Apparatus and methods for percutaneously performing myocardial revascularization are provided using a catheter having an end region that is directable to contact a patient's endocardium at a plurality of positions. A cutting head is disposed within a lumen of the catheter and coupled to a drive tube that rotates and reciprocates the drive shaft. One or more stabilizing elements are disposed on the distal end to retain the catheter in position when the cutting head is actuated. The cutting head and drive tube include a lumen through which severed tissue is aspirated. Mechanisms and methods are provided for providing the operator with information to assess the desirability of treating a proposed site. Mechanisms also are provided for controlling the maximum extension of the cutting head beyond a distal endface of the catheter, independent of the degree of tortuosity imposed on the catheter.
|
0. 56. An apparatus comprising:
a first catheter adapted for percutaneous insertion into a cardiac tissue, the first catheter having a needle lumen with a longitudinal axis, a stabilizer lumen radially offset from the needle lumen, and a distal endface steerable to a plurality of sites on the cardiac tissue relative to another portion of the first catheter proximal to the distal endface;
a needle disposed within the needle lumen while in a retracted position, the needle moveable from the retracted position, through the distal endface, to an external position beyond the distal endface in which the needle extends in alignment with the longitudinal axis of the needle lumen from the distal endface to a distal tip of the needle, the needle having at least one lumen to inject a therapeutic agent into the cardiac tissue; and
a stabilizer element to stabilize the first catheter against the cardiac tissue, the stabilizer element moveable through the stabilizer lumen from an unextended position to an extended position, wherein the stabilizer element is disposed within the stabilizer lumen while in the unextended position, and wherein the stabilizer element angles in a distal direction while in the extended position.
0. 46. An apparatus comprising:
a first catheter adapted for percutaneous insertion into a cardiac tissue, the first catheter having a needle lumen with a longitudinal axis, a stabilizer lumen radially offset from the needle lumen, and a distal endface steerable to a plurality of sites on the cardiac tissue relative to another portion of the first catheter proximal to the distal endface;
a needle disposed within the needle lumen while in a retracted position, the needle moveable from the retracted position, through the distal endface, to an external position beyond the distal endface in which the needle extends in alignment with the longitudinal axis of the needle lumen from the distal endface to a distal tip of the needle, the needle having at least one lumen to inject a therapeutic agent into the cardiac tissue;
a stabilizer element to stabilize the first catheter against the cardiac tissue, the stabilizer element moveable through the stabilizer lumen from an unextended position to an extended position, wherein the stabilizer element is disposed within the stabilizer lumen while in the unextended position, and wherein the stabilizer element angles in a distal direction while in the extended position; and
a second catheter adapted for insertion into a left ventricle, the second catheter having a preformed bend and an inner lumen for receiving movement of the first catheter therethrough.
0. 54. An apparatus comprising:
a first catheter adapted for percutaneous insertion into a cardiac tissue, the first catheter having a preformed bend, a needle lumen with a longitudinal axis, a stabilizer lumen radially offset from the needle lumen, and a distal endface steerable to a plurality of sites on the cardiac tissue relative to another portion of the first catheter proximal to the distal endface;
a needle disposed within the needle lumen while in a retracted position, the needle moveable from the retracted position, through the distal endface, to an external position beyond the distal endface in which the needle extends in alignment with the longitudinal axis of the needle lumen from the distal endface to a distal tip of the needle, the needle having at least one lumen to inject a therapeutic agent into the cardiac tissue;
a stabilizer element to stabilize the first catheter against the cardiac tissue, the stabilizer element moveable through the stabilizer lumen from an unextended position to an extended position, wherein the stabilizer element is disposed within the stabilizer lumen while in the unextended position, and wherein the stabilizer element angles in a distal direction while in the extended position; and
a second catheter adapted for insertion into a left ventricle, the second catheter having a preformed bend and an inner lumen for receiving movement of the first catheter therethrough.
0. 1. Apparatus for percutaneously performing myocardial revascularization comprising.
a first catheter adapted for insertion into the left ventricle, the first catheter having a lumen and a distal endface movable to a plurality of sites on an endocardial surface;
a stabilizer element disposed on the first catheter, the stabilizer element contacting the endocardial surface to stabilize the first catheter against the endocardial surface;
a cutting head disposed movable from a retracted position within the lumen of the first catheter to an extended position wherein the cutting head extends beyond the distal endface of the first catheter to form a channel in cardiac tissue; and
means for sensing a physiologic state of cardiac tissue in a region adjacent to the distal endface of the first catheter.
0. 2. The apparatus of
0. 3. The apparatus of
0. 4. The apparatus of
0. 5. The apparatus of
0. 6. The apparatus of
0. 7. The apparatus of
0. 8. The apparatus of
0. 9. The apparatus of
0. 10. The apparatus of
0. 11. The apparatus of
0. 12. The apparatus of
0. 13. The apparatus of
0. 14. The apparatus of
0. 15. The apparatus of
0. 16. The apparatus of
0. 17. The apparatus of
0. 18. The apparatus of
0. 19. The apparatus of
0. 20. Apparatus for percutaneously performing myocardial revascularization comprising.
a first catheter adapted for insertion into the left ventricle, the first catheter having a cutting head lumen, a needle lumen, and a distal endface movable to a plurality of sites on an endocardial surface;
a first needle disposed on the first catheter movable from a retracted position within the needle lumen to an extended position extending beyond a distal endface of the first catheter, the first needle contacting and penetrating the endocardial surface to stabilize the first catheter against the endocardial surface; and
a cutting head disposed movable from a retracted position within the lumen of the first catheter to an extended position wherein the cutting head extends beyond the distal endface of the first catheter to form a channel in cardiac tissue.
0. 21. The apparatus of
0. 22. The apparatus of
0. 23. The apparatus of
0. 24. The apparatus of
0. 25. The apparatus of
0. 26. The apparatus of
0. 27. The apparatus of
0. 28. The apparatus of
0. 29. The apparatus of
0. 30. A method of percutaneously performing revascularization of a patient's cardiac tissue, the method comprising:
providing a first catheter adapted for insertion into the left ventricle comprising a stabilizer element and a cutting head movable from a retracted position to an extended position;
advancing a distal region of the first catheter transluminally to a position within a patient's left ventricle;
deploying the stabilizer element to stabilize the distal region of the first catheter in contact with an endocardial surface;
sensing a physiologic state of cardiac tissue in a portion of the cardiac tissue adjacent to the distal endface of the first catheter; and
if it is determined that myocardial revascularization in the portion of cardiac tissue adjacent to the distal endface would have a beneficial effect, advancing the cutting head from the retracted to the extended position to bore a channel into the patient's cardiac tissue.
0. 31. The method of
0. 32. The method of
0. 33. The method of
0. 34. The method of
0. 35. The method of
0. 36. The method of
0. 37. The method of
0. 38. The method of
0. 39. The method of
0. 40. A method of percutaneously performing revascularization of a patient's cardiac tissue, the method comprising:
providing a first catheter adapted for insertion into the left ventricle comprising a first needle movable from a retracted position to an extended position and a cutting head movable from a retracted position to an extended position;
advancing a distal region of the first catheter transluminally to a position within a patient's left ventricle;
advancing the first needle to the extended position to penetrate and stabilize the distal region of the first catheter in contact with an endocardial surface;
rotating the cutting head; and
advancing the cutting head from the retracted to the extended position to bore a channel into the patient's cardiac tissue.
0. 41. The method of
0. 42. The method of
0. 43. The method of
0. 44. The method of
0. 45. The method of
0. 47. The apparatus of claim 46, wherein the stabilizer element comprises at least one wire.
0. 48. The apparatus of claim 47 wherein the at least one wire is responsible for stabilizing the distal endface against the cardiac tissue.
0. 49. The apparatus of claim 46, wherein the cardiac tissue is an intraventricular wall.
0. 50. The apparatus of claim 46, wherein a distal region of the first catheter further comprises a preformed bend.
0. 51. The apparatus of claim 46, wherein the stabilizer element is configured to retain the distal endface of the first catheter against a surface of the cardiac tissue and includes a surface parallel to the first catheter.
0. 52. The apparatus of claim 46 wherein the stabilizer element is configured to retain the distal endface of the first catheter against a surface of the cardiac tissue to ensure that the needle is stable relative to the cardiac tissue when injecting a therapeutic agent into the cardiac tissue.
0. 53. The apparatus of claim 46 wherein the needle can advance to different depths into the cardiac tissue.
0. 55. The apparatus of claim 54 wherein the stabilizer element is configured to retain the distal endface of the first catheter against a surface of the cardiac tissue and includes a surface parallel to the first catheter.
0. 57. The apparatus of claim 56 wherein the stabilizer element is configured to retain the distal endface of the first catheter against a surface of the cardiac tissue and includes a surface parallel to the first catheter.
|
The present application is a continuation-in-part of U.S. patent application Ser. No. 08/863,877, filed May 27, 1997, now U.S. Pat. No. 5,910,150, which claims the benefit of the filing date of U.S. provisional patent application Ser. No. 60/032,196, filed Dec. 2, 1996
The present invention relates to apparatus and methods for percutaneously performing myocardial revascularization. More particularly, the present invention provides a device that enables a clinician to perform myocardial revascularization by treating only those regions of cardiac tissue likely to experience beneficial effect.
A leading cause of death in the United States today is coronary artery disease, in which atherosclerotic plaque causes blockages in the coronary arteries, resulting in ischemia of the heart (i.e., inadequate blood flow to the myocardium). The disease manifests itself as chest pain or angina. In 1996, approximately 7 million people suffered from angina in the United States.
One technique that has been developed to treat patients suffering from diffuse atherosclerosis, is referred to as transmyocardial revascularization (TMR). In this method, a series of channels are formed in the left ventricular wall of the heart. Typically, between 15 and 30 channels about 1 mm in diameter and preferably several millimeters deep are formed with a laser in the wall of the left ventricle to perfuse the heart muscle with blood coming directly from the inside of the left ventricle, rather than traveling through the coronary arteries. Apparatus and methods have been proposed to create those channels both percutaneously and intraoperatively (i.e., with the chest opened).
U S. Pat No. 5,389,096 to Aita et al. describes a catheter-based laser apparatus for use in percutaneously forming channels extending from the endocardium into the myocardium The catheter includes a plurality of control lines for directing the tip of the catheter. The patent states that because the myocardium is more easily traversed than the epicardium, the clinician may judge the depth of the channel by sensing the pressure applied to the proximal end of the catheter. The patent does not address the problem of cardiac tamponade that might result if the clinician inadvertently perforates the heart wall, nor how ablated tissue is prevented from embolizing blood vessels. Moreover, Aita et al. rely on fluoroscopic methods to determine the location of the distal end of the catheter.
U.S. Pat. No. 5,591,159 to Taheri describes a mechanical apparatus for performing TMR involving a catheter having an end effector formed from a plurality of spring-loaded needles. The catheter first is positioned percutaneously within the left ventricle. A plunger is then released so that the needles are thrust into the endocardium. The needles form small channels that extend into the myocardium as they are withdrawn. The patent suggests that the needles may be withdrawn and advanced repetitively at different locations under fluoroscopic guidance. The patent does not appear to address how tissue is ejected from the needles between the tissue-cutting steps
The disadvantages of the above-described previously known methods and apparatus for performing TMR are numerous and will impede the acceptance of this new treatment method. For example, percutaneous laser-based systems, such as described in the Aita et al. patent, do not provide the ability to reliably determine the depth of the channels formed by the laser and may result in perforations, nor does that system address potential embolization of the ablated tissue. Likewise, previously known mechanical systems do not address issues such as how to remove tissue cores from the needles. Neither do such previously known systems provide the capability to assess whether channel formation or drug injection at a proposed site will provide any therapeutic benefit.
U.S. Pat. No. 5,910,150 (allowed U.S. patent application Ser. No. 08/863,877, filed May 27, 1997), which is incorporated herein by reference, describes a percutaneous system for performing TMR that uses a rotating tubular cutting head disposed for reciprocation beyond the end face of a catheter. Vacuum drawn through the cutting head aspirates the severed tissue, thus reducing the risk of embolization.
A drawback common to all of the previously known percutaneous myocardial revascularization devices is the inability to determine whether treating a proposed site, such as by forming a channel in the myocardium or by injecting drugs or angiogenic agents, would have a therapeutic effect. For example, little therapeutic benefit would be expected from forming channels or injecting drugs or angiogenic agents in heavily infarcted tissue. It would therefore be desirable to provide apparatus and methods that enable a clinician to determine whether treatment at a proposed site would be beneficial.
It has been observed that in the device described in the above-incorporated patent, the distance that the cutting head extends into the tissue depends upon the degree of tortuosity imposed on the catheter when percutaneously inserting the distal end of the catheter into the left ventricle. This is so because differences in the radii of curvature of the catheter and the drive tube coupled to the cutting head can result in significant accumulated displacement of the cutting head relative to the distal endface of the catheter. This displacement effect is heightened where the tip of the catheter is articulated using a pull wire that exerts a compressive force on the catheter.
Accordingly, it also would be desirable to provide apparatus and methods for percutaneously performing myocardial revascularization that enable a reciprocated cutting head to be advanced a controlled depth, independent of the degree of tortuosity imposed on the catheter.
It further would be desirable to control the location within the ventricle of a distal end of a device for percutaneously performing myocardial revascularization, both with respect to features of the ventricular walls and in relation to other channels formed by the device.
It still further would be desirable to provide apparatus and methods for percutaneously performing myocardial revascularization that enable therapeutic agents, such as angiogenic growth factors, genes, or drugs to be injected into the myocardium within or adjacent to channels formed by the cutting head.
It also would be desirable to provide the capability to stabilize a distal end of a device for percutaneously performing myocardial revascularization, for example, to counteract reaction forces created by the actuation of the cutting head, and to reduce transverse movement of the distal end of the device.
It further would be desirable to provide apparatus and methods for percutaneously performing myocardial revascularization that use cutting heads designed to morcellate severed tissue to enhance aspiration of the severed tissue from the treatment site
In view of the foregoing, it is an object of this invention to provide apparatus and methods for percutaneously performing myocardial revascularization that enable a clinician to determine during a percutaneous myocardial revascularization procedure whether treatment at a proposed site would be beneficial.
It is another object of the present invention to enable a reciprocated cutting head to be advanced to a controlled depth, independent of the degree of tortuosity imposed on the catheter.
It is also an object of the present invention to provide apparatus and methods that enable control of the location within the ventricle of a distal end of a device for percutaneously performing myocardial revascularization, both with respect to features of the ventricular walls and in relation to other channels formed by the device.
It is a further object of the present invention to provide apparatus and methods for percutaneously performing myocardial revascularization that enable therapeutic agents, such as angiogenic growth factors, genes, plasmids or drugs to be injected into the myocardium or channels formed by the cutting head.
It is another object of this invention to provide apparatus and methods to stabilize a distal end of a device for percutaneously performing myocardial revascularization, for example, to counteract reaction forces created by the actuation of the cutting head and to reduce transverse movement of the distal end of the device.
It is a still further object of the present invention to provide apparatus and methods for percutaneously performing myocardial revascularization that use cutting heads designed to morcellate severed tissue to enhance aspiration of the severed tissue from the treatment site.
These and other objects of the present invention are accomplished by providing apparatus that senses a physiologic parameter, e.g., electrical activity or impedance, of tissue at a proposed treatment site, and providing information to the operator indicative of a state of the tissue. The operator then uses that information in deciding whether to form a channel or inject drugs into that region tissue, or to re-position the device elsewhere.
Apparatus constructed in accordance with the present invention comprises a catheter having an end region that is directable to contact a patient's endocardium at a plurality of positions. Preferably, the catheter comprises inner and outer catheters each having preformed distal bends, so that the distal end of the inner catheter is directable to a plurality of positions. A cutting head is disposed within a lumen of the inner catheter and coupled to a drive tube that rotates and reciprocates the drive shaft. The drive tube is coupled to a motor that imparts rotational motion to the drive tube. One or more stabilizing elements are disposed on the distal end to retain the inner catheter in position while the cutting head is reciprocated beyond a distal endface of the inner catheter. The cutting head and drive tube include a lumen through which severed tissue is aspirated.
In accordance with another aspect of the present invention, means are provided for limiting the maximum extension of the cutting head beyond the distal endface of the catheter, independent of the degree of bending imposed on the inner catheter and drive tube. In one embodiment, in which the drive tube and cutting head are reciprocated by a linear actuator mechanism, the drive tube includes a bearing surface that abuts against a mating surface affixed within a distal region of the inner catheter, and circuitry that senses a parameter (e.g., stall torque or linear force) of a motor driving the drive tube. When the bearing surface contacts the mating surface, the increase in the motor parameter is sensed, forward motion ceases, and the direction of travel of the linear actuator mechanism is reversed.
In another embodiment, the drive tube and cutting head are reciprocated manually, the drive tube includes a bearing surface that abuts against a mating surface affixed within a distal region of the inner catheter, and the mechanism used to advance the drive tube transmits to the user sufficient tactile sensation for the user to detect that the maximum depth has been achieved. The handle of the device may optionally include a mechanism for adjusting the position of the distal endface of the inner catheter relative to the cutting head, to account for differences in the curvatures of the inner catheter and drive tube.
In still other alternative embodiments, the opposing bearing surfaces may be omitted, and attainment of the maximum cutting depth may be sensed by a mechanical switch, a resistance-based circuit or an optical circuit. In these embodiments, the maximum extension of the cutting head may be set independently of the adjustment required to reduce or eliminate any displacement effect caused by bending of the catheter.
Methods of using the apparatus of the present invention to selectively form channels and/or inject therapeutic agents in the myocardium are also provided.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments, in which:
The present invention provides apparatus and methods for percutaneously performing myocardial revascularization by mechanically cutting a series of channels in the myocardium using a rotating cutting head and aspirating the severed tissue. The cutting head is disposed within a lumen of a catheter, and is extended beyond a distal endface of the catheter to bore a channel. In accordance with the principles of the present invention, a physiologic parameter is measured at a proposed treatment site, and that information is provided to the operator to assess whether to treat that site or re-position the device. The apparatus and methods of the present invention further provide for limiting the maximum extension of the cutting head, independent of the tortuosity of the path traversed by the catheter The maximum extension of the cutting head also may be independently adjusted.
Referring to
Controller 25 comprises a vacuum pump or vacuum canister (not shown) that draws suction through lumen 34 of drive tube 32 via hose 27, a drive train (not shown) including a motor and gearing that impart rotational motion to drive tube 32 via cable 26, and a linear actuator mechanism (e.g., electromechanical or pneumatic) that reciprocates drive tube 32 and cutting head 28 within lumen 31 of inner catheter 23. Controller 25 also includes display panel 35, input panel 36 (e g., a plurality of selector switches) and circuitry (see
Inner catheter 23 is disposed for movement, either rotational, longitudinal or both, within lumen 37 of outer guide catheter 22. Inner catheter 23 further includes lumen 38 through which needle stabilizer 39 may be reciprocated from a retracted position, within lumen 38, to an extended position, extending beyond distal endface 40 of inner catheter 23 (as shown in
Cutting head 28 and drive tube 32 are coupled via cable 26 to a drive train that moves cutting head 28 from a retracted position within lumen 31 of inner catheter 23 (as shown) in
Referring to
Referring now to
Slider button 41 is coupled to needle stabilizer 39, so that movement of button 41 in the distal direction deploys needle stabilizer 39, and movement of button 41 in the proximal direction retracts needle stabilizer 39 within lumen 38 of inner catheter 23. Needle stabilizer 39 may comprise a solid wire element, or may include a lumen through which therapeutic agents may be injected, as described hereinbelow. Wheel 44, if provided, is coupled to inner catheter 23 to permit optional adjustment of the cutting depth attained by cutting head 28.
With respect to
Drive tube 32 has proximal end 60 affixed to tubular member 61 having skive 62. Tubular member 61 is coupled to drive wire 63. Tubular member 61 is disposed for rotational and longitudinal motion, imparted by drive wire 63, within tubular member 64. The distal end of tubular member 64 is disposed within tubular member 58, while the proximal end includes a suitable bearing that seals against tubular member 61 without binding. Tissue passing through lumen 34 of drive tube 32 exits through skive 62 into the interior of tubular member 64, and then aspirated through port 65 into vacuum hose 27. Tubular member 64 is affixed to the interior of proximal portion 51 by element 66, which also supports button 42. Needle stabilizer 39 is fastened to slider button 41, which is in turn coupled to spool 67 to provide rigidity to the assembly
Handle 24 therefore provides the ability to rotate distal portion 51 of the handle to orient the bend in inner catheter 23, while retaining button 42 on top of proximal portion 50 facing upward. Slider button 41 permits needle stabilizer 39 to be selectively deployed, and knob 43 permits the inner catheter to be rotated relative to the outer guide catheter. Wheel 44 permits the inner catheter to be translated distally or proximally with respect to the cutting head, to account for the effects of inserting the distal portion of device 21 along a tortuous path.
With respect to
For example, monitoring circuitry 75 may be arranged to ensure that the cutting head is not extended unless there is an appropriate level of suction being drawn through drive tube 32 and cutting head 28, or that the cutting head is rotating at a desired RPM before being advanced into tissue. Additional applications for monitoring circuitry 75 are described in the above-incorporated, commonly assigned U.S. patent. In a preferred embodiment of the present invention, monitoring circuitry 75 is configured to limit and/or adjust the cutting depth attained by the cutting head, as described in detail below. Controller 25 also may comprise circuitry for measuring a physiologic parameter of tissue, e.g., impedance or electrical activity, as described hereinbelow with respect to the embodiments of
Referring now to
As depicted in
Thus, applicant has discovered that, depending upon the degree of flex imparted to the distal end of device 21, the depth of the cutting channel formed by the cutting head may be undesirably changed an unknown amount. Applicant has therefore determined that if channels are to be formed to a uniform and predetermined depth in the myocardium, a mechanism must be provided to limit and control the maximum extension of the cutting head.
Referring now to
Drive tube 32′ forms shoulder 82 where it couples to reduced diameter portion 81. Stainless steel washer 83a is disposed on drive tube 32′ between low-friction washer 83b and shoulder 82 of drive tube 32′, so that low-friction washer 83b forms a first bearing surface. Rigid tubular member 84, for example, a short section of stainless steel hypotube, is affixed to the interior of lumen 80 of catheter 23′ so that its proximal end forms a mating bearing surface to low-friction washer 83b. Washers 83a and 83b and tubular member 84 alternatively may be constructed or coated with a radio-opaque material to aid in visually positioning the drive tube to account for the variable distance created by bending of the catheter.
In accordance with the principles of the present invention, the linear actuator is configured to advance drive wire 63 (see
Applicant has determined however, that where forward motion of the drive tube is controlled by a mechanical actuator, some precaution must be made to ensure that forward motion of the linear actuator in controller 25 stops when low-friction washer 83 first contacts rigid member 84. Otherwise, the forward motion of the drive tube might tear the distal end of inner catheter 23′ off or cause buckling of drive tube 32′.
Further in accordance with the present invention, monitoring circuitry 75 of controller 25 (see
Referring to
With respect to
In accordance with one aspect of the present invention, contact element 93 provides a signal that is sensed by controller 25 to determine the location of cutting head 28 relative to distal endface 40 of inner catheter 23. Contact element 93 may comprise, for example, a resilient wire element coupled to a strain gauge. Alternatively, contact element 93 may be energized with an electric current to form one part of an electrical switch that is closed when it contacts cutting head 28, also coupled to the electric current by one or more suitable conductors (not shown). Still other mechanisms for detecting the proximity of cutting head 28, such as a Hall effect sensor, may be employed. Accordingly, once the distal end region of inner catheter 23 is disposed within the patient's left ventricle, inner catheter 23 may be adjusted proximally or distally until contact element 93 indicates that the cutting head is located a predetermined distance from distal endface 40.
As a further aspect of the embodiment of
With respect to
Optically absorptive material 99 is disposed on the interior of the opposing wall of the inner catheter, so that light emitted by element 95 is absorbed when the cutting head 28 is fully retracted proximally of aperture 97. When drive tube 32 obscures aperture 97, some of the light emitted by element 95 is reflected back into the distal end of the fiber optic element. This reflected light may be sensed by suitable circuitry in controller 25, and used to signal processor 70 that cutting head 28 is located a predetermined distance from distal endface 40 of inner catheter 23, thereby “zeroing out” the variable distance δ. As for the embodiment of
As will of course be understood, still other mechanisms may be used to sense that the location of the cutting head or drive tube relative to the distal endface of inner catheter 23, or some other reference point of distal end region of inner catheter 23. For example, saline or blood introduced into lumen 31 between the cutting head and a pair of electrical leads may be used to sense the location of the cutting head by measuring impedance across the lumen. Still other mechanisms may include, for example, piezoelectric crystals that use ultrasound or measure stress, so long as the mechanisms are sufficiently compact to be disposed near the distal end of the inner catheter without appreciably increasing the overall diameter of the inner catheter.
Referring now to
In
When cutting head 28 engages the endocardium, a reaction force is generated in inner catheter 21 that tends both to push distal region 100 away from the tissue. Needle stabilizer 39 counteracts these reaction forces and reduces transverse movement of the distal end of inner catheter 23, thus retaining the inner catheter in position while the cutting head is extended and retracted. Tissue severed by the cutting head is aspirated to trap 33 of controller 25.
Once cutting head reaches its maximum extension, as determined by any of the means described hereinabove, processor 70 causes forward motion of the cutting head to cease. In the embodiments using linear actuator 73, processor 70 also issues a command to reverse the direction of linear actuator 73. This in turn causes cutting head 28 to be withdrawn from channel C formed in the myocardium to a position just below distal endface 40 of inner catheter 23.
As shown in
Referring to
Needle stabilizer 39′ therefore includes push wire 110, such as a Teflon-coated stainless steel wire, having tubular member 111, for example, a short length of stainless steel hypotube, welded to it. Tubular member 110 is disposed in bore 112 of catheter 23″, and is captured in bore 112 by member 113. Member 113 is affixed to inner catheter 23″, and stops the forward motion of tubular member 111 when slider button 41 is pushed in the distal direction. Advantageously, tubular member 111 may comprise a radio-opaque material, thus ensuring that the location of needle stabilizer 39′ is visible under a fluoroscope.
Referring now to
Handle 120 differs that instead of having button 42 signal processor 70 to activate linear actuator mechanism, slider button 121 instead includes yoke 122 that is engaged with disk 123 affixed to an extension of drive wire 63. Disk 123 is biased in a proximal position by spring 124. In this embodiment, the drive tube and inner catheter preferably include a mechanical stop, such as shown in
With respect to
In
In
Alternatively, several such needle stabilizers may be arranged around the cutting head to provide enhanced stabilization or multiple injection sites for therapeutic agents, as described hereinafter with respect to
Advantageously, lumen 142 of the embodiment of
In
In
In
In
Referring now to
In
In
In
With respect to
Referring to
In
Referring now to
In one embodiment, sensing circuit 245 may sense electrical activity (e.g., EKG or impedance) in the myocardium between needle stabilizers 241 and generate a signal that is displayed to the clinician operating the instrument. Thus, in accordance with one aspect of the methods of the present invention, the clinician may dispose inner catheter against a region of tissue, deploy needle stabilizers 241, and obtain a reading of the degree of electrical activity in that region of the myocardium.
If the sensed electrical activity is low, indicating that the tissue region is heavily infarcted, the clinician may forego boring a channel. Instead, the clinician may instead simply re-position the distal end of the catheter in contact with another region of tissue more likely to experience a beneficial effect from myocardial revascularization. Likewise, the clinician also may use the sensed physiological parameter as an aid in determining whether to inject therapeutic agents via lumens 243.
Referring to
In the embodiment of
Further in accordance with the methods of the present invention, if the sensed electrical impedance indicates that the tissue region is heavily infarcted, the clinician may forego boring a channel at that location. Instead, the clinician may instead reposition the distal end of the catheter in contact with another region of tissue more likely to experience a beneficial effect from myocardial revascularization. Also, the clinician may use the sensed impedance level (or other physiologic parameter) as an aid in determining whether to inject therapeutic agents via lumens 255.
While preferred illustrative embodiments of the invention are described, it will be apparent that various changes and modifications may be made therein without departing from the invention, and the appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.
Saadat, Vahid, Tartaglia, Joseph M., Leopold, Eric W., Park, Peter K., Philip, Susan
Patent | Priority | Assignee | Title |
10034999, | Nov 23 2004 | EKOS LLC | Steerable device for accessing a target site and methods |
11304753, | Sep 13 2019 | Alleviant Medical, Inc. | Systems, devices, and methods for forming an anastomosis |
11612432, | Sep 13 2019 | Alleviant Medical, Inc. | Systems, devices, and methods for forming an anastomosis |
11871987, | Sep 13 2019 | Alleviant Medical, Inc. | Systems, devices, and methods for forming an anastomosis |
Patent | Priority | Assignee | Title |
1162901, | |||
2710000, | |||
2749909, | |||
2923295, | |||
3120845, | |||
3308819, | |||
3470876, | |||
3477423, | |||
3557794, | |||
3598119, | |||
3614953, | |||
3692020, | |||
3780246, | |||
4136695, | Jul 09 1975 | Gynetech-Denver, Inc. | Transvaginal sterilization instrument |
4207874, | Mar 27 1978 | Laser tunnelling device | |
4222380, | Dec 02 1977 | Olympus Optical Co., Ltd. | Celiac injector |
4362161, | Oct 27 1980 | DePuy Orthopaedics, Inc | Cranial drill |
4381037, | Oct 29 1979 | Black & Decker Inc. | Portable electric tool |
4461305, | Sep 04 1981 | Automated biopsy device | |
4468224, | Jan 28 1982 | ADVANCED CARDIOVASCULAR SYSTEMS, INC , | System and method for catheter placement in blood vessels of a human patient |
4479896, | Dec 11 1981 | Center for Blood Research | Method for extraction localization and direct recovery of platelet derived growth factor |
4576162, | Mar 30 1983 | Apparatus and method for separation of scar tissue in venous pathway | |
4578057, | Aug 31 1984 | BROWN BROTHERS HARRIMAN & CO | Ventricular right angle connector and system |
4581017, | Mar 07 1983 | Medtronic Ave, Inc | Catheter systems |
4582056, | Mar 30 1983 | Endocardial lead extraction apparatus and method | |
4600014, | Feb 10 1984 | Transrectal prostate biopsy device and method | |
4640296, | Nov 12 1983 | Angiomed AG | Biopsy cannula |
4646738, | Dec 05 1985 | Concept, Inc. | Rotary surgical tool |
4702261, | Jul 03 1985 | Sherwood Services AG; TYCO GROUP S A R L | Biopsy device and method |
4729763, | Jun 06 1986 | Catheter for removing occlusive material | |
4788975, | Nov 05 1987 | TRIMEDYNE, INC | Control system and method for improved laser angioplasty |
4790812, | Nov 15 1985 | Apparatus and method for removing a target object from a body passsageway | |
4792327, | Sep 23 1987 | Lipectomy cannula | |
4813930, | Oct 13 1987 | DIMED, INCORPORATED, 2018 BROOKWOOD MEDICAL CENTER DRIVE, SUITE 305 BIRMINGHAM JEFFERSON ALABAMA 35209 A CORP OF ALABAMA | Angioplasty guiding catheters and methods for performing angioplasty |
4850354, | Aug 13 1987 | Allegiance Corporation | Surgical cutting instrument |
4856529, | May 24 1985 | Volcano Corporation | Ultrasonic pulmonary artery catheter and method |
4895166, | Nov 23 1987 | SciMed Life Systems, INC | Rotatable cutter for the lumen of a blood vesel |
4898577, | Sep 28 1988 | BADGER, RODNEY S | Guiding cathether with controllable distal tip |
4917102, | Sep 14 1988 | ADVANCED CARDIOVASCULAR SYSTEMS, INC , P O BOX 58167, SANTA CLARA, CA 95052-8167, A CORP OF CA | Guidewire assembly with steerable adjustable tip |
4923462, | Mar 17 1987 | DOW CORNING ENTERPRISES | Catheter system having a small diameter rotatable drive member |
4946442, | Jun 28 1985 | Olympus Optical Co., Ltd. | Endoscope treatment device |
4957742, | Nov 29 1984 | Regents of the University of Minnesota | Method for promoting hair growth |
4964854, | Jan 23 1989 | MEDEX, INC | Intravascular catheter assembly incorporating needle tip shielding cap |
4976710, | Jan 28 1987 | Working well balloon method | |
4985028, | Aug 30 1989 | LIGHTWAVE ABLATIOIN SYSTEMS | Catheter |
5030201, | Nov 24 1989 | Expandable atherectomy catheter device | |
5087265, | Feb 17 1989 | SUMMERS, DAVID P | Distal atherectomy catheter |
5093877, | Oct 30 1990 | Eclipse Surgical Technologies, Inc | Optical fiber lasing apparatus lens |
5104393, | Aug 30 1989 | LIGHTWAVE ABLATIOIN SYSTEMS | Catheter |
5106386, | Aug 30 1989 | LIGHTWAVE ABLATIOIN SYSTEMS | Catheter |
5123904, | Apr 28 1988 | Olympus Optical Co., Ltd. | Surgical resecting instrument |
5125924, | Sep 24 1990 | PLC MEDICAL SYSTEMS, INC | Heart-synchronized vacuum-assisted pulsed laser system and method |
5125926, | Sep 24 1990 | PLC MEDICAL SYSTEMS, INC | Heart-synchronized pulsed laser system |
5133713, | Mar 30 1990 | Apparatus of a spinning type of resectoscope for prostatectomy | |
5135531, | May 14 1984 | Surgical Systems & Instruments, Inc. | Guided atherectomy system |
5152744, | Feb 07 1990 | Smith & Nephew, Inc | Surgical instrument |
5179962, | Jun 20 1991 | Greatbatch Ltd | Cardiac lead with retractible fixators |
5195988, | May 26 1988 | Medical needle with removable sheath | |
5197968, | Aug 14 1991 | Mectra Labs, Inc. | Disposable tissue retrieval assembly |
5224951, | Feb 19 1991 | Tyco Healthcare Group LP | Surgical trocar and spike assembly |
5242460, | Oct 25 1990 | Advanced Cardiovascular Systems, INC | Atherectomy catheter having axially-disposed cutting edge |
5263959, | Oct 21 1991 | CATHCO, INC | Dottering auger catheter system and method |
5269785, | Jun 28 1990 | Bonutti Skeletal Innovations LLC | Apparatus and method for tissue removal |
5273051, | Mar 16 1993 | Method and associated device for obtaining a biopsy of tissues of an internal organ | |
5281218, | Jun 05 1992 | Boston Scientific Scimed, Inc | Catheter having needle electrode for radiofrequency ablation |
5285795, | Sep 12 1991 | Clarus Medical, LLC | Percutaneous discectomy system having a bendable discectomy probe and a steerable cannula |
5287861, | Oct 30 1992 | Coronary artery by-pass method and associated catheter | |
5292309, | Jan 22 1993 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Surgical depth measuring instrument and method |
5313949, | Feb 28 1986 | Boston Scientific Scimed, Inc | Method and apparatus for intravascular two-dimensional ultrasonography |
5323781, | Jan 31 1992 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
5324284, | Jun 05 1992 | Boston Scientific Scimed, Inc | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
5330466, | Dec 01 1992 | Cardiac Pathways Corporation | Control mechanism and system and method for steering distal extremity of a flexible elongate member |
5336237, | Aug 25 1993 | Devices for Vascular Intervention, Inc. | Removal of tissue from within a body cavity |
5339799, | Apr 23 1991 | Olympus Optical Co., Ltd. | Medical system for reproducing a state of contact of the treatment section in the operation unit |
5342300, | Mar 13 1992 | Steerable stent catheter | |
5342393, | Aug 27 1992 | Duke University | Method and device for vascular repair |
5354310, | Mar 22 1993 | Cordis Corporation | Expandable temporary graft |
5358472, | Jan 13 1992 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Guidewire atherectomy catheter and method of using the same |
5358485, | Jan 13 1992 | Schneider (USA) Inc. | Cutter for atherectomy catheter |
5366468, | Nov 09 1993 | Linvatec Corporation | Double bladed surgical router having aspiration ports within flutes |
5366490, | Aug 12 1992 | VIDAMED, INC , A DELAWARE CORPORATION | Medical probe device and method |
5370675, | Aug 12 1992 | VENTURE LENDING & LEASING, INC | Medical probe device and method |
5379772, | Sep 14 1993 | Volcano Corporation | Flexible elongate device having forward looking ultrasonic imaging |
5380316, | Dec 18 1990 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Method for intra-operative myocardial device revascularization |
5383884, | Dec 04 1992 | AHN, SAMUEL S | Spinal disc surgical instrument |
5389073, | Dec 01 1992 | Cardiac Pathways Corporation | Steerable catheter with adjustable bend location |
5389096, | Dec 18 1990 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | System and method for percutaneous myocardial revascularization |
5392917, | Aug 03 1993 | Ethicon, Inc. | Easy open 1-2-3 instrumentation package |
5396897, | Jan 16 1992 | The General Hospital Corporation | Method for locating tumors prior to needle biopsy |
5403334, | Sep 12 1989 | Advanced Cardiovascular Systems, INC | Atherectomy device having helical blade and blade guide |
5409000, | Sep 14 1993 | Boston Scientific Scimed, Inc | Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method |
5415166, | Feb 15 1991 | Cardiac Pathways Corporation | Endocardial mapping apparatus and cylindrical semiconductor device mounting structure for use therewith and method |
5419777, | Mar 10 1994 | Bavaria Medizin Technologie GmbH | Catheter for injecting a fluid or medicine |
5425376, | Sep 08 1993 | SOFAMOR DANEK PROPERTIES, INC | Method and apparatus for obtaining a biopsy sample |
5429144, | Nov 03 1993 | WILK PATENT DEVELOPMENT CORP | Coronary artery by-pass method |
5439474, | Oct 08 1993 | LI MEDICAL TECHNOLOGIES, INC | Morcellator system |
5443443, | May 14 1984 | Surgical Systems & Instruments, Inc.; SURGICAL SYSTEMS & INSTRUMENTS, INC | Atherectomy system |
5456689, | Oct 13 1993 | Ethicon, Inc | Method and device for tissue resection |
5464395, | Apr 05 1994 | Catheter for delivering therapeutic and/or diagnostic agents to the tissue surrounding a bodily passageway | |
5465717, | Feb 15 1991 | Boston Scientific Scimed, Inc | Apparatus and Method for ventricular mapping and ablation |
5488958, | Nov 09 1992 | Cook Medical Technologies LLC | Surgical cutting instrument for coring tissue affixed thereto |
5492119, | Dec 22 1993 | Cardiac Pacemakers, Inc | Catheter tip stabilizing apparatus |
5497784, | Nov 11 1991 | Avantec Vascular Corporation | Flexible elongate device having steerable distal extremity |
5500012, | Jul 15 1992 | LIGHTWAVE ABLATIOIN SYSTEMS | Ablation catheter system |
5505725, | Oct 30 1990 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Shapeable optical fiber apparatus |
5507802, | Jun 02 1993 | Cardiac Pathways Corporation | Method of mapping and/or ablation using a catheter having a tip with fixation means |
5520634, | Apr 23 1993 | Ethicon, Inc. | Mechanical morcellator |
5527279, | Dec 01 1992 | Boston Scientific Scimed, Inc | Control mechanism and system and method for steering distal extremity of a flexible elongate member |
5531780, | Sep 03 1992 | Pacesetter, Inc | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
5551427, | Feb 13 1995 | BIOCARDIA, INC | Implantable device for the effective elimination of cardiac arrhythmogenic sites |
5554152, | Dec 18 1990 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Method for intra-operative myocardial revascularization |
5562694, | Oct 11 1994 | LSI Solutions, Inc | Morcellator |
5569178, | Oct 20 1995 | Power assisted suction lipectomy device | |
5569254, | Apr 12 1995 | MIDAS REX, L P | Surgical resection tool having an irrigation, lighting, suction and vision attachment |
5569284, | Sep 23 1994 | United States Surgical Corporation | Morcellator |
5575293, | Feb 06 1995 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Apparatus for collecting and staging tissue |
5575772, | Jul 01 1993 | Boston Scientific Corporation | Albation catheters |
5575787, | Sep 20 1993 | UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC | Cardiac ablation catheters and method |
5575810, | Oct 15 1993 | EP Technologies, Inc. | Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like |
5578067, | Apr 14 1994 | Pacesetter AB | Medical electrode system having a sleeve body and control element therefor for selectively positioning an exposed conductor area |
5584842, | Dec 02 1992 | INTRAMED LABORATORIES, INC | Valvulotome and method of using |
5588432, | Mar 21 1988 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
5591159, | Nov 09 1994 | TAHERI ENTERPRISES, LLC | Transcavitary myocardial perfusion apparatus |
5593405, | Jul 16 1994 | Fiber optic endoscope | |
5601573, | Mar 02 1994 | Ethicon Endo-Surgery, Inc. | Sterile occlusion fasteners and instruments and method for their placement |
5601586, | Sep 30 1992 | Linvatec Corporation | Variable angle rotating shaver |
5601588, | Sep 29 1994 | Olympus Optical Co., Ltd. | Endoscopic puncture needle |
5606974, | May 02 1995 | Cardiac Pacemakers, Inc | Catheter having ultrasonic device |
5607421, | May 01 1991 | The Trustees of Columbia University in the City of New York | Myocardial revascularization through the endocardial surface using a laser |
5609591, | Oct 05 1993 | S.L.T. Japan Co., Ltd. | Laser balloon catheter apparatus |
5609621, | Aug 04 1995 | Medtronic, Inc.; Medtronic, Inc | Right ventricular outflow tract defibrillation lead |
5611803, | Dec 22 1994 | IMAGYN MEDICAL TECHNOLOGIES, INC | Tissue segmentation device |
5613972, | Jul 15 1992 | The University of Miami | Surgical cutting heads with curled cutting wings |
5640955, | Feb 14 1995 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Guiding introducers for use in the treatment of accessory pathways around the mitral valve using a retrograde approach |
5643253, | Jun 06 1995 | CARDIOFOCUS, INC | Phototherapy apparatus with integral stopper device |
5651781, | Apr 20 1995 | THE SPECTRANETICS CORPORATION | Surgical cutting instrument |
5658263, | May 18 1995 | Cordis Corporation | Multisegmented guiding catheter for use in medical catheter systems |
5662124, | Jun 19 1996 | Wilk Patent Development Corp. | Coronary artery by-pass method |
5662671, | Jul 17 1996 | Boston Scientific Scimed, Inc | Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries |
5665062, | Jan 23 1995 | CARDIOVASCULAR TECHNOLOGIES, INC | Atherectomy catheter and RF cutting method |
5669920, | Jul 09 1993 | Advanced Cardiovascular Systems, INC | Atherectomy catheter |
5680860, | Jul 01 1994 | SciMed Life Systems, INC; Boston Scientific Corporation | Mapping and/or ablation catheter with coilable distal extremity and method for using same |
5683362, | May 13 1994 | Apparatus for performing diagnostic and therapeutic modalities in the biliary tree | |
5688234, | Jan 26 1996 | Abbott Laboratories Vascular Enterprises Limited | Apparatus and method for the treatment of thrombotic occlusions in vessels |
5702412, | Oct 03 1995 | Cedars-Sinai Medical Center | Method and devices for performing vascular anastomosis |
5707362, | Apr 15 1992 | Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member | |
5709697, | Nov 22 1995 | United States Surgical Corporation | Apparatus and method for removing tissue |
5722400, | Feb 16 1995 | Daig Corporation | Guiding introducers for use in the treatment of left ventricular tachycardia |
5724975, | Dec 12 1996 | PLC Medical Systems, Inc. | Ultrasonic detection system for transmyocardial revascularization |
5725521, | Mar 29 1996 | Eclipse Surgical Technologies, Inc. | Depth stop apparatus and method for laser-assisted transmyocardial revascularization and other surgical applications |
5730741, | Feb 07 1997 | Eclipse Surgical Technologies, Inc. | Guided spiral catheter |
5743870, | May 09 1994 | SOMNUS MEDICAL TECHNOLOGIES, INC | Ablation apparatus and system for removal of soft palate tissue |
5755714, | Sep 17 1996 | Eclipse Surgical Technologies, Inc. | Shaped catheter for transmyocardial revascularization |
5766163, | Jul 03 1996 | Eclipse Surgical Technologies, Inc.; Eclipse Surgical Technologies, Inc | Controllable trocar for transmyocardial revascularization (TMR) via endocardium method and apparatus |
5776092, | Mar 23 1994 | ERBE ELEKTROMEDIZIN GMBH | Multifunctional surgical instrument |
5782823, | Apr 05 1996 | Eclipse Surgical Technologies, Inc.; Eclipse Surgical Technologies, Inc | Laser device for transmyocardial revascularization procedures including means for enabling a formation of a pilot hole in the epicardium |
5797870, | Jun 07 1995 | Advanced Research & Technology Institute | Pericardial delivery of therapeutic and diagnostic agents |
5807384, | Dec 20 1996 | Eclipse Surgical Technologies, Inc.; Eclipse Surgical Technologies, Inc | Transmyocardial revascularization (TMR) enhanced treatment for coronary artery disease |
5807401, | Nov 07 1994 | GRIESHABER & CO , AG SCHAFFHAUSEN | Ophthalmic surgical apparatus for pulverizing and removing the lens nucleus from the eye of a living being |
5814028, | Nov 03 1993 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Curved guiding introducers for cardiac access |
5830210, | Oct 21 1996 | PLC Medical Systems, Inc. | Catheter navigation apparatus |
5830222, | Oct 11 1996 | Medtronic Vascular, Inc | Device, system and method for intersititial transvascular intervention |
5833715, | Sep 03 1992 | Pacesetter, Inc. | Implantable stimulation lead having an advanceable therapeutic drug delivery system |
5834418, | Mar 20 1996 | THERATECHNOLOGIES, INC | Process for the preparation of platelet growth factors extract |
5840059, | Jun 07 1995 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Therapeutic and diagnostic agent delivery |
5846225, | Feb 19 1997 | Cornell Research Foundation, Inc. | Gene transfer therapy delivery device and method |
5851171, | Nov 04 1997 | Advanced Cardiovascular Systems, Inc. | Catheter assembly for centering a radiation source within a body lumen |
5857995, | Apr 12 1996 | HOWMEDICA OSTEONICS CORP | Multiple bladed surgical cutting device removably connected to a rotary drive element |
5871495, | Sep 13 1996 | Eclipse Surgical Technologies, Inc.; Eclipse Surgical Technologies, Inc | Method and apparatus for mechanical transmyocardial revascularization of the heart |
5873366, | Nov 07 1996 | Method for transmyocardial revascularization | |
5876373, | Apr 04 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Steerable catheter |
5878751, | Nov 07 1996 | MYOCARDIAL STENTS, INC | Method for trans myocardial revascularization (TMR) |
5885272, | Oct 30 1990 | Eclipse Surgical Technologies, Inc | System and method for percutaneous myocardial revascularization |
5885276, | Dec 02 1997 | Galil Medical Ltd. | Method and device for transmyocardial cryo revascularization |
5891137, | May 21 1997 | Irvine Biomedical, Inc. | Catheter system having a tip with fixation means |
5893848, | Oct 24 1996 | PLC Medical Systems, Inc. | Gauging system for monitoring channel depth in percutaneous endocardial revascularization |
5899874, | Apr 30 1992 | Stiftelsen for Medicinsk-Teknisk Utveckling | Preparation and method for production of platelet concentrates with significantly prolonged viabilty during storage |
5906594, | Jan 08 1997 | Symbiosis Corporation | Endoscopic infusion needle having dual distal stops |
5910150, | Dec 02 1996 | Advanced Cardiovascular Systems, INC | Apparatus for performing surgery |
5916214, | May 01 1995 | Medtronic CardioRhythm | Dual curve ablation catheter |
5921982, | Jul 30 1993 | Systems and methods for ablating body tissue | |
5925012, | Dec 27 1996 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Laser assisted drug delivery |
5928943, | Nov 22 1994 | CARDION AG | Embryonal cardiac muscle cells, their preparation and their use |
5931848, | Dec 02 1996 | Advanced Cardiovascular Systems, INC | Methods for transluminally performing surgery |
5938632, | Mar 06 1997 | Boston Scientific Scimed, Inc | Radiofrequency transmyocardial revascularization apparatus and method |
5941868, | Dec 22 1995 | Abbott Laboratories | Localized intravascular delivery of growth factors for promotion of angiogenesis |
5941893, | May 27 1997 | Advanced Cardiovascular Systems, INC | Apparatus for transluminally performing surgery |
5944716, | Dec 09 1996 | Boston Scientific Scimed, Inc | Radio frequency transmyocardial revascularization corer |
5951567, | Jul 24 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Introducer for channel forming device |
5964754, | May 24 1996 | Sulzer Osypka GmbH | Device for perforating the heart wall |
5964757, | Sep 05 1997 | Cordis Webster, Inc.; CORDIS WEBSTER, INC | Steerable direct myocardial revascularization catheter |
5968059, | Mar 06 1997 | Boston Scientific Scimed, Inc | Transmyocardial revascularization catheter and method |
5971993, | Jun 15 1998 | Myocardial Stents, Inc. | System for delivery of a trans myocardial device to a heart wall |
5980545, | May 13 1996 | Edwards Lifesciences Corporation | Coring device and method |
5980548, | Oct 29 1997 | Kensey Nash Corporation | Transmyocardial revascularization system |
5989278, | Sep 13 1996 | Eclipse Surgical Technologies, Inc. | Method and apparatus for mechanical transmyocardial revascularization of the heart |
6017340, | Oct 03 1994 | CITIBANK, N A | Pre-curved wire guided papillotome having a shape memory tip for controlled bending and orientation |
6030377, | Oct 21 1996 | NOVADAQ TECHNOLOGIES INC | Percutaneous transmyocardial revascularization marking system |
6036677, | Mar 07 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Catheter with flexible intermediate section |
6045530, | Oct 14 1998 | Heyer-Schulte NeuroCare Inc. | Adjustable angle catheter |
6045565, | Nov 04 1997 | Boston Scientific Scimed, Inc | Percutaneous myocardial revascularization growth factor mediums and method |
6051008, | May 27 1997 | ABBOTT CARDIOVASCULAR SYSTEMS INC | Apparatus having stabilization members for percutaneously performing surgery and methods of use |
6056743, | Nov 04 1997 | Boston Scientific Scimed, Inc | Percutaneous myocardial revascularization device and method |
6056760, | Jan 30 1997 | Nissho Corporation | Device for intracardiac suture |
6066126, | Dec 18 1997 | Medtronic, Inc | Precurved, dual curve cardiac introducer sheath |
6093177, | Mar 07 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Catheter with flexible intermediate section |
6102887, | Aug 11 1998 | BIOCARDIA, INC | Catheter drug delivery system and method for use |
6106520, | Sep 30 1997 | BROWN, TONY R ; LAUFER, MICHAEL D | Endocardial device for producing reversible damage to heart tissue |
6126654, | Apr 04 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Method of forming revascularization channels in myocardium using a steerable catheter |
6165164, | Mar 29 1999 | Cordis Corporation | Catheter for injecting therapeutic and diagnostic agents |
6179809, | Sep 24 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Drug delivery catheter with tip alignment |
6197324, | Dec 18 1997 | C. R. Bard, Inc. | System and methods for local delivery of an agent |
6224584, | Jan 14 1997 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Therapeutic and diagnostic agent delivery |
6238389, | Sep 30 1997 | Boston Scientific Scimed, Inc | Deflectable interstitial ablation device |
6251104, | May 08 1996 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Guiding catheter system for ablating heart tissue |
6270496, | May 05 1998 | Cardiac Pacemakers, Inc. | Steerable catheter with preformed distal shape and method for use |
6309370, | Feb 05 1998 | Biosense, Inc | Intracardiac drug delivery |
6322548, | May 10 1995 | HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT | Delivery catheter system for heart chamber |
6589232, | Nov 25 1997 | Selective treatment of endocardial/myocardial boundary | |
6613062, | Oct 29 1999 | Medtronic, Inc. | Method and apparatus for providing intra-pericardial access |
6620139, | Dec 14 1998 | Tre Esse Progettazione Biomedica S.r.l. | Catheter system for performing intramyocardiac therapeutic treatment |
6638233, | Aug 19 1999 | Covidien LP | Apparatus and methods for material capture and removal |
6905476, | Jun 04 1998 | Biosense Webster, Inc. | Catheter with injection needle |
6991602, | Jan 11 2002 | Olympus Corporation | Medical treatment method and apparatus |
7094201, | Jul 17 1996 | Medtronic, Inc. | System and method for genetically treating cardiac conduction disturbances |
20040010231, | |||
EP807412, | |||
EP853921, | |||
EP868923, | |||
EP876796, | |||
EP895752, | |||
PA876796, | |||
RE33258, | Nov 30 1987 | HOWMEDICA OSTEONICS CORP | Irrigating, cutting and aspirating system for percutaneous surgery |
WO8603122, | |||
WO9210142, | |||
WO9625097, | |||
WO9626675, | |||
WO9635469, | |||
WO9710753, | |||
WO9713471, | |||
WO9805307, | |||
WO9817186, | |||
WO9838916, | |||
WO9839045, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 14 2002 | Abbott Cardiovascular Systems Inc. | (assignment on the face of the patent) | / | |||
Feb 09 2007 | Advanced Cardiovascular Systems, INC | ABBOTT CARDIOVASCULAR SYSTEMS INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 036021 | /0869 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Aug 04 2018 | 4 years fee payment window open |
Feb 04 2019 | 6 months grace period start (w surcharge) |
Aug 04 2019 | patent expiry (for year 4) |
Aug 04 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 04 2022 | 8 years fee payment window open |
Feb 04 2023 | 6 months grace period start (w surcharge) |
Aug 04 2023 | patent expiry (for year 8) |
Aug 04 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 04 2026 | 12 years fee payment window open |
Feb 04 2027 | 6 months grace period start (w surcharge) |
Aug 04 2027 | patent expiry (for year 12) |
Aug 04 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |