A process and apparatus for continuous casting of amorphous alloy sheets having large sheet thickness using bulk solidifying amorphous alloys are provided. Thick continuous amorphous alloy sheets made of bulk solidifying amorphous alloys are also provided.
|
0. 21. An apparatus comprising:
a closed reservoir comprising a nozzle and a plunger, the reservoir configured for stabilizing a bulk solidifying amorphous alloy at a casting temperature below a melting temperature (Tm) of the alloy and above a temperature at which crystallization occurs on the shortest time scale for the alloy (TNOSE) such that the alloy is in a viscosity regime of about 0.1 to 10,000 poise; and at least two quench substrates configured for quenching the alloy at sufficiently fast rate such that the alloy remains in a substantially amorphous phase, to form a solid continuous sheet of the alloy, wherein the at least two quench substrates sandwich the alloy therebetween, wherein the reservoir is positioned vertically to contain the alloy and the nozzle is configured to discharge the alloy in a horizontal direction; wherein the solid continuous sheet has a thickness of at least 0.1 mm and the solid continuous sheet is a bulk solidifying amorphous alloy sheet.
0. 36. An apparatus comprising:
a closed reservoir comprising a nozzle and a plunger, the reservoir configured for stabilizing a bulk solidifying amorphous alloy at a casting temperature below a melting temperature (Tm) of the alloy and above a temperature at which crystallization occurs on the shortest time scale for the alloy TNOSE) such that the alloy is in a viscosity regime of about 0.1 to 10,000 poise; and at least two quench substrates configured for quenching the alloy at sufficiently fast rate such that the alloy remains in a substantially amorphous phase, to form a solid continuous sheet of the alloy, wherein the at least two quench substrates sandwich the alloy therebetween, wherein the nozzle is positioned with respect to the at least two quench substrates in a manner so as to discharge the alloy in a horizontal direction and cause the alloy to traverse from the nozzle to the at least two quench substrates in a substantially straight line, wherein the solid continuous sheet has a thickness of at least 0.1 mm and the solid continuous sheet is a bulk solidifying amorphous alloy sheet.
0. 1. A method for the continuous casting of sheets of an amorphous material comprising:
providing a quantity of a bulk a solidifying amorphous alloy at a temperature above the melting temperature of the bulk solidifying amorphous alloy;
stabilizing the bulk solidifying amorphous alloy at a casting temperature below the melting temperature (Tm) of the alloy and above the temperature at which crystallization occurs on the shortest time scale for the alloy (TNOSE) such that the bulk solidifying amorphous alloy is in a viscosity regime of about 0.1 to 10,000 poise;
introducing the stabilized bulk solidifying amorphous alloy onto a moving casting body such that a continuous sheet of heated bulk solidifying amorphous alloy is formed thereon; and
quenching the heated bulk solidifying amorphous alloy at a quenching rate sufficiently fast such that the bulk solidifying amorphous alloy remains in a substantially amorphous phase to form a solid amorphous continuous sheet having a thickness of at least 0.1 mm.
0. 2. The method of
0. 3. The method of
0. 4. The method of
0. 5. The method of
0. 6. The method of
0. 7. The method of
0. 8. The method of
0. 9. The method of
0. 10. The method of
0. 11. The method of
0. 12. The method of
0. 13. The method of
0. 14. The method of
0. 15. The method of
0. 16. The method of
0. 17. The method of
0. 18. The method of
0. 19. The method of
0. 20. The method of
0. 22. The apparatus of claim 21, wherein the viscosity of the alloy at the melting temperature Tm of the alloy is from about 10 to 100 poise.
0. 23. The apparatus of claim 21, wherein the viscosity of the alloy at the melting temperature Tm of the alloy is from about 1 to 1000 poise.
0. 24. The apparatus of claim 21, wherein the critical cooling rate of the alloy is less than 1,000° C./sec.
0. 25. The apparatus of claim 21, further comprising a casting body.
0. 26. The apparatus of claim 25, wherein the casting body comprises a material selected from the group consisting of copper, chromium copper, beryllium copper, dispersion hardening alloys, and oxygen-free copper.
0. 27. The apparatus of claim 25, wherein the casting body moves at a rate of 0.5 to 10 cm/sec.
0. 28. The apparatus of claim 21, wherein the bulk solidifying amorphous alloy is stabilized at a casting temperature such that the alloy is in a viscosity regime of 1 to 1,000 poise.
0. 29. The apparatus of claim 21, wherein the bulk solidifying amorphous alloy is stabilized at a casting temperature such that the alloy is in a viscosity regime of 10 to 100 poise.
0. 30. The apparatus of claim 21, wherein the solid amorphous alloy sheet has a thickness of 0.1 to 10 mm.
0. 31. The apparatus of claim 21, wherein the solid amorphous alloy sheet has a thickness of 0.5 to 3 mm.
0. 32. The apparatus of claim 25, wherein the alloy is introduced onto the casting body under pressure.
0. 33. The apparatus of claim 21, wherein the alloy can be described as (Zr,Ti)a(Ni,Cu,Fe)b(Be,Al,Si,B)c, where a is in the range of from 30 to 75, b is in the range of from 5 to 60, and c in the range of from 0 to 50 in atomic percentages.
0. 34. The apparatus of claim 21, wherein the alloy is ferrous metal based.
0. 35. The apparatus of claim 21 wherein the alloy further comprises ductile crystalline phase precipitates.
0. 37. The apparatus of claim 36, wherein the viscosity of the alloy at the melting temperature Tm of the alloy is from about 10 to 100 poise.
0. 38. The apparatus of claim 36, wherein the viscosity of the alloy at the melting temperature Tm of the alloy is from about 1 to 1000 poise.
0. 39. The apparatus of claim 36, wherein the critical cooling rate of the alloy is less than 1,000° C./sec.
0. 40. The apparatus of claim 36, further comprising a casting body.
0. 41. The apparatus of claim 40, wherein the casting body comprises a material selected from the group consisting of copper, chromium copper, beryllium copper, dispersion hardening alloys, and oxygen-free copper.
0. 42. The apparatus of claim 40, wherein the casting body moves at a rate of 0.5 to 10 cm/sec.
0. 43. The apparatus of claim 36, wherein the bulk solidifying amorphous alloy is stabilized at a casting temperature such that the alloy is in a viscosity regime of 1 to 1,000 poise.
0. 44. The apparatus of claim 36, wherein the bulk solidifying amorphous alloy is stabilized at a casting temperature such that the alloy is in a viscosity regime of 10 to 100 poise.
0. 45. The apparatus of claim 36, wherein the solid amorphous alloy sheet has a thickness of 0.1 to 10 mm.
0. 46. The apparatus of claim 36, wherein the solid amorphous alloy sheet has a thickness of 0.5 to 3 mm.
0. 47. The apparatus of claim 40, wherein the alloy is introduced onto the casting body under pressure.
0. 48. The apparatus of claim 36, wherein the alloy can be described as (Zr,Ti)a(Ni,Cu,Fe)b(Be,Al,Si,B)c, where a is in the range of from 30 to 75, b is in the range of from 5 to 60, and c in the range of from 0 to 50 in atomic percentages.
0. 49. The apparatus of claim 36, wherein the alloy is ferrous metal based.
0. 50. The apparatus of claim 36 wherein the alloy further comprises ductile crystalline phase precipitates.
|
This is a divisional reissue application of its parent reissue application Ser. No. 13/212,410, filed Aug. 18, 2011, which is the reissue of U.S. Pat. No. 7,575,040 (application Ser. No. 10/552,667, filed Jun. 21, 2006), which is a National Stage Entry of PCT/US04/11559, filed Apr. 14, 2004, all of which are incorporated herein by reference in their entireties.
This invention relates to continuous sheet casting of bulk-solidifying amorphous alloys, and, more particularly, to a method of continuous sheet casting amorphous alloy sheets having a large thickness.
Amorphous alloys have non-crystalline (amorphous) atomic structures generally formed by fast cooling the alloy from the molten liquid state to a solid state without the nucleation and growth of crystalline phases. As a result of the unique atomic structure produced during this process, amorphous alloys have high mechanical strength and good elasticity, while also exhibiting good corrosion resistance. Therefore, there is strong motivation in the materials field to find new applications for these materials in a variety of industries. However, because amorphous alloys require rapid cooling rates as they are solidified from temperatures above the melting state, it typically has only been possible to produce very thin ribbons or sheets of the alloys on a commercial scale, usually by a melt spin process wherein a stream of molten metal is rapidly quenched.
As shown, in the detailed view in
Although it is possible to obtain quench rates at lower velocities, there are many difficulties that are encountered. For example, at typical melt viscosities and low wheel rotational speeds it is not possible to reliably sustain a continuous process. As a result, the melt may flow too fast through the orifice slit and spill over the wheel, precluding a stable melt puddle and a steady state moving solidification front. Although, some remedies can be implemented, such as reducing the orifice slit size, generally this is not a practical solution because the molten metal would erode the opening of such a small orifice very quickly. Despite these problems, an amorphous metal sheet having a sheet thickness ranging from 50 to 75 μm, and also retaining the mechanical properties of the amorphous alloys is disclosed in U.S. Pat. No. 6,103,396; however, the thickness range available for the disclosed process still leads to limitations in the types of applications in which such materials may be used.
Accordingly a need exists for a continuous process to cast thick sheets of bulk solidifying amorphous alloys.
The present invention is directed to a process and apparatus for continuous casting of amorphous alloy sheets having large sheet thickness using bulk solidifying amorphous alloys.
In one embodiment of the invention, the sheet is formed using conventional single roll, double roll, or other chill-body forms.
In another embodiment of the invention, the amorphous alloy sheets have sheet thicknesses of from 0.1 mm to 10 mm.
In one embodiment of the invention, the casting temperature is stabilized in a viscosity regime of 0.1 to 10,000 poise, preferably 1 to 1,000 poise, and more preferably 10 to 100 poise.
In one embodiment of the invention, the extraction of continuous sheet is preferably done at speeds of 0.1 to 50 cm/sec, and preferably 0.5 to 10 cm/sec, and more preferably of 1 to 5 cm/sec.
These and other features and advantages of the present invention will be better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
The present invention is directed to a continuous casting process and apparatus for forming an amorphous alloy sheet having a large sheet thickness using a bulk solidifying amorphous alloy. The invention recognizes that it is possible to form a sheet of large thickness using bulk-solidifying amorphous alloys at high viscosity regimes.
For the purposes of this invention, the term amorphous means at least 50% by volume of the alloy is in amorphous atomic structure, and preferably at least 90% by volume of the alloy is in amorphous atomic structure, and most preferably at least 99% by volume of the alloy is in amorphous atomic structure.
Bulk solidifying amorphous alloys are a recently discovered family of amorphous alloys, which can be cooled at substantially lower cooling rates, of about 500 K/sec or less, and substantially retain their amorphous atomic structure. As such, they can be produced in thicknesses of 1.0 mm or more, substantially thicker than conventional amorphous alloys, which are typically limited to thicknesses of 0.020 mm, and which require cooling rates of 105 K/sec or more. U.S. Pat. Nos. 5,288,344; 5,368,659; 5,618,359; and 5,735,975, the disclosures of which are incorporated herein by reference in their entirety, disclose such bulk solidifying amorphous alloys.
One exemplary family of bulk solidifying amorphous alloys can be described as (Zr,Ti)a(Ni,Cu,Fe)b(Be,Al,Si,B)c, where a is in the range of from 30 to 75, b is in the range of from 5 to 60, and c in the range of from 0 to 50 in atomic percentages. Furthermore, these basic alloys can accommodate substantial amounts (up to 20% atomic, and more) of other transition metals, such as Hf, Ta, Mo, Nb, Cr, V, Co. A preferable alloy family is (Zr,Ti)a(Ni,Cu)b(Be)c, where a is in the range of from 40 to 75, b is in the range of from 5 to 50, and c in the range of from 5 to 50 in atomic percentages. Still, a more preferable composition is (Zr,Ti)a(Ni,Cu)b(Be)c, where a is in the range of from 45 to 65, b is in the range of from 7.5 to 35, and c in the range of from 10 to 37.5 in atomic percentages. Another preferable alloy family is (Zr)a(Nb,Ti)b(Ni,Cu)c(Al)d, where a is in the range of from 45 to 65, b is in the range of from 0 to 10, c is in the range of from 20 to 40 and d in the range of from 7.5 to 15 in atomic percentages.
Another set of bulk-solidifying amorphous alloys are ferrous metals (Fe, Ni, Co) based compositions, where the ferrous metal content is more than 50% by weight. Examples of such compositions are disclosed in U.S. Pat. No. 6,325,868 and in publications to (A. Inoue et. al., Appl. Phys. Lett., Volume 71, p 464 (1997)), (Shen et. al., Mater. Trans., JIM, Volume 42, p 2136 (2001)), and Japanese patent application 2000126277 (Publ. # 2001303218 A), all of which are incorporated herein by reference. One exemplary composition of such alloys is Fe72Al5Ga2P11C6B4. Another exemplary composition of such alloys is Fe72Al7Zr10Mo5W2B15. Although, these alloy compositions are not processable to the degree of the Zr-base alloy systems, they can still be processed in thicknesses of 1.0 mm or more, sufficient enough to be utilized in the current invention.
In general, crystalline precipitates in bulk amorphous alloys are highly detrimental to the properties of amorphous alloys, especially to the toughness and strength of these alloys, and as such it is generally preferred to minimize the volume fraction of these precipitates. However, there are cases in which, ductile crystalline phases precipitate in-situ during the processing of bulk amorphous alloys, which are indeed beneficial to the properties of bulk amorphous alloys, especially to the toughness and ductility of the alloys. Such bulk amorphous alloys comprising such beneficial precipitates are also included in the current invention. One exemplary case is disclosed in (C. C. Hays et. al, Physical Review Letters, Vol. 84, p 2901, 2000), the disclosure of which is incorporated herein by reference.
As discussed above, in one embodiment the present invention is directed to an apparatus for forming amorphous alloy sheets having large thicknesses of from 0.1 mm to 10 mm and having good ductility. In such an embodiment the sheet may be formed using a conventional single roll, double roll or other chill-body forms. Schematic diagrams of such conventional single roll apparatus are provided in
As shown in these diagrams, the continuous casting apparatus has a chill body 7 which moves relative to a injection orifice 3, through which the melt 19 is introduced. In this specification, the apparatus is described with reference to the section of a casting wheel 7 which is located at the wheel's periphery and serves as a quench substrate as used in the prior art. It will be appreciated that the principles of the invention are also applicable, as well, to other conventional quench substrate configurations such as a belt, double-roll wheels, wheels having shape and structure different from those of a wheel, or to casting wheel configurations in which the section that serves as a quench substrate is located on the face of the wheel or another portion of the wheel other than the wheel's periphery. In addition, it should be understood that the invention is also directed to apparatuses that quench the molten alloy by other mechanisms, such as by providing a flow of coolant fluid through axial conduits lying near the quench substrate.
In
The casting wheel quench substrate 27 may be comprised of copper or any other metal or alloy having relatively high thermal conductivity. Preferred materials of construction for the substrate 27 include fine, uniform grain-sized precipitation hardening copper alloys such as chromium copper or beryllium copper, dispersion hardening alloys, and oxygen-free copper. If desired, the substrate 27 may be highly polished or chrome-plated, or the like to obtain a sheet having smooth surface characteristics.
To provide additional protection against erosion, corrosion or thermal fatigue, the surface of the casting wheel may be coated in a conventional way using a suitably resistant or high-melt coating. For example, a ceramic coating or a coating of a corrosion-resistant, high-melting temperature metal may be applied provided that the wettability of the molten metal or alloy being cast on the chill surface is adequate.
The present invention is also directed to a processing method for making continuous amorphous alloy sheets with large thickness from bulk-solidifying amorphous alloys. A flow chart of this general process is shown in
As described above, in a first processing step a charge of the bulk solidifying amorphous alloy is provided. Viscosity and temperature processing parameters for an exemplary bulk solidifying amorphous alloy are provided in
Even though there is no liquid/crystallization transformation for a bulk solidifying amorphous metal, a “melting temperature” Tm may be defined as the thermodynamic liquidus temperature of the corresponding crystalline phase. Under this regime, the viscosity of bulk-solidifying amorphous alloys at the melting temperature lay in the range of about 0.1 poise to about 10,000 poise, which is to be contrasted with the behavior of other types of amorphous metals that have the viscosities at the melting temperature under 0.01 poise. In addition, higher values of viscosity can be obtained for bulk solidifying amorphous alloys by undercooling the alloy below the melting temperature, whereas ordinary amorphous alloys will tend to crystallize rather rapidly when undercooled.
In accordance with
Using the TTT and viscosity-temperature measurements shown in
After the alloy is ejected onto the chill body, the charge of amorphous alloy on the surface of chill body is cooled to temperatures below the glass transition temperature at a rate such that the amorphous alloy retains the amorphous state upon cooling. Preferably, the cooling rate is less than 1000° C. per second, but is sufficiently high to retain the amorphous state in the bulk solidifying amorphous alloy upon cooling. Once the lowest cooling rate that will achieve the desired amorphous structure in the article is chosen it can be engineered using the design of the chill body and the cooling channels. It should be understood that although several exemplary cooling rates are disclosed herein, the value of the cooling rate for any specific alloy cannot be specified herein as a fixed numerical value, because that value varies depending on the metal compositions, materials, and the shape and thickness of the sheet being formed. However, the value can be determined for each case using conventional heat flow calculations.
Accordingly, for bulk solidifying amorphous alloys, it is possible to reliably continue to process sheets even at low wheel rotational speeds by employing a high viscosity regime, so that the melt does not spill over the wheel, allowing for the formation of sheets with thicknesses up to about 10 mm.
Although specific embodiments are disclosed herein, it is expected that persons skilled in the art can and will design alternative continuous sheet casting apparatuses and methods to produce continuous amorphous alloy sheets that are within the scope of the following claims either literally or under the Doctrine of Equivalents.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2190611, | |||
3989517, | Oct 30 1974 | Allied Chemical Corporation | Titanium-beryllium base amorphous alloys |
4050931, | Oct 30 1974 | Allied Chemical Corporation | Amorphous metal alloys in the beryllium-titanium-zirconium system |
4064757, | Oct 18 1976 | Allied Chemical Corporation | Glassy metal alloy temperature sensing elements for resistance thermometers |
4067732, | Jun 26 1975 | Allied Chemical Corporation | Amorphous alloys which include iron group elements and boron |
4099961, | Dec 21 1976 | The United States of America as represented by the United States | Closed cell metal foam method |
4113478, | Aug 09 1977 | Allied Chemical Corporation | Zirconium alloys containing transition metal elements |
4116682, | Dec 27 1976 | Amorphous metal alloys and products thereof | |
4116687, | Dec 13 1976 | Allied Chemical Corporation | Glassy superconducting metal alloys in the beryllium-niobium-zirconium system |
4126449, | Aug 09 1977 | Allied Chemical Corporation | Zirconium-titanium alloys containing transition metal elements |
4135924, | Aug 09 1977 | Allied Chemical Corporation | Filaments of zirconium-copper glassy alloys containing transition metal elements |
4148669, | Aug 09 1977 | Allied Chemical Corporation | Zirconium-titanium alloys containing transition metal elements |
4157327, | Dec 27 1977 | United Technologies Corporation | Thermally conductive caulk |
4289009, | Jun 02 1978 | Swiss Aluminium Ltd. | Process and device for the manufacture of blisters with high barrier properties |
4472955, | Apr 20 1982 | Amino Iron Works Co., Ltd. | Metal sheet forming process with hydraulic counterpressure |
4478918, | Dec 25 1981 | International Fuel Cells Corporation | Fuel cell stack |
4621031, | Nov 16 1984 | Dresser Industries, Inc. | Composite material bonded by an amorphous metal, and preparation thereof |
4623387, | Apr 11 1979 | Shin-Gijutsu Kaihatsu Jigyodan | Amorphous alloys containing iron group elements and zirconium and articles made of said alloys |
4648437, | Jan 12 1984 | Olin Corporation | Method for producing a metal alloy strip |
4648609, | Jan 22 1985 | CONSTRUCTION ROBOTICS, INC AUST PTY LTD | Driver tool |
4710235, | Mar 05 1984 | Dresser Industries, Inc. | Process for preparation of liquid phase bonded amorphous materials |
4721154, | Mar 14 1986 | Sulzer-Escher Wyss AG; SULZER-ESCHER WYSS AG, A CORP OF SWITZERLAND | Method of, and apparatus for, the continuous casting of rapidly solidifying material |
4743513, | Jun 10 1983 | Dresser Industries, Inc. | Wear-resistant amorphous materials and articles, and process for preparation thereof |
4768458, | Dec 11 1985 | Hitachi, Metals Inc. | Method of producing thin metal ribbon |
4791979, | Dec 17 1984 | Metglas, Inc | Gas assisted nozzle for casting metallic strip directly from the melt |
4854370, | Jan 20 1986 | Toshiba Kikai Kabushiki Kaisha | Die casting apparatus |
4976417, | Aug 14 1989 | General Motors Corporation | Wrap spring end attachment assembly for a twisted rope torsion bar |
4978590, | Sep 11 1989 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE DEPARTMENT OF ENERGY | Dry compliant seal for phosphoric acid fuel cell |
4987033, | Dec 20 1988 | Dynamet Technology, Inc. | Impact resistant clad composite armor and method for forming such armor |
4990198, | Sep 05 1988 | YKK Corporation | High strength magnesium-based amorphous alloy |
5032196, | Nov 17 1989 | YKK Corporation | Amorphous alloys having superior processability |
5053084, | Aug 12 1987 | YKK Corporation | High strength, heat resistant aluminum alloys and method of preparing wrought article therefrom |
5053085, | Apr 28 1988 | YKK Corporation | High strength, heat-resistant aluminum-based alloys |
5074935, | Jul 04 1989 | MASUMOTO, TSUYOSHI; TEIKOKU PISTON RING CO , LTD ; YKK Corporation; Honda Giken Kogyo Kabushiki Kaisha | Amorphous alloys superior in mechanical strength, corrosion resistance and formability |
5117894, | Apr 23 1990 | Die casting method and die casting machine | |
5131279, | May 19 1990 | ENDRESS + HAUSER FLOWTEC AG A SWISS CORPORATION | Sensing element for an ultrasonic volumetric flowmeter |
5144999, | Aug 31 1989 | ALPS Electric Co., Ltd. | Apparatus for making amorphous metal strips |
5169282, | Dec 02 1988 | Mitsubishi Jukogyo Kabushiki Kaisha; Watakyu Shingu Co., Ltd. | Method for spreading sheets |
5213148, | Mar 02 1990 | YKK Corporation | Production process of solidified amorphous alloy material |
5225004, | Aug 15 1985 | Massachusetts Institute of Technology | Bulk rapidly solifidied magnetic materials |
5250124, | Mar 14 1991 | YKK Corporation | Amorphous magnesium alloy and method for producing the same |
5279349, | Dec 29 1989 | Honda Giken Kogyo Kabushiki Kaisha | Process for casting amorphous alloy member |
5288344, | Apr 07 1993 | California Institute of Technology | Berylllium bearing amorphous metallic alloys formed by low cooling rates |
5296059, | Sep 13 1991 | YKK Corporation | Process for producing amorphous alloy material |
5302471, | Apr 08 1991 | SANYO ELECTRIC CO LTD | Compact phosphoric acid fuel cell system and operating method thereof |
5306463, | Apr 19 1990 | HONDA GIKEN KOGYO KABUSHIKI KAISHA A CORPORATION OF JAPAN | Process for producing structural member of amorphous alloy |
5312495, | May 15 1991 | Tsuyoshi Masumoto; Akihisa Inoue; YKK Corporation | Process for producing high strength alloy wire |
5324368, | May 31 1991 | YKK Corporation | Forming process of amorphous alloy material |
5368659, | Apr 07 1993 | California Institute of Technology | Method of forming berryllium bearing metallic glass |
5380375, | Apr 07 1992 | YKK Corporation | Amorphous alloys resistant against hot corrosion |
5384203, | Feb 05 1993 | APFEL, ROBERT E | Foam metallic glass |
5390724, | Jun 17 1992 | Ryobi Ltd. | Low pressure die-casting machine and low pressure die-casting method |
5449425, | Jul 31 1992 | SALOMON S A | Method for manufacturing a ski |
5482580, | Jun 13 1994 | Liquidmetal Technologies | Joining of metals using a bulk amorphous intermediate layer |
5567251, | Aug 01 1994 | Liquidmetal Technologies | Amorphous metal/reinforcement composite material |
5589012, | Feb 22 1995 | SYSTEMS INTEGRATION AND RESEARCH, INC | Bearing systems |
5618359, | Feb 08 1995 | California Institute of Technology | Metallic glass alloys of Zr, Ti, Cu and Ni |
5634989, | May 07 1987 | Mitsubishi Materials Corporation; Koji Hashimoto | Amorphous nickel alloy having high corrosion resistance |
5647921, | Aug 23 1993 | Mitsui Chemicals, Inc | Process for producing and amorphous alloy resin |
5711363, | Feb 16 1996 | Liquidmetal Technologies | Die casting of bulk-solidifying amorphous alloys |
5735975, | Feb 21 1996 | California Institute of Technology | Quinary metallic glass alloys |
5797443, | Sep 30 1996 | Liquidmetal Technologies | Method of casting articles of a bulk-solidifying amorphous alloy |
5886254, | Mar 30 1998 | Tire valve pressure-indicating cover utilizing colors to indicate tire pressure | |
5950704, | Jul 18 1996 | Liquidmetal Technologies | Replication of surface features from a master model to an amorphous metallic article |
6021840, | Jan 23 1998 | ARCONIC INC | Vacuum die casting of amorphous alloys |
6027586, | May 31 1991 | YKK Corporation | Forming process of amorphous alloy material |
6044893, | May 01 1997 | Namiki Seimitsu Houseki Kabushiki Kaisha | Method and apparatus for production of amorphous alloy article formed by metal mold casting under pressure |
6200685, | Mar 27 1997 | Titanium molybdenum hafnium alloy | |
6203936, | Mar 03 1999 | Lynntech, Inc | Lightweight metal bipolar plates and methods for making the same |
6258183, | Aug 08 1997 | SRI Sports Limited | Molded product of amorphous metal and manufacturing method for the same |
6306228, | Jul 08 1998 | Japan Science and Technology Agency | Method of producing amorphous alloy excellent in flexural strength and impact strength |
6325868, | Apr 19 2000 | SAMSUNG ELECTRONICS CO , LTD | Nickel-based amorphous alloy compositions |
6371195, | Aug 08 1997 | SRI Sports Limited | Molded product of amorphous metal and manufacturing method for the same |
6376091, | Aug 29 2000 | LIQUIDMETAL COATINGS, LLC | Article including a composite of unstabilized zirconium oxide particles in a metallic matrix, and its preparation |
6408734, | Apr 14 1998 | Composite armor panel | |
6446558, | Feb 27 2001 | LIQUIDMETAL TECNNOLOGIES, INC | Shaped-charge projectile having an amorphous-matrix composite shaped-charge liner |
6491592, | Nov 01 1999 | Callaway Golf Company | Multiple material golf club head |
6585033, | Feb 19 2001 | Fukuda Metal Foil & Powder Co., Ltd. | Process for producing vanadium alloy foil |
6771490, | Jun 07 2001 | Liquidmetal Technologies; LIQUID METAL TECHNOLOGIES | Metal frame for electronic hardware and flat panel displays |
6843496, | Mar 07 2001 | Liquidmetal Technologies; LIQUID METAL TECHNOLOGIES | Amorphous alloy gliding boards |
6887586, | Mar 07 2001 | LIQUID METAL TECHNOLOGIES | Sharp-edged cutting tools |
20010052406, | |||
20020036034, | |||
20020050310, | |||
20020153123, | |||
20020187379, | |||
20030024616, | |||
20030222122, | |||
20050006046, | |||
GB2236325, | |||
JP2000256811, | |||
JP2000277127, | |||
JP2001303218, | |||
JP200256811, | |||
JP359013056, | |||
JP59013056, | |||
JP61238423, | |||
JP6264200, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 29 2012 | Crucible Intellectual Property, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 26 2015 | ASPN: Payor Number Assigned. |
Feb 09 2017 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 29 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 17 2018 | 4 years fee payment window open |
Sep 17 2018 | 6 months grace period start (w surcharge) |
Mar 17 2019 | patent expiry (for year 4) |
Mar 17 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 17 2022 | 8 years fee payment window open |
Sep 17 2022 | 6 months grace period start (w surcharge) |
Mar 17 2023 | patent expiry (for year 8) |
Mar 17 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 17 2026 | 12 years fee payment window open |
Sep 17 2026 | 6 months grace period start (w surcharge) |
Mar 17 2027 | patent expiry (for year 12) |
Mar 17 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |