An integrated circuit includes electrical components that include one or more electrical elements on one or more dielectric layers. The electrical element has a geometric shape that exceeds prescribed integrated circuit manufacturing limits in at least one dimension. To achieve compliance with foundry rules, the electrical element is fabricated to include a non-conducting region that negligibly effects the electrical characteristics. The non-conducting region includes a hole, a series of holes, a slot and/or a series of slots spaced within the electrical element at dimensions that are less than the integrated circuit manufacturing limits.
|
1. A method for manufacturing an integrated circuit comprises:
creating a layer; and
creating, on the layer, an electrical element having a geometric shape that exceeds prescribed integrated circuit manufacture limits, wherein the electrical element includes at least one non-conducting region that negligibly effects electrical characteristics of the electrical element and provides adequate non-conducting spacing in accordance with the prescribed integrated circuit manufacture limits.
0. 13. A method for manufacturing an integrated circuit comprising:
creating a layer; and
creating, on and within the layer, an electrical element having a geometric shape that exceeds prescribed integrated circuit manufacture limits, wherein the electrical element includes at least one non-conducting region that negligibly effects electrical characteristics of the electrical element and provides adequate non-conducting spacing in accordance with the prescribed integrated circuit manufacture limits.
0. 28. A method for manufacturing an integrated circuit comprising:
creating a dielectric layer; and
creating, on and within an etched portion of the dielectric layer, an electrical element having a geometric shape that exceeds prescribed integrated circuit manufacture limits, wherein the electrical element includes at least one non-conducting region that negligibly effects electrical characteristics of the electrical element and provides adequate non-conducting spacing in accordance with the prescribed integrated circuit manufacture limits.
2. The method of
creating the at least one non-conducting region as at least one of: a slit within the electrical element, a series of slits within the electrical element, a hole within the electrical element, and or a series of holes within the electrical element.
3. The method of
creating the electrical element as at least one turn of an inductor.
4. The method of
creating a second layer;
creating, on the second layer, a second electrical element having a second geometric shape that exceeds the prescribed integrated circuit manufacture limits, wherein the second electrical element includes at least one non-conducting second region, wherein the second electrical element constitutes at least one other turn of the inductor; and
coupling the at least one turn to the at least one other turn in parallel or in series.
5. The method of
creating the electrical element as a plate of a capacitor;
wherein creating the layer comprises creating a dielectric layer, wherein comprising a first major surface of the dielectric layer that is juxtaposed to a major surface of the plate; and
creating a second electrical element as a second plate of the capacitor, wherein the second electrical element has a geometric shape that exceeds the prescribed integrated circuit manufacture limits, wherein a major surface of the second plate is juxtaposed to a second major surface of the dielectric layer, and wherein the second electrical element includes at least one non-conductive region that negligibly effects electrical characteristics of the capacitor and provides adequate non-conducting spacing in accordance with the prescribed integrated circuit manufacture limits.
6. The method of
creating a second dielectric layer, wherein a first major surface of the second dielectric layer is juxtaposed to a second major surface of the second plate;
creating a third electrical element as a third plate of the capacitor, wherein the third electrical element has a geometric shape that exceeds the prescribed integrated circuit manufacture limits, wherein a major surface of the third plate is juxtaposed to a second major surface of the second dielectric layer, and wherein the third electrical element includes at least one non-conductive region that negligibly effects electrical characteristics of the capacitor and provides adequate non-conducting spacing in accordance with the prescribed integrated circuit manufacture limits; and
connecting the electrical element to the third electrical element.
7. The method of
creating the electrical element as an electromagnetic shield.
9. The method of
creating the electrical element as a power source trace.
10. The method of
creating the electrical element as at least one of: a gate of a transistor, a source of the transistor, and or a drain of the transistor.
0. 12. The method of claim 1, wherein the at least one non-conducting region is formed within the geometric shape.
0. 14. The method of claim 13, further comprising creating the at least one non-conducting region as at least one of:
a slit within the electrical element, a series of slits within the electrical element, a hole within the electrical element, or a series of holes within the electrical element.
0. 15. The method of claim 13, wherein the creating the electrical element further comprises:
creating the electrical element as at least one turn of an inductor.
0. 16. The method of claim 15, further comprising:
creating a second layer;
creating, on and within the second layer, a second electrical element having a geometric shape that exceeds the prescribed integrated circuit manufacture limits, wherein the second electrical element includes at least one non-conducting second region, wherein the second electrical element constitutes at least one other turn of the inductor; and
coupling the at least one turn to the at least one other turn in parallel or in series.
0. 17. The method of claim 13, further comprising:
creating the electrical element as a plate of a capacitor;
wherein creating the layer comprises creating a dielectric layer comprising a first major surface that is juxtaposed to a major surface of the plate; and
creating a second electrical element as a second plate of the capacitor, wherein the second electrical element has a geometric shape that exceeds the prescribed integrated circuit manufacture limits, wherein a major surface of the second plate is juxtaposed to a second major surface of the dielectric layer, and wherein the second electrical element includes at least one non-conductive region that negligibly effects electrical characteristics of the capacitor and provides adequate non-conducting spacing in accordance with the prescribed integrated circuit manufacture limits.
0. 18. The method of claim 17, further comprising:
creating a second dielectric layer, wherein a first major surface of the second dielectric layer is juxtaposed to a second major surface of the second plate;
creating a third electrical element as a third plate of the capacitor, wherein the third electrical element has a geometric shape that exceeds the prescribed integrated circuit manufacture limits, wherein a major surface of the third plate is juxtaposed to a second major surface of the second dielectric layer, and wherein the third electrical element includes at least one non-conductive region that negligibly effects electrical characteristics of the capacitor and provides adequate non-conducting spacing in accordance with the prescribed integrated circuit manufacture limits; and
connecting the electrical element to the third electrical element.
0. 19. The method of claim 13, further comprising:
creating the electrical element as an electromagnetic shield.
0. 20. The method of claim 13, further comprising:
creating the electrical element as a ground plane.
0. 21. The method of claim 13, further comprising:
creating the electrical element as a power source trace.
0. 22. The method of claim 13, further comprising creating the electrical element as at least one of:
a gate of a transistor, a source of the transistor, or a drain of the transistor.
0. 23. The method of claim 13, further comprising:
creating the electrical element as an antenna.
0. 24. The method of claim 13, further comprising using a dielectric layer as the layer.
0. 25. The method of claim 13, further comprising determining the prescribed integrated circuit manufacture limits.
0. 26. The method of claim 13, wherein the creating the electrical element comprises creating the electrical element partially within the layer.
0. 27. The method of claim 13, wherein the at least one non-conducting region is formed within the geometric shape.
0. 29. The method of claim 28, further comprising creating the at least one non-conducting region as at least one of:
a slit within the electrical element, a series of slits within the electrical element, a hole within the electrical element, or a series of holes within the electrical element.
0. 30. The method of claim 28, wherein the creating the electrical element further comprises:
creating the electrical element as at least one turn of an inductor.
0. 31. The method of claim 30, further comprising:
creating a second dielectric layer;
creating, on and within an etched portion of the second dielectric layer, a second electrical element having a geometric shape that exceeds the prescribed integrated circuit manufacture limits, wherein the second electrical element includes at least one non-conducting second region, wherein the second electrical element constitutes at least one other turn of the inductor; and
coupling the at least one turn to the at least one other turn in parallel or in series.
0. 32. The method of claim 28, further comprising:
creating the electrical element as a plate of a capacitor;
wherein a first major surface of the dielectric layer is juxtaposed to a major surface of the plate; and
creating a second electrical element as a second plate of the capacitor, wherein the second electrical element has a geometric shape that exceeds the prescribed integrated circuit manufacture limits, wherein a major surface of the second plate is juxtaposed to a second major surface of the dielectric layer, and wherein the second electrical element includes at least one non-conductive region that negligibly effects electrical characteristics of the capacitor and provides adequate non-conducting spacing in accordance with the prescribed integrated circuit manufacture limits.
0. 33. The method of claim 32, further comprising:
creating a second dielectric layer, wherein a first major surface of the second dielectric layer is juxtaposed to a second major surface of the second plate;
creating a third electrical element as a third plate of the capacitor, wherein the third electrical element has a geometric shape that exceeds the prescribed integrated circuit manufacture limits, wherein a major surface of the third plate is juxtaposed to a second major surface of the second dielectric layer, and wherein the third electrical element includes at least one non-conductive region that negligibly effects electrical characteristics of the capacitor and provides adequate non-conducting spacing in accordance with the prescribed integrated circuit manufacture limits; and
connecting the electrical element to the third electrical element.
0. 34. The method of claim 28, further comprising:
creating the electrical element as an electromagnetic shield.
0. 35. The method of claim 28, further comprising:
creating the electrical element as a ground plane.
0. 36. The method of claim 28, further comprising:
creating the electrical element as a power source trace.
0. 37. The method of claim 28, further comprising creating the electrical element as at least one of:
a gate of a transistor, a source of the transistor, or a drain of the transistor.
0. 38. The method of claim 28, further comprising:
creating the electrical element as an antenna.
0. 39. The method of claim 28, further comprising determining the prescribed integrated circuit manufacture limits.
0. 40. The method of claim 28, wherein the creating the electrical element comprises creating the electrical element partially within the layer.
0. 41. The method of claim 28, wherein the at least one non-conducting region is formed within the geometric shape.
|
This invention relates generally to integrated circuits and more particularly to components that comprise an integrated circuit.
The general structure of an integrated circuit is known to include one or more dielectric layers on a substrate. As is further known, each of the dielectric layers supports a metal layer, which is etched or deposited to form integrated circuit components such as resistors, capacitors, inductors, transistors, conductive traces, et cetera. The number of dielectric layers, and hence the number of metal layers, along with acceptable physical dimensions of the dielectric layers and metal layers are dictated by the particular type of integrated circuit technology and the corresponding integrated circuit fabrication rules. For example, a CMOS integrated circuit may include multiple dielectric layers and multiple corresponding metal layers. Depending on the particular foundry rules, the size of each dielectric layer and corresponding metal layers have prescribed minimum and maximum dimensions. In addition, such foundry rules prescribe maximum dimensions for metal tracks formed on the metal layers. For instance, the maximum metal track may be 30-40 microns for a given CMOS process. As is known, IC foundries provide the maximum metal track dimensions to prevent over-stressing the integrated circuit and/or to ensure reliability of fabrication.
As is also known, integrated circuit foundries provide minimum spacing between metal tracks. For example, the minimum spacing may be 1.0 microns to 3.0 microns and may further be dependent on the particular metal layer the track is on and/or the width of adjacent tracks.
Such foundry rules limit the ability to design certain on-chip components. For instance, on-chip inductors designed using CMOS technologies are limited to a quality factor (i.e., Q factor which=2(pi)fL/R, where R=the effective series resistance, L=the inductance and f is the operating frequency) of about 5 to 8 at frequencies of 2.5 gigahertz. Such a low quality factor is primarily due to a significant effective series resistance at 2.5 gigahertz. As is further known, the effective series resistance is dependent on the operating frequency of the component and is further dependent on the size of the metal track. As such, by limiting the size of metal tracks, the quality factor of inductors is limited to low values.
Capacitance values of on-chip metal insulated metal capacitors are also limited due to the foundry rules. As is known, the capacitance of a capacitor is based on the area of its plates, the distance between the plates, and the dielectric properties of the dielectric material separating the plates. Since the foundry rules limit the size of the plates, the capacitor values are limited, which, in turn, limit the uses of on-chip capacitors.
Therefore, a need exists for a technique to increase the effective size of metal tracks while maintaining compliance with foundry metal track rules and to allow for greater range of design of on-chip integrated circuit components.
These needs and others are substantially met by the integrated circuit described herein. Such an integrated circuit includes electrical components that include one or more electrical elements on one or more dielectric layers. The electrical element, which may be a winding(s) of an inductor, power source trace, gate of a transistor, source of a transistor, drain of a transistor, plate of a capacitor, resistor, electromagnetic shield, ground plane et cetera, has a geometric shape that exceeds prescribed integrated circuit manufacturing limits. For example, if the integrated circuit manufacturing limits prescribe metal tracks not to exceed 35 microns in width or length, the electrical element of the present invention has a dimension in width and length that exceeds 35 microns. To achieve compliance with foundry rules, the electrical element is fabricated to include a non-conducting region that negligibly effects the electrical characteristics. For instance, the electrical element may be fabricated to include a hole, a series of holes, a slot and/or a series of slots spaced within the electrical element at dimensions that are less than the integrated circuit manufacturing limits.
The electrical element 12 includes a non-conducting region 16. As shown, the electrical element 12 has a dimension from end-to-end that is greater than integrated circuit (IC) manufacturing limits. The non-conducting region 16, which may be a single hole, is spaced at dimensions that are less than IC manufacturing limits. For instance, if the manufacturing limits for a CMOS process is 35 microns, the overall dimension of electrical element 12 exceeds the 35 microns. For instance, the width of the electrical element may be at least 50 microns when the electrical element 12 is used for an inductor. To provide compliance with IC manufacturing limits, the non-conducting region 16, which may be a hole having a dimension that corresponds to minimum spacing distances for the IC foundry rules, is included within the electrical element 12 such that the IC manufacturing limits are met. For instance, if the foundry rules provide that 1-3 microns are needed for spacing between metal tracks, the non-conducting region would have a diameter of 1-3 microns. In the example of an inductor, if the width of the electrical element 12 is 50 microns, by placing the non-conducting region in the middle, (i.e., at 25 microns) with respect to each end of the electrical element, the IC manufacturing limits of 35 microns for metal tracks are substantially met.
By providing the non-conducting region 12 within an electrical element 12 that exceeds IC manufacturing limits, components, such as inductors, capacitors, resistors, ground planes, electromagnetic shields, power source traces, transistors, and/or antennas may be fabricated on-chip in sizes and/or having electrical characteristics that were previously unobtainable. For instance, an on-chip CMOS inductor may be derived that has a quality factor of 12 or more utilizing the concepts generally depicted in
As one of average skill in the art will appreciate, a 3rd plate of a capacitor may be fabricated on a 3rd dielectric layer and coupled to the electrical element 12 to produce a sandwich capacitor.
The preceding discussion has presented an integrated circuit that includes on-chip components that have electrical elements that exceed integrated circuit manufacturing limits. By including the non-conductive regions within electrical elements of such on-chip components, IC manufacturing limits may be adhered to while providing the benefits of oversized electrical elements. As one of average skill in the art will appreciate, other embodiments may be derived from the teachings of the present invention, without deviating from the scope of the claims.
Contopanagos, Harry, Komninakis, Christos
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3092893, | |||
3436810, | |||
4625227, | Sep 01 1980 | Hitachi, LTD | Resin molded type semiconductor device having a conductor film |
4748537, | May 03 1985 | Circuit Components, Incorporated | Decoupling capacitor and method of formation thereof |
4797726, | Feb 10 1981 | Pioneer Electronic Corporation | Lead frame including deformable plates |
4952999, | Apr 26 1988 | National Semiconductor Corporation | Method and apparatus for reducing die stress |
5150193, | May 27 1987 | Hitachi, Ltd.; Hitachi Tobu Semiconductor, Ltd. | Resin-encapsulated semiconductor device having a particular mounting structure |
5444186, | Oct 22 1991 | Mitsubishi Denki Kabushiki Kaisha | Multilayer conductive wire for semiconductor device and manufacturing method thereof |
5683944, | Sep 01 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method of fabricating a thermally enhanced lead frame |
5686356, | Sep 30 1994 | Texas Instruments Incorporated | Conductor reticulation for improved device planarity |
6225677, | Mar 11 1998 | SOCIONEXT INC | Inductance device formed on semiconductor substrate |
6396122, | Sep 08 2000 | Newport Fab, LLC | Method for fabricating on-chip inductors and related structure |
6462396, | Dec 15 1999 | STMICROELECTRONICS S A | Inductance structure on semiconductor substrate |
6642604, | Sep 20 2001 | Renesas Electronics Corporation | Semiconductor device with resistor layer having heat radiation path to semiconductor substrate |
6812544, | Feb 12 2002 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Integrated circuit having oversized components |
6842199, | Oct 25 1999 | LG DISPLAY CO , LTD | Array substrate for liquid crystal display device and the fabrication method of the same |
7170752, | Sep 16 2003 | Denso Corporation | Navigation system incorporating antenna |
7173318, | Jul 28 2000 | Newport Fab, LLC | On-chip inductors |
20030075751, | |||
20050012177, | |||
20050116802, | |||
20050122030, | |||
EP924762, | |||
JP98039, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 20 2013 | Broadcom Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
May 05 2018 | 4 years fee payment window open |
Nov 05 2018 | 6 months grace period start (w surcharge) |
May 05 2019 | patent expiry (for year 4) |
May 05 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 05 2022 | 8 years fee payment window open |
Nov 05 2022 | 6 months grace period start (w surcharge) |
May 05 2023 | patent expiry (for year 8) |
May 05 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 05 2026 | 12 years fee payment window open |
Nov 05 2026 | 6 months grace period start (w surcharge) |
May 05 2027 | patent expiry (for year 12) |
May 05 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |