A method of stuffing natural casings with emulsion involves slidably mounting a collar element on the stuffing tube of the machine adjacent an end of the stuffing tube opposite to the discharge end thereof. The collar is slidably advanced towards the discharge end of the tube to telescope the casing into a shirred condition while leaving a non-shirred portion downstream thereof. The non-shirred portion of the casing is progressively advanced while the casing is filled with emulsion from the tube. A sensor is placed in the proximity of the non-shirred portion of the casing to detect whether shirred or non-shirred casing is present. The sensor is connected to a controller so that the collar will be advanced to slide the casing material on the tube when the non-shirred casing is detected, and the advance of the collar is stopped when shirred casing material is detected. A machine includes the foregoing components to accomplish the method.

Patent
   RE45675
Priority
May 31 2002
Filed
Aug 23 2013
Issued
Sep 29 2015
Expiry
May 31 2022
Assg.orig
Entity
unknown
0
21
EXPIRED
3. A machine for stuffing natural casings with emulsion, comprising,
an emulsion stuffing tube on the machine having a first end and a discharge end for extruding emulsion into a casing on an outer surface of the stuffing tube,
a collar element slidably mounted on the stuffing tube adjacent an end of the casing material nearest the first end of the stuffing tube,
means for slidably advancing a first end of the casing material on the tube in a direction towards the discharge end of the tube to telescope the casing into a shirred condition along a first portion of the casing material, while leaving a non-shirred portion downstream of the shirred portion, to progressively advance the non-shirred portion of the casing off of the tube and to fill the same with emulsion from the discharge end of the tube,
a sensor in proximity to the non-shirred portion of the casing to detect whether shirred or non-shirred casing is present,
the sensor and a collar advancement means connected to a controller so that the collar will be advanced to slide the casing material on the tube when the non-shirred casing is detected, and to stop the advance of the collar when shirred casing material is detected.
1. A method of stuffing natural casings with emulsion, comprising,
taking a length of hollow natural casing material,
inserting into the casing material an emulsion stuffing tube having a first end and a discharge end for extruding emulsion into a casing on the outer surface of the stuffing tube,
slidably mounting a collar element on the stuffing tube adjacent an end of the casing material nearest the first end of the stuffing tube,
slidably advancing a first end of the casing material on the tube in a direction towards the discharge end of the tube to telescope the casing into a shirred condition along a first portion of the casing material, while leaving a non-shirred portion downstream of the shirred portion,
progressively advancing the non-shirred portion of casing off of the tube and filling the same with emulsion from the discharge end of the tube,
placing a sensor in the proximity of the non-shirred portion of the casing to measure the distance between the sensor and the casing to detect whether shirred or non-shirred casing is present,
connecting the sensor and a collar advancement means to a controller so that the collar will be advanced to slide the casing material on the tube when the non-shirred casing is detected, and stopping the advance of the collar when shirred casing material is detected; and
controlling the movement of the collar with a signal sent from the sensor to the controller in response to a change in diameter of the casing such that the signal advances the collar when a non-shirred diameter of the casing is detected by the sensor and stops or slightly retracts the collar when a shirred diameter of the casing is detected by the sensor.
2. The method of claim 1 wherein the sensor is one from the group of ultrasonic or optical.
4. The machine of claim 3 wherein the sensor is one from the group of ultrasonic or optical.

More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,585,580. This reissue application is a divisional of reissue application Ser. No. 13/650,204, filed Oct. 12, 2012, now abandoned, which is a reissue of Ser. No. 10/226,826, now U.S. Pat. No. 6,585,580, which is a continuation in part of Ser. No. 10/160,931, filed May 31, 2002, now U.S. Pat. No. 6,676,502.

This application is a continuation-in-part of Ser. No. 10/160,931, filed May 31, 2002, now pending.

Sausages have been traditionally made by filling the natural intestines of sheep or other animals, with a sausage product whereupon the filled natural casing was formed into links for cooking. In more modern times, sausages are predominantly made by introducing an emulsion into an artificial casing, which encases the sausage material through linking and preliminary cooking. Machines for making sausages with artificial casings have a high volume capability (up to 30,000 sausages per hour). Efforts have been made to use these high-speed machines with natural casings. However, because of the nature of the natural casings including their relatively shorter and variable length and non-uniform diameter, modern sausage encasing machines have not achieved the volume and capacity with natural casings as they do with artificial casings.

It is therefore a principal object of this invention to provide a method and a machine for encasing sausages whereby the position of the casing on the stuffing tube is monitored by a sensor.

A further object of this invention is to provide a method and a machine for encasing sausage which employs a sensor on the stuffing tube to detect the end of the natural casings.

A further object of this invention is to provide a method and machine for encasing sausage which employs a sensor which can detect the diameter difference between the casings in the shirred state and in its non-shirred condition.

A still further object of this invention is to use a plurality of different types of sensors to determine the position and condition of the natural casing.

These and other objects will be apparent to those skilled in the art.

A method of stuffing natural casings with emulsion involves slidably mounting a collar element on the stuffing tube of the machine adjacent an end of the stuffing tube opposite to the discharge end thereof. The collar is slidably advanced towards the discharge end of the tube to telescope the casing into a shirred condition while leaving a non-shirred portion downstream thereof. The non-shirred portion of the casing is progressively advanced while the casing is filled with emulsion from the tube. A sensor is placed in the proximity of the non-shirred portion of the casing to detect whether shirred or non-shirred casing is present. The sensor is connected to a controller so that the collar will be advanced to slide the casing material on the tube when the non-shirred casing is detected, and the advance of the collar is stopped when shirred casing material is detected.

A machine includes the foregoing components to accomplish the method.

FIG. 1 is a plan view of a sausage making machine showing the conventional components, as modified by this invention;

FIG. 2 is a partial sectional longitudinal view showing the forward end of the stuffing tube adjacent the twister with the follower bushing shown in section;

FIG. 3 is a front elevational view of the stuffing tube and the components upstream of the twister thereof as seen generally on line 3-3 of FIG. 2;

FIG. 4 is a view similar to FIG. 2 but shows an alternate form of the invention;

FIG. 5 is an elevational view similar to FIG. 3 but taken on line 5-5 of FIG. 4;

FIG. 6 is a view similar to FIG. 4 but shows a second alternative form of the invention;

FIG. 7 is an elevational view similar to FIG. 5 being taken on line 7-7 of FIG. 6;

FIG. 8 is a side elevational view of a third alternate form of the invention similar to FIG. 1; and

FIG. 9 is an elevational view similar to FIG. 7 taken on line 9-9 of FIG. 8.

The term “emulsion” as used herein includes meat or any other edible substance.

With reference to FIG. 1, a conventional sausage making machine 10 has a frame 11, a pump 12 connected to a source of emulsion (not shown), a slidable stuffing tube 14, a twisting mechanism 16, a linking mechanism 18, a discharge horn 20, and a conveyor 22. The numeral 24 in FIG. 1 designates generically any one of a plurality of sensors to be described hereafter which are adapted to send a signal to a controller 26 to control various components of the machine as also described hereafter. Twisting mechanism 16 includes a center bore 16A and a conventional chuck 17.

With particular reference to FIGS. 1-3, a hollow follower or collar 28 with a center bushing 30 is slidably mounted on stuffing tube 14. A natural animal casing 32 is placed on the outer surface of the tube 14 downstream from collar 28. The natural animal casing 32 extends between the collar and the discharge end 14A of tube 14. The dotted line 34 extending between collar 28 and controller 26 designates the control mechanism whereby the controller 26 controls the movement of collar 28 in a forward or rearward direction as depicted by the arrow 36. The specific control mechanism can be a suitable power means to be discussed hereafter.

The line 38 shows the connection between the controller 26 and the sensor 24A which is located on frame 11 adjacent the discharge end 14A of stuffing tube 14.

The collar 28 is used to assist the casing 32 off of the stuffing tube 14 and into twister 16 while emulsion is conventionally being pumped into the interior of the casing through tube 14. The emulsion is pumped through tube 14 by pump 12 shown in FIG. 1. The natural casing is formed into a linked product by the cooperative activity of twisting. mechanism 16 and linking mechanism 18. The linked product is delivered through horn 20 to conveyor 22.

The sensor 24A is positioned as described above. When the casing 32 is shirred, as shown by Zone A in FIG. 2, it has a larger diameter than when it is in the non-shirred condition in Zone B. The sensor 24A senses this change in diameter and sends a signal to the controller 26. This signal then controls the movement of the collar 28 by advancing the collar 28 when the non-shirred diameter is sensed, and stopping the advance or retracting slightly the collar when the shirred diameter is detected. Sensor 24A may be comprised of a conventional ultrasonic or optical sensing unit. The sensor measures the distance between the sensor and the casing. The upper and lower limits of this distance are adjustable within the software to vary the triggering of the advance of collar 28.

An alternate form of the invention is shown in FIGS. 4 and 5 which is substantially identical to the form of the invention shown in FIGS. 2 and 3 except that a colorized portion 40 is imposed on the surface of stuffing tube 14 adjacent its discharge end 14A. The sensor 24B of conventional construction is capable of sensing the colored portion 14 as the stuffing tube 14 is moved forwardly to a position adjacent twisting mechanism 16. The sensor 24B will not sense the colored portion 14 until the casing 32 is about to depart the discharge end 14A of the tube 14. When the sensor 24B senses the colored portion 40, after the portion 40 is uncovered by the departing casing 32, the sensor will send an appropriate signal to the controller 26 which in turn will signal the pump 12 to cease operation through the dotted line 34A.

With reference to FIGS. 6 and 7, a further alternate form of the invention is shown which is similar to the form shown in FIGS. 4 and 5. In FIGS. 6 and 7, the sensor 24C is a laser light sensor having emitter and receiver capabilities capable of reacting to the polished portion 42 which is located on the outer surface of tube 14 adjacent its discharge end 14A. The sensor 24C will recognize the polished portion 42 in the same manner that the sensor 24B recognized the colored portion 40 in the form of the invention shown in FIGS. 4 and 5, as described above. Both of the arrangements in FIGS. 4 and 5 and 6 and 7 serve to cause the pump 12 to be inoperative as the casing 32 is substantially removed from the tube 14.

A third alternate form of the invention is shown in FIGS. 8 and 9. A switch assembly 44 has a switch 46 and an actuator 48 connected to an arcuate foot 50 which is located just above the upper surface of stuffing tube 14. The switch assembly 44 also has a bushing 40 to facilitate its sliding engagement with the tube 14. The casing 32 normally assumes a position between the outer surface of tube 14 and the lower or outer surface of the foot 50 as best shown in FIG. 8.

A follower assembly 52 is a part of switch assembly 44 and is connected to a suitable power means 54 which is adapted to conventionally move switch assembly 44 in forward or reverse directions on the tube 14 as depicted by the arrow 36.

The casing 32 is installed on the tube 14 and under the foot 50 as described above. The follower assembly 52 is advanced by the power means 54 and pushes the natural casing 32 into the twister 16 while being filled with emulsion pumped through the stuffing tube.

Once the casing 32 is completely filled and removed from the stuffing tube 14 the foot 50 of the switch assembly 44 drops down and contacts the stuffing tube. (FIG. 9). This movement is then transferred via the actuator 48 to the switch 46. The switch then sends a signal to the controller 26 which instructs the pump 12 to stop pumping emulsion, and which instructs the power means 54 to stop its forward movement and begin to retract along the stuffing tube 14.

It is therefore seen that by use of a variety of sensors or by use of a mechanical switch, this invention permits the automatic control of the filling of natural casings with emulsion to facilitate the accelerated process of filling natural casings.

Hergott, Steven P., Hamblin, David S., Hardy, Michael J.

Patent Priority Assignee Title
Patent Priority Assignee Title
3805329,
3952370, Nov 16 1972 Townsend Engineering Company Loading tube sleeve for use with an encasing machine
4112546, Jan 22 1974 Firma Albert Handtmann Method of and apparatus for making link sausages
4202075, Mar 04 1978 Hoechst Aktiengesellschaft Device for filling a shirred tubular casing
4257146, Jun 04 1979 VISKASE CORPORATION, A CORP OF PA Stuffed food casing break detector - shutoff
4580316, Feb 02 1984 GUNTER KOLLROSS Hose material to be used as sausage casing, in particular in the automated manufacture of sausage strings on a sausage stuffing machine
4683617, Aug 26 1986 Viskase Corporation Disposable tension sleeve for a stuffing machine
4970758, Jan 12 1990 Viskase Corporation; VISKASE CORPORATION, A CORP OF PA Stuffing method and apparatus
5147239, Sep 06 1990 ALBERT HANDTMANN MASCHINENFABRIK GMBH & CO. KG Method and apparatus for making sausages
5399213, Mar 30 1992 Viskase Corporation Method for forming a shirred fibrous casing article
5743792, May 26 1995 POLY-CLIP SYSTEM GMBH & CO KG Process of producing sausages
5842914, Aug 25 1994 MAREL MEAT PROCESSING INC F K A STORK TOWNSEND INC Method and means of linking sausage
6056635, Aug 25 1994 MAREL MEAT PROCESSING INC F K A STORK TOWNSEND INC Method and means of linking sausage
6066035, Oct 29 1997 MAREL MEAT PROCESSING INC F K A STORK TOWNSEND INC Automatic control for terminating the filling of a sausage casing, and method of use thereof
6139416, Jun 04 1998 POLY-CLIP SYSTEM GMBH & CO KG Apparatus for producing sausages
990547,
DE1136604,
DE4232759,
EP568372,
FR2780246,
RE30390, Sep 01 1978 VISKASE CORPORATION, A CORP OF PA Stuffing apparatus
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 23 2013Marel Meat Processing Inc.(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Sep 29 20184 years fee payment window open
Mar 29 20196 months grace period start (w surcharge)
Sep 29 2019patent expiry (for year 4)
Sep 29 20212 years to revive unintentionally abandoned end. (for year 4)
Sep 29 20228 years fee payment window open
Mar 29 20236 months grace period start (w surcharge)
Sep 29 2023patent expiry (for year 8)
Sep 29 20252 years to revive unintentionally abandoned end. (for year 8)
Sep 29 202612 years fee payment window open
Mar 29 20276 months grace period start (w surcharge)
Sep 29 2027patent expiry (for year 12)
Sep 29 20292 years to revive unintentionally abandoned end. (for year 12)