A valve for downhole use allows flow of mud or completion fluids but closes when subjected to produced hydrocarbons. The flow through the valve is through an annular passage that features a sleeve preferably made of rubber. The passage remains open during completion operations, but when hydrocarbons are produced the rubber swells and the passage is closed off. Applications include completions involving long horizontal runs and small inside diameter laterals where access to a sliding sleeve with coiled tubing or a wireline run tool is not practical.
|
1. A valve assembly for fluid flow control downhole, comprising:
a valve body having a passage therethrough;
a valve member in said body selectively operable between an open and a closed position based on a change in the composition of the fluid contacting said valve member;
a screen having an inner passage such that when said valve member is in said open position flow in the well can pass through said screen inner passage and when said valve member is in said closed position flow in the well must pass through the screen because said inner passage is closed off by said valve member.
17. A method of well completion and production, comprising:
flowing fluid in the wellbore;
taking flow to the surface through a passage in the interior of a valve assembly;
closing off said passage in said valve assembly by virtue of the a change in composition of said production flow;
redirecting said flow due to said closing off;
connecting a screen to said valve assembly;
allowing flow that passes through said valve assembly to flow through an interior passage in said screen;
redirecting said flow to go through said screen as a result of closure of access to said interior passage of said screen by virtue of said closing of said passage in said valve assembly.
2. The valve assembly of
said valve member obtains said closed position by increasing in volume.
3. The valve assembly of
said valve member hardens when exposed to fluid that urges it to said closed position.
4. The valve assembly of
said valve member is responsive to hydrocarbons to move to said closed position.
5. The valve assembly of
said valve member is not responsive, to move to said closed position, to fluids that don't contain hydrocarbons.
6. The valve assembly of
said valve member is responsive to water to move to said closed position.
9. A valve assembly for fluid flow control downhole, comprising:
a valve body having a passage therethrough;
a valve member selectively operable between an open and a closed position based on the composition of the fluid contacting said valve member; The valve assembly of claim 1, wherein:
said passage comprises an annular passage around a mandrel in said valve body;
said valve member comprises a sleeve in said passage;
said sleeve selectively changing in volume to obstruct said annular passage.
10. The valve assembly of
said valve body having an inlet to direct flow around said mandrel and through said annular passage for contact with said sleeve and an outlet to direct flow from said annular passage into said mandrel to an end connection thereon.
11. The valve assembly of
a said screen having an inner passage and connected to said end connection such that when said valve member is in said open position flow in the well can pass through said screen inner passage and when said valve member is in said closed position flow in the well must pass through the screen because said inner passage is closed off by said valve member.
12. A valve assembly for fluid flow control downhole, comprising:
a valve body having a passage therethrough;
a valve member selectively operable between an open and a closed position based on the composition of the fluid contacting said valve member; The valve assembly of claim 1, wherein:
said valve member comprises a clay that swells upon contact with water.
13. A valve assembly for fluid flow control downhole, comprising:
a valve body having a passage therethrough;
a valve member selectively operable between an open and a closed position based on the composition of the fluid contacting said valve member; The valve assembly of claim 1, wherein:
a cover for said valve member that is selectively removable downhole.
14. The valve assembly of
said cover is removed by one of mechanical force, chemical reaction, and fluid force.
0. 15. A method of well completion and production, comprising:
flowing fluid in the wellbore;
taking flow to the surface through a passage in the interior of a valve assembly;
closing off said passage in said valve assembly by virtue of a change in the
composition of said flow;
redirecting said flow due to said closing off.
16. The method of claim 15 17, comprising:
using a valve member in said valve assembly made of one of rubber, elastomer, clay, EPDM and Halobutyl.
18. The method of
providing a valve member in said valve assembly that closes it responsive to the presence of hydrocarbons.
19. The method of
providing a valve member in said valve assembly that closes it responsive to the presence of water.
20. The method of
providing a valve member that swells to close a flow passage in said valve assembly.
|
The field of the invention is downhole valves and more particularly valves that can be operated between an open and closed position using the well fluid that flows through them.
Downhole valves have been used to provide selective access from different strata into a well. Typically these valves employ a sliding sleeve to selectively align or mis-align openings on an inner sliding sleeve mounted concentrically with a housing. The sliding sleeve can have grooves or recesses near its end for engagement by a tool to slide the sleeve in one direction or another. Typically the tool to operate the sliding sleeve is delivered on coiled tubing or wireline, however, rigid tubing could also be used.
Many applications in deviated wellbores, particularly those with long horizontal sections, present unique difficulties to the traditional methods of operating sliding sleeve valves with tools delivered on coiled tubing or wireline. Other applications, such as junctions in multi-lateral systems have such small inside diameters so as to make operation of the sleeve using coiled tubing or wireline, virtually impossible.
One solution to this problem of lack of access for traditional tools to shift the sleeve has been to provide a local source of power, such as a battery, and use it to power the sleeve between the open and closed positions. However, there are still reliability issues with using battery power and should the valve fail to close, there is no backup way to get access to it to get it to close.
The need to use valves in applications where traditional type of access is not available, has spurred the need for the present invention. In seeking a more reliable way to operate a valve that, in effect, cannot be mechanically accessed, the valve of the present invention has been developed. The valve features, in a preferred embodiment, an annular passage lined with a material that is sensitive to some fluids but not to others. It can remain open until contacted by a fluid that makes the liner swell. The swelling closes off the flow path through the valve body to allow subsequent operations to take place. This valve type has particular application to screened main bores used in conjunction with open laterals. In such applications, high mud flow rates are experienced during completion operations making it desirable to bypass screens in the main bore completion. However, when production of hydrocarbons begins, it is desirable to close the bypass for the screens and direct production of hydrocarbons through such screens. The valve of the present invention can do this. Exposure to produced hydrocarbons can result in sufficient swelling to make the valve close. When this happens, the produced fluid can be directed to flow through a screen on the way to the surface. These and other advantages of the present invention will become apparent to those skilled in the art from a review of the description of the preferred embodiment and the drawings and the claims that appear below.
A valve for downhole use allows flow of mud or completion fluids but closes when subjected to produced hydrocarbons. The flow through the valve is through an annular passage that features a sleeve preferably made of rubber. The passage remains open during completion operations, but when hydrocarbons are produced the rubber swells and the passage is closed off. Applications include completions involving long horizontal runs and small inside diameter laterals where access to a sliding sleeve with coiled tubing or a wireline run tool is not practical.
As shown in
While the preferred material for sleeve 68 is an elastomer, rubber, EPDM or Halobutyl which swells dramatically when exposed to hydrocarbons, the valve of the present invention encompasses other designs that will pass mud and completion fluids and can be triggered to close upon commencement of production flow. Thus the sleeve 68 can be made of other materials than rubber, such as elastomers, and does not need to be uniform along its length. It can comprise of combinations of materials that exhibit swelling or expand to close a flow path when exposed to hydrocarbons. Alternatively, the sleeve material can be sensitive to produced or injected water, such as a clay like bentonite. Alternatively, the material that will close the valve 40 can be sensitive to any downhole fluid but isolated from it during the completion process. Later, when it is desired to put the branches below valve 40 into production such that production from those branches will flow through the screen the layer 70 that is placed over the sleeve can be defeated, in a variety of ways to expose the produced fluids to the sleeve 68 so that it can swell and close the annular passage 60. For example the sleeve 68 can be made from clays that expand with water such as bentonite or cements or fly ash or other materials that will swell and stay rigid enough to redirect flow. The protective cover 70 can be removed by being dissolved such as by chemical reaction or other form of attack. Alternatively, high flow rates or applied pressure differentials can erode or physically displace the protective covering 70. Water can be from produced fluids or deliberately introduced from the surface.
Those skilled in the art can readily see that the various designs described above allow for a valve to operate reliably in situations where using coiled tubing or wireline is not practical. The design removes the uncertainties of relying on a downhole battery as the power source to operate the valve. Because of its simplicity and reliability of operation, it provides a useful tool when trying to bring in barefoot branches that require high flow rates for completion making it imperative to bypass a screen assembly while still having the flexibility to later direct produced flow from the barefoot branches through a screen assembly, due to the closure of such a valve. Other, more common applications of sliding sleeve valves downhole can also benefit from the valve of the present invention.
The foregoing disclosure and description of the invention are illustrative and explanatory thereof, and various changes in the size, shape and materials, as well as in the details of the illustrated construction, may be made without departing from the invention.
Henriksen, Knut H., Misiewicz, Cecilie T.
Patent | Priority | Assignee | Title |
10982511, | Jan 11 2019 | BAKER HUGHES OILFIELD OPERATIONS LLC | Downhole system for gravel packing without a washpipe |
11261674, | Jan 29 2020 | Halliburton Energy Services, Inc | Completion systems and methods to perform completion operations |
11333002, | Jan 29 2020 | Halliburton Energy Services, Inc | Completion systems and methods to perform completion operations |
Patent | Priority | Assignee | Title |
2869475, | |||
5148825, | Nov 20 1991 | Plastro-Gvat; Agroteam Consultants Ltd.; Jacob, Gil | Moisture-responsive valve |
5722931, | Mar 05 1996 | IMAGYN MEDICAL TECHNOLOGIES, INC | Female incontinence device |
6367547, | Apr 16 1999 | Halliburton Energy Services, Inc | Downhole separator for use in a subterranean well and method |
6505682, | Jan 29 1999 | Schlumberger Technology Corporation | Controlling production |
7059415, | Jul 18 2001 | SWELLFIX UK LIMITED | Wellbore system with annular seal member |
20020174981, | |||
WO3010004, | |||
WO200362, | |||
WO2005933, | |||
WO2420, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 14 2013 | Baker Hughes Incorporated | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 20 2015 | ASPN: Payor Number Assigned. |
Jun 08 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 04 2018 | 4 years fee payment window open |
Feb 04 2019 | 6 months grace period start (w surcharge) |
Aug 04 2019 | patent expiry (for year 4) |
Aug 04 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 04 2022 | 8 years fee payment window open |
Feb 04 2023 | 6 months grace period start (w surcharge) |
Aug 04 2023 | patent expiry (for year 8) |
Aug 04 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 04 2026 | 12 years fee payment window open |
Feb 04 2027 | 6 months grace period start (w surcharge) |
Aug 04 2027 | patent expiry (for year 12) |
Aug 04 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |