMET SPINE, INC | Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure |
7842073, | Apr 18 2002 | AESCULAP II, INC | Screw and rod fixation assembly and device |
7955355, | Sep 24 2003 | STRYKER EUROPEAN HOLDINGS III, LLC | Methods and devices for improving percutaneous access in minimally invasive surgeries |
8002798, | Nov 08 2003 | STRYKER EUROPEAN HOLDINGS III, LLC | System and method for spinal implant placement |
8105361, | Dec 16 2003 | Depuy Synthes Products, LLC | Methods and devices for minimally invasive spinal fixation element placement |
8177817, | May 18 2005 | STRYKER EUROPEAN HOLDINGS III, LLC | System and method for orthopedic implant configuration |
8192440, | Dec 02 2004 | ZIMMER BIOMET SPINE, INC | Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure |
20010011170, | |||
20010027320, | |||
20010029353, | |||
20010049498, | |||
20010049527, | |||
20010053915, | |||
20020016583, | |||
20020045904, | |||
20020068975, | |||
20020082598, | |||
20020082600, | |||
20020107519, | |||
20020116006, | |||
20020161368, | |||
20020173796, | |||
20020198526, | |||
20025059969, | |||
20025085813, | |||
20025137461, | |||
20025154389, | |||
20030004517, | |||
20030060826, | |||
20030073998, | |||
20030083688, | |||
20030139648, | |||
20030195518, | |||
20030199871, | |||
20030199872, | |||
20030199884, | |||
20030204189, | |||
20030208202, | |||
20030225408, | |||
20030229353, | |||
20040006341, | |||
20040006344, | |||
20040034351, | |||
20040039384, | |||
20040059333, | |||
20040082954, | |||
20040082960, | |||
20040082961, | |||
20040087950, | |||
20040093001, | |||
20040106934, | |||
20040133201, | |||
20040138662, | |||
20040143265, | |||
20040143268, | |||
20040147928, | |||
20040147936, | |||
20040162560, | |||
20040172022, | |||
20040176763, | |||
20040194791, | |||
20040215190, | |||
20040215193, | |||
20040236317, | |||
20040254576, | |||
20050010220, | |||
20050010221, | |||
20050021030, | |||
20050021031, | |||
20050025771, | |||
20050033297, | |||
20050038432, | |||
20050038434, | |||
20050043741, | |||
20050043742, | |||
20050059969, | |||
20050065515, | |||
20050065517, | |||
20050070917, | |||
20050080418, | |||
20050085813, | |||
20050090822, | |||
20050090833, | |||
20050113833, | |||
20050124991, | |||
20050131407, | |||
20050131408, | |||
20050131421, | |||
20050131422, | |||
20050137461, | |||
20050137593, | |||
20050149022, | |||
20050149035, | |||
20050154389, | |||
20050171540, | |||
20050182410, | |||
20050192570, | |||
20050245928, | |||
20050251139, | |||
20050277942, | |||
20060030839, | |||
20060036252, | |||
20060084980, | |||
20060111713, | |||
20060111714, | |||
20060200135, | |||
20060217735, | |||
20060247658, | |||
20060264934, | |||
20060293680, | |||
20070043359, | |||
20070233079, | |||
20080009864, | |||
20090099605, | |||
20090216328, | |||
20090228056, | |||
20100137915, | |||
20100331901, | |||
20110015678, | |||
20110077692, | |||
20110152940, | |||
20110238120, | |||
20110245884, | |||
20120089191, | |||
20120123477, | |||
20120158070, | |||
20120197302, | |||
D346217, | Jul 13 1992 | DEPUY ACROMED, INC | Combined hook holder and rod mover for spinal surgery |
DE10027988, | |||
DE19726754, | |||
DE29710979, | |||
DE3711091, | |||
DE4238339, | |||
EP528177, | |||
EP528562, | |||
EP611116, | |||
EP665731, | |||
EP1006888, | |||
EP1027988, | |||
EP1248568, | |||
EP1374786, | |||
EP1468652, | |||
EP1545355, | |||
EP528562, | |||
EP611116, | |||
EP665731, | |||
SU839513, | |||
WO137744, | |||
WO141681, | |||
WO156479, | |||
WO160232, | |||
WO160234, | |||
WO160262, | |||
WO160263, | |||
WO160270, | |||
WO195823, | |||
WO2085217, | |||
WO3020110, | |||
WO3037170, | |||
WO3057055, | |||
WO3088810, | |||
WO3088878, | |||
WO2004004584, | |||
WO2004017847, | |||
WO2004021899, | |||
WO2004028382, | |||
WO2004037074, | |||
WO2004080318, | |||
WO2005018466, | |||
WO2005023123, | |||
WO2005032358, | |||
WO2005072081, | |||
WO9318722, | |||
WO9409726, | |||
WO9714457, | |||
WO9822030, | |||
WO9836785, | |||
WO9838918, | |||
WO9929242, | |||
WO9951139, | |||
WO45720, | |||
WO112080, | |||
WO137744, | |||
WO141681, | |||
WO156479, | |||
WO160232, | |||
WO160234, | |||
WO160262, | |||
WO160263, | |||
WO160270, | |||
WO195823, | |||
WO2085217, | |||
WO3020110, | |||
WO3028566, | |||
WO3037170, | |||
WO3057055, | |||
WO3079914, | |||
WO3088810, | |||
WO3088878, | |||
WO2004004584, | |||
WO2004017847, | |||
WO2004021899, | |||
WO2004028382, | |||
WO2004037070, | |||
WO2004037074, | |||
WO2004041100, | |||
WO2004058045, | |||
WO2004080318, | |||
WO2004238339, | |||
WO2005018466, | |||
WO2005023123, | |||
WO2005060534, | |||
WO2005072081, | |||
WO2006116662, | |||
WO9318722, | |||
WO9409726, | |||
WO9514437, | |||
WO9714457, | |||
WO9836785, | |||
WO9838918, | |||
WO9929242, | |||
WO9951139, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 16 2005 | BUTTERS, JOSHUA A | CHIN, KINGSLEY R | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036415 | /0570 | |
Aug 25 2005 | CHIN, KINGSLEY R | CHIN, KINGSLEY R | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036415 | /0570 | |
Aug 29 2005 | FALLIN, T WADE | CHIN, KINGSLEY R | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036415 | /0570 | |
Aug 29 2005 | JUSTIN, DANIEL F | CHIN, KINGSLEY R | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036415 | /0570 | |
Nov 02 2005 | FALLIN, T WADE | MANTIS, L L S | CORRECTIVE ASSIGNMENT TO CORRECT THE EXHIBIT A OMITTED INSIDE THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED AT REEL: 036434 FRAME: 0717 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 042992 | /0104 | |
Nov 02 2005 | MedicineLodge, Inc | MANTIS, L L S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036434 | /0717 | |
Nov 02 2005 | BUTTERS, JOSHUA A | MANTIS, L L S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036434 | /0717 | |
Nov 02 2005 | CHIN, KINGSLEY R | MANTIS, L L S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036434 | /0717 | |
Nov 02 2005 | FALLIN, T WADE | MANTIS, L L S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036434 | /0717 | |
Nov 02 2005 | JUSTIN, DANIEL F | MANTIS, L L S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036434 | /0717 | |
Nov 02 2005 | CHIN, KINGSLEY R | MANTIS, L L S | CORRECTIVE ASSIGNMENT TO CORRECT THE EXHIBIT A OMITTED INSIDE THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED AT REEL: 036434 FRAME: 0717 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 042992 | /0104 | |
Nov 02 2005 | BUTTERS, JOSHUA A | MANTIS, L L S | CORRECTIVE ASSIGNMENT TO CORRECT THE EXHIBIT A OMITTED INSIDE THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED AT REEL: 036434 FRAME: 0717 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 042992 | /0104 | |
Nov 02 2005 | JUSTIN, DANIEL F | MANTIS, L L S | CORRECTIVE ASSIGNMENT TO CORRECT THE EXHIBIT A OMITTED INSIDE THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED AT REEL: 036434 FRAME: 0717 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 042992 | /0104 | |
Nov 02 2005 | MedicineLodge, Inc | MANTIS, L L S | CORRECTIVE ASSIGNMENT TO CORRECT THE EXHIBIT A OMITTED INSIDE THE ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED AT REEL: 036434 FRAME: 0717 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 042992 | /0104 | |
Nov 04 2005 | MANTIS, L L S | Stryker Spine | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036446 | /0517 | |
Aug 21 2013 | Stryker Spine | (assignment on the face of the patent) | / | |||
Oct 08 2015 | STRYKER SPINE SAS | STRYKER EUROPEAN HOLDINGS VI, LLC | NUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS | 037152 | /0825 | |
Oct 08 2015 | STRYKER EUROPEAN HOLDINGS VI, LLC | STRYKER EUROPEAN HOLDINGS I, LLC | NUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS | 037153 | /0391 | |
Feb 26 2019 | STRYKER EUROPEAN HOLDINGS III, LLC | Stryker European Operations Holdings LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 052860 | /0716 | |
May 19 2020 | STRYKER EUROPEAN HOLDINGS I, LLC | STRYKER EUROPEAN HOLDINGS III, LLC | NUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS | 052861 | /0001 |
Date | Maintenance Fee Events |
Feb 12 2015 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 07 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 08 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 13 2018 | 4 years fee payment window open |
Jul 13 2018 | 6 months grace period start (w surcharge) |
Jan 13 2019 | patent expiry (for year 4) |
Jan 13 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 13 2022 | 8 years fee payment window open |
Jul 13 2022 | 6 months grace period start (w surcharge) |
Jan 13 2023 | patent expiry (for year 8) |
Jan 13 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 13 2026 | 12 years fee payment window open |
Jul 13 2026 | 6 months grace period start (w surcharge) |
Jan 13 2027 | patent expiry (for year 12) |
Jan 13 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |