This disclosure describes a method for crimping a polymeric stent onto a catheter for percutaneous transluminal coronary angioplasty or other intraluminal interventions. The method comprises crimping the stent onto a catheter when the polymer is at a target temperature other than ambient temperature. The polymer can optionally comprise drug(s).

Patent
   RE45744
Priority
Dec 01 2003
Filed
Nov 07 2013
Issued
Oct 13 2015
Expiry
Dec 01 2023

TERM.DISCL.
Assg.orig
Entity
Large
4
632
EXPIRED
1. A method of making a medical device comprising:
providing a stent cut from a tubing made of a polymer combination comprising poly(L-lactide);
positioning the stent loosely over a catheter; and
crimping the positioned stent to secure the stent to a the catheter, wherein the crimping reduces the diameter of the stent,;
wherein the temperature of the stent substrate during the crimping is at a temperature between 10° C. below less than the conventionally measured glass transition temperature for poly(L-lactide) (Tg) and below greater than or equal to 10° C. less than Tg.
2. The method of claim 1, wherein the method further comprises annealing the stent at a second temperature after securing the stent to the catheter.
3. The method of claim 1, wherein the temperature is between 5° C. below Tg and below less than Tg and greater than or equal to 5° C. less than Tg.
4. The method of claim 1, wherein the temperature of the stent during crimping is adjusted by thermal contact with a heat source.
5. The method of claim 1, wherein the crimping comprises applying radial compression pressure to the stent to reduce the diameter.
6. The method of claim 1, wherein the temperature is between 2° C. below Tg and below less than Tg and greater than or equal to 2° C. less than Tg.
0. 7. The method of claim 1, wherein the polymer combination is poly(L-lactide).
0. 8. The method of claim 1, wherein the polymer combination is selected from a group consisting of: a mixture of more than one polymer, one polymer, and a copolymerization of more than one polymer.

This application is a continuation-in-part of U.S. patent application Ser. No. 10/725,698, filed on Dec. 1, 2003, the entire disclosure of which is incorporated by reference.

Percutaneous transluminal coronary angioplasty (PTCA) is a procedure for treating heart disease. A surgeon introduces a catheter assembly having a balloon portion percutaneously into the cardiovascular system of a patient via the brachial or femoral artery. The surgeon advances the catheter assembly through the coronary vasculature until the balloon portion crosses the occlusive lesion. Once in position, the surgeon inflates the balloon to radially compress the atherosclerotic plaque of the lesion and remodel the vessel wall. The surgeon then deflates the balloon to remove the catheter.

An advance on PTCA involved using an intravascular stent. Mechanically, stents act as scaffoldings, physically holding open and, if desired, expanding the vessel wall. Typically, stents compress for insertion through small vessels and then expand to a larger diameter once in position. U.S. Pat. No. 4,733,665, issued to Palmaz; U.S. Pat. No. 4,800,882, issued to Gianturco; and U.S. Pat. No. 4,886,062, issued to Wiktor disclose examples of PTCA stents.

Before this procedure can occur, equipment for the procedure must be manufactured. Stent crimping is a critical step in manufacturing this equipment in that stent retention depends on it. Generally, stent crimping is the act of affixing the stent to the delivery catheter or delivery balloon so that it remains affixed to the catheter or balloon until the physician desires to deliver the stent at the treatment site. Current stent crimping technology is sophisticated. A short time ago, one process used a roll crimper. This damaged many polymer coatings due to its inherent shearing action. Next came the collet crimper; in it, metal jaws are mounted into what is essentially a drill chuck. The jaws move in a purely radial direction. This movement was not expected to shear the coating, because it applied forces only normal to the stent surface. But some stent geometries require that stent struts scissor together during crimping. In those geometries, even if the crimper imposes only normal forces, the scissor action of the stent struts imparts shear. Finally, the iris or sliding-wedge crimper imparts mostly normal forces with some amount of tangential shear.

To use a roll crimper, first the stent is slid loosely onto the balloon portion of the catheter. This assembly is placed between the plates of the roll crimper. With an automated roll crimper, the plates come together and apply a specified amount of force. They then move back and forth a set distance in a direction that is perpendicular to the catheter. The catheter rolls back and forth under this motion, and the diameter of the stent is reduced. The process can be broken down into more than one step, each with its own level of force, translational distance, and number of cycles. With regard to a stent with a drug eluting coating, this process imparts a great deal of shear to the stent in a direction perpendicular to the catheter or catheter wall. Furthermore, as the stent is crimped, there is additional relative motion between the stent surface and the crimping plates. As a result, this crimping process tends to damage the drug eluting stent coating.

The collet crimper is equally conceptually simple. A standard drill-chuck collet is equipped with several pie-piece-shaped jaws. These jaws move in a radial direction as an outer ring is turned. To use this crimper, a stent is loosely placed onto the balloon portion of a catheter and inserted in the center space between the jaws. Turning the outer ring causes the jaws to move inward. An issue with this device is determining or designing the crimping endpoint. One scheme is to engineer the jaws so that when they completely close, they touch and a center hole of a known diameter remains. Using this approach, turning the collet onto the collet stops crimps the stent to the known outer diameter. While this seems ideal, it can lead to problems. Stent struts have a tolerance on their thickness. Additionally, the process of folding noncompliant balloons is not exactly reproducible. Consequently, the collet crimper exerts a different amount of force on each stent in order to achieve the same final dimension. Unless this force, and the final crimped diameter, is carefully chosen, the variability of the stent and balloon dimensions can yield stent coating or balloon damage.

Furthermore, although the collet jaws move in a radial direction, they move closer together as they crimp. This action, combined with the scissoring motion of the struts, imparts tangential shear on the coatings that can also lead to damage. Lastly, the actual contact surfaces of the collet crimper are the jaw tips. These surfaces are quite small, and only form a cylindrical surface at the final point of crimping. Before that point, the load being applied to the stent surface is discontinuous.

In the sliding wedge or iris crimper, adjacent pie-piece-shaped sections move inward and twist, much like the leaves in a camera aperture. This crimper can be engineered to have two different types of endpoints. It can stop at a final diameter, or it can apply a fixed force and allow the final diameter to float. From the discussion on the collet crimper, there are advantages in applying a fixed level of force as variabilities in strut and balloon dimension will not change the crimping force. The sliding wedges impart primarily normal forces, which are the least damaging to stent coatings. As the wedges slide over each other, they impart some tangential force. But the shear damage is frequently equal to or less than that of the collet crimper. Lastly, the sliding wedge crimper presents a nearly cylindrical inner surface to the stent, even as it crimps. This means the crimping loads are distributed over the entire outer surface of the stent.

All current stent crimping methods were developed for all-metal stents. Stent metals, such as stainless steel, are durable and can take abuse. When crimping was too severe, it usually damaged the underlying balloon, not the stent. But polymeric coatings present different challenges.

Moreover, as part of polymeric stent manufacture, brittle polymeric material is laser cut. The polymer's brittle nature and the stress induced by laser cutting often causes stress cracking in the polymeric stent.

In the drug eluting stent arena, drugs are commonly placed on the stent in combination with a polymer or mixed into the polymer for polymeric stents. This placement typically coats all stent surfaces or causes the drug to be distributed throughout the polymeric stent. Then the stent is crimped onto the catheter. In general, polymer coatings are softer, weaker, and less durable than the underlying stent material. Upon crimping with a sliding wedge crimper, and following crimp protocols for the particular stent, coating damage is frequently seen. FIGS. 1 and 2 show an Elasteon 80A (a polyurethane) coating on poly(ethylene-co-vinyl alcohol) (EVAL) after crimp, grip, and the wet expansion test.

Grip is a process conducted after crimping to further increase stent retention. An outer sleeve restrains the crimped stent. Simultaneously, pressure and heat are applied to the stent-balloon section. Under this action, the balloon material deforms slightly, moving in between the struts. In a wet expansion test, the final stent-on-catheter assembly is immersed in deionized water at 37° C. for 30 seconds. Then the balloon is inflated according to the device instructions to at least a nominal pressure (8 atmospheres). After holding this pressure for 30 seconds, the balloon is deflated, and the stent slides off. After drying, the stent can be examined by optical microscopy or scanning electron microscopy for coating damage.

The primary purpose of the polymer in the stent coating is to contain the drug and control its release at a desired rate. Other obvious specifications for the polymer are a high level of vascular biocompatibility and the ability to flex and elongate to accommodate stent expansion without cracking or peeling. Meeting all of these objectives, while also possessing a high level of toughness and strength to withstand conventional crimping process, can be challenging.

A crimping process that minimizes damage to the polymer coatings of stents is needed. Moreover, a crimping process that minimizes internal stress or strain in the polymeric substrate of a polymeric stent is also needed.

The current invention comprises several embodiments, some of which relate to extracorporeal methods of making medical devices or implantable medical devices. These devices can comprise portions with coatings. In some embodiments, the coating comprises a polymer or polymer combination or drug(s). The piece comprising the coating is crimped onto another part of the device or onto a separate device. In some embodiments, crimping is done at non-ambient temperatures. Sometimes non-ambient-temperature crimping comprises changing the temperatures of the coating, the piece comprising the coating, the medical device, the crimping device, or any combination of these. Likewise, medical devices made using these methods and devices for implementing these methods are also part of this invention. In some embodiments the medical device is or comprise a stent.

Specific heating and cooling profiles are used in different invention embodiments. For instance, embodiments of crimping methods include adjusting the temperature of the coating to a target temperature followed by a crimping step; adjusting the temperature of the coating to a target temperature during a crimping step; adjusting the temperature of the coating to a target temperature and maintaining the temperature of the coating within plus or minus 5° C. of the target temperature during a crimping step; adjusting the temperature of the coating to a target temperature followed by crimping such that the temperature of the coating remains within plus or minus 10° C. of the target temperature during a crimping step; and adjusting the temperature of the coating to a temperature other than ambient towards a target temperature and continuing to adjust the temperature of the coating towards the target temperature during a crimping step. Alternatively, the temperature of the coating can first be adjusted to a target temperature with the crimper jaws then closing. After that, the temperature can be adjusted to a second temperature, followed by opening the crimper jaws.

Embodiments in which the target temperature takes values based on Tg and intervals around Tg are described, with the goal of some embodiments being to simultaneously minimize deformation- and delamination-based failure during crimping. In some embodiments, the target temperature ultimately depends on the predominate failure mode of the polymer coating, Tg of the coating, shore D hardness of the polymer coating at ambient temperature, and shore hardness of the polymer coating at the target temperature, among other factors.

In some embodiments, invention methods relate to making medical devices comprising at least one piece wherein the piece can comprise a polymer or polymer combination. In some embodiments, the piece comprises a polymer or polymer combination and drug(s). A typical method comprises choosing a target temperature based on the mechanical behavior of the polymeric material, sometimes the behavior during crimping. The method further comprises juxtaposing the closing of the crimping jaws with adjusting the temperature of the piece in any combination. For instance, the following heating regimes are practical:

In these embodiments or others the heating regime can comprise closing the crimper, adjusting the temperature of the piece to a second temperature, and opening the crimper wherein the second temperature is greater than or less than the target temperature. Some medical devices further comprise a catheter. In those devices, the crimping step of invention methods can be used to attach the piece to the catheter.

Invention methods can be used on a variety of polymeric materials including those characterized as having Tg above ambient temperature. In some embodiments the methods act on polymeric materials comprising ABS resins; acrylic polymers and acrylic copolymers; acrylonitrile-styrene copolymers; alkyd resins; biomolecules; cellulose ethers; celluloses; copoly(ether-esters); copolymers of polycarboxylic acids and poly-hydroxycarboxylic acids; copolymers of vinyl monomers with each other and olefins; cyanoacrylates; epoxy resins; ethylene vinyl alcohol copolymers; ethylene-methyl methacrylate copolymers; ethylene-vinyl acetate copolymers; ethylene-α-olefin copolymers; poly(amino acids); poly(anhydrides); poly(butyl methacrylates); poly(ester amides); poly(ester-urethanes); poly(ether-urethanes); poly(imino carbonates); poly(orthoesters); poly(silicone-urethanes); poly(tyrosine arylates); poly(tyrosine-derived carbonates); polyacrylates; polyacrylic acid; polyacrylic acids; polyacrylonitrile; polyacrylonitrile; polyalkylene oxalates; polyamides; polyamino acids; polyanhydrides; polycarbonates; polyearboxylic acids; polycyanoacrylates; polyesters; polyethers; poly-hydroxycarboxylic acids; polyimides; polyisobutylene and ethylene-α-olefin copolymers; polyketones; polymethacrylates; polyolefins; polyorthoesters; polyoxymethylenes; polyphosphazenes; polyphosphoesters; polyphosphoester urethanes; polyphosphoesters; polyphosphoestersurethane; polyurethanes; polyvinyl aromatics; polyvinyl esters; polyvinyl ethers; polyvinyl ketones; polyvinylidene halides; silicones; starches; vinyl copolymers vinyl-olefin copolymers; and vinyl halide polymers and copolymers. Some embodiments select the group of polymers to specifically exclude any one of or any combination of the polymers listed above.

Specific examples of useful polymers for some embodiments include the following polymers: starch, sodium alginate, rayon-triacetate, rayon, polyvinylidene fluoride, polyvinylidene chloride, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl chloride, polyvinyl acetate, polystyrene, polyisocyanate, polyisobutylene, polyethylene glycol, polydioxanone, polycaprolactone, polycaprolactam, KYNAR (brand poly(vinylidene fluoride) available from Atofina), polyacrylonitrile, poly(trimethylene carbonate), poly(L-lactic acid), poly(lactide-co-glycolide), poly(hydroxyvalerate), poly(hydroxybutyrate-co-valerate), poly(hydroxybutyrate-co-hydroxyvalerate), poly(hydroxybutyrate), poly(glycolide), poly(glycolic acid), poly(D,L-lactide-co-L-lactide), poly(D,L-lactide-co-glycolide), poly(D,L-lactide), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate), poly(3-hydroxy valerate), Nylon 66, hyaluronic acid, fibrinogen, fibrin, elastin-collagen, collagen, cellulose propionate, cellulose nitrate, cellulose butyrate, cellulose acetate butyrate, cellulose acetate, cellulose, cellophane, carboxymethyl cellulose, or poly(2-hydroxyethyl methacrylate), Chitin, Chitosan, EVAL, poly(butyl methacrylate), poly(D,L-lactic acid), poly(D,L-lactide), poly(glycolic acid-co-trimethylene carbonate), poly(hydroxybutyrate-co-valerate), poly(hydroxyvalerate), poly(iminocarbonate), poly(lactide-co-glycolide), poly(L-lactic acid), poly(N-acetylglucosamine), poly(trimethylene carbonate), poly(vinyl chloride), poly(vinyl fluoride), poly(vinylidene chloride), poly(vinylidene fluoride), poly(vinylidene fluoride-co-chlorotrifluoroethylene), poly(vinylidene fluoride-co-hexafluoropropene), polyanhydride, polyorthoester, polyurethane, polyvinyl alcohol, polyvinyl chloride, rayon, SOLEF 21508 (formulation available from Solvay Solexis), and PEO/PLA. Some embodiments select the group of polymers to specifically exclude any one of or any combination of the polymers listed above.

Some invention methods operate on drug-containing pieces. In some of these embodiments, the drugs are selected from the following types: antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, antioxidants, or their combinations.

The target temperature can be chosen in a number of ways. For instance, the target temperature can be

Some invention embodiments choose the target temperature to avoid ambient temperature or a window around ambient temperature. Other embodiments choose the target temperature such that therapeutic agents present in the coating avoid substantial decomposition.

In some embodiments, target temperature is selected from a group that specifically excludes any one or any combination of the temperature range is described above.

Some invention embodiments choose the target temperature to simultaneously minimize deformation- and delamination-based failure during crimping. Some invention embodiments choose the target temperature to yield an improvement in shore hardness.

The annealing temperature can be selected from any of the temperature's described above for the target temperature. Moreover, in some embodiments, annealing temperature is selected from a group that specifically excludes any one or any combination of the temperature ranges described above.

Different invention embodiments use a variety of methods for achieving the temperature adjustment of the polymeric material. For instance, the following ways of changing the temperature are all within the scope of the current invention:

For some invention devices useful in practicing invention methods, the heat source is integrated with a crimping device. In some embodiments, the piece is selected from self-expandable stents, balloon-expandable stents, and stent-grafts.

FIG. 1 shows a coating as prepared in Example 1, which is an Elasteon 80A coating on EVAL after crimp, grip, and the wet expansion test.

FIG. 2 shows another coating as prepared in Example 1, which is Elasteon 80A coating on EVAL after crimp, grip, and the wet expansion test.

FIG. 3 shows a topcoat of Solef 21508 on EVAL made using the procedures of Example 3.

FIG. 4 shows another topcoat of Solef 21508 on EVAL, also made using the procedures of Example 3.

FIG. 5 shows the tensile stress at yield of polypropylene as a function of temperature.

FIG. 6 shows how the stress-strain curve of a thermoplastic polymer changes with temperature.

FIG. 7 plots heat capacity versus temperature for a typical thermoplastic polymer.

FIG. 8 shows a stent-delivery device combination, in cross-section.

FIG. 9 shows a polymeric stent after heat crimping.

FIG. 10 shows the polymeric stent of Ex. 3 after heat crimping.

This document incorporates by this reference the entire disclosure of U.S. patent application Ser. No. 10/725,698, filed on Dec. 1, 2003.

FIGS. 1 and 2 show that the coating on the outer surface of the stent, in one case, has been pinched or wrinkled over, while in the other, has been smeared off. Similarly, FIGS. 3 and 4 show a topcoat of Solef 21508 on EVAL. Solef 21508 is the softest poly(hexafluoropropene-co-vinylidene fluoride) thermoplastic polymer commercially available.

FIGS. 3 and 4 show dents in the high spots of the strut arms. Most high spots of these two stents show similar damage. For these reasons, polymer coatings made of lower durometer (80A for example) polymers frequently fail quality assurance tests. EVAL, a hard plastic, seems to hold up to standard crimping, but it has a hardness of 85 shore D. For comparison, the low-density polyethylene used in milk containers is 47-55 shore D.

Some embodiments of this invention are directed at stents containing a substrate material that is polymeric in nature and methods of manufacturing those stents. Some methods pertain to crimping the stent to the delivery device or balloon.

In some embodiments, crimping is done at a temperature greater than Tg; in some embodiments, crimping is done at a temperature greater than ambient but not necessarily greater than Tg. A device for crimping the polymeric stent onto the delivery device is also contemplated as an invention embodiment. The device can resemble any crimping device as is known in the art or in this document. Additionally, the device is especially modified so that it can heat the stent during crimping. In some embodiments, the device can apply pressure and heat simultaneously. In these or other embodiments, after crimping, the crimping device can hold the stent at an elevated temperature, which may be selected such that it is greater than, equal to, or less than the target temperature or may be selected to specifically exclude temperatures greater than, equal to, or less than the target temperature. In some embodiments, the device crimps the polymeric stent while the stent is heated by other means.

In some embodiments, the crimping method comprises:

The stent can be heated for up to one hour, 30 seconds to one hour, or for 30 seconds. In some embodiments, the stent is heated long enough that the material becomes ductile enough to adequately lower the brittleness of the stent. Adequate means having a value for the parameter in question such that one of ordinary skill in the art would expect the invention to function in the particular application. For example, “adequately lower the brittleness of the stent” means that the brittleness of the stent is reduced enough to warrant the extra heating step and the extra cost and complication of the heating step, as viewed by one of ordinary skill in the art.

In some embodiments the radial compression pressure is chosen so that no damage to the stent or coating occurs. In some embodiments, the radial compression pressure is chosen so that any damage or deformation that occurs is insufficient to cause one of ordinary skill in the art to reject the stent for use.

In the forgoing embodiments or others, variable temperature means a temperature above ambient. In these or other embodiments, it means a temperature equal to, above or below Tg of the material. In some embodiments, variable temperature means a temperature equal to or below ambient. In some embodiments, the stent is cooled to ambient temperature or below before the radial compression pressure is removed.

In the forgoing embodiments or others, a time sufficient to set the crimp state is any time long enough that the polymeric stent or coating has substantially assumed the new shape induced by crimping such that it substantially retain this shape until the stent is implanted. In these or other embodiments, this time is 1 second to 2 hours, 2 seconds to 1 hour, 3 seconds to 30 minutes, 4 sec to 5 minutes; 1 second to 5 minutes, 2 seconds to 5 minutes, or 3 seconds to 5 minutes.

This procedure is believed to provide the polymer chains with increased mobility and such that they relax into a lower energy (less stressed) configuration. Using this procedure results in polymeric stents with significantly fewer cracks.

In a separate production step, polymeric stents are sometimes sterilized with e-beam radiation. E-beam sterilization frequently exhibits higher polymer degradation rates at high stress regions in the polymer (stent). But after the heat crimping of this invention, which relieves extrusion and laser-cutting-induced stress and strain, e-beam sterilization of treated stents results in significantly fewer cracks and exhibits less pronounced polymer degradation rates at high stress regions in the polymer.

A crimp process in which the coated stent or polymeric stent is held at a target temperature, which may be different from ambient, is disclosed. Temperatures above ambient can be used in cases where the Tg is above ambient or room temperature and greater ductility is desired. For purposes of this disclosure, ambient temperature is the temperature of the crimper or polymer when the crimper or polymer has not been purposely heated or cooled. Typically, this temperature will be close to room temperature or the temperature surrounding the crimping equipment or the polymer. Similarly, for purposes of this disclosure, a target temperature is a temperature numerically different from ambient temperature brought about by purposely heating or cooling the crimper, stent, balloon, polymer, or any combination of these. For purposes of this disclosure, “polymer”, “polymer combination” and “polymer mixture” are synonymous, meaning a composition of one polymer or, when more than one polymer, a mixture of, a blend of, a copolymerization of, or any other combination of more than one polymer. The combination can occur after the polymers are polymerized or can occur during the polymerization of monomer into one or more polymers.

Durometer Temperature Temperature
Hardness Range for Range
Polymer Tg ° C. Shore D Greater Hardness for Ductility
Solef 21508 −29 60 −62 to 10 Ambient to 60
Elasteon 80A −100, 0 30-35 −110 to −10 Ambient to 60
Elasteon 55D −100, 0 55 −110 to −10 Ambient to 60
EVAL-E151 55 85 Zero to Ambient 50 to 100
Kynar-Flex −30 65-70 −62 to 10 Ambient to 60
2800
Butvar B-90 72-78 85-90 Zero to Ambient Ambient to 100
Kynar 710 −30 76-80 −62 to 10 Ambient to 60
Poly(n-butyl 20 NA −30 to 15 Ambient to 60
methacrylate)

A representative method includes heating a polymer on a medical device to or towards a target temperature. Next, either after the target temperature has been reached or while the polymer is changing temperature towards the target temperature, the portion of the medial device containing the polymer is crimped onto another portion of the medical device or onto another medical device. Crimping is done in a temperature region designed to minimize both cohesive and adhesive failure (or deformation- and delamination-based failure) caused by local pressure from the jaws or surfaces of the crimping device, and deformation of the stent caused by reducing its diameter. For instance, a stent can be heated with a stream of air and crimped onto a delivery catheter with an iris crimper. Moreover, in some embodiments, the temperature region is chosen so that internal stress in the polymeric stent or polymer coating diminishes over time after crimping.

Heating is generically discussed as “adjusting” the temperature of the polymer, the crimper, or the medical device. Adjusting the temperature comprises placing the object that is to have its temperature adjusted into thermal contact with a heat source. For purposes of this disclosure, thermal contact with a heat source means heat source arrangement vis-à-vis the object so that energy would flow or be carried from the heat source to the object. Thermal contact is a generic term at least encompassing an arrangement of the object such that radiation, conduction, or convection from the heat source would transfer energy. In some embodiments, thermal contact is defined to exclude any of radiation, conduction, convection, or any combination of these.

Different invention embodiments employ different heating profiles. For instance, when the heating profile calls for softening the polymer by choosing a target temperature above some temperature value, the polymer is adjusted to the target temperature before crimping and then crimping occurs (with or without some amount of temperature decrease before crimping); alternatively, the polymer is adjusted to the target temperature before crimping and maintained at or near the target temperature during crimping; alternatively, crimping is started, the polymer is adjusted to the target temperature, and crimping is completed. For purposes of this disclosure, “maintained near the target temperature” means that the temperature of the polymer at the instant of contact with the crimper is the target temperature plus or minus 20° C., 15° C., 10° C., 5° C., 2° C. or 1° C. In some embodiments, “maintained near the target temperature” means that the temperature of the polymer at the instant of contact with the crimper is the target temperature plus or minus 10° C.

Polymers on crimped stents or crimped polymeric stents exhibit adhesive and cohesive failure as two main failure modes. In adhesive failure, polymer is sheared off the stent due to poor adhesion to the metal stent or between the polymer molecules in a polymeric stent. This is a failure of the polymer due to poor interaction between polymer molecules. Since at higher temperatures, particularly those above Tg, polymeric materials are softer, a higher temperature crimp process should assist in preventing adhesive failure. Adhesive failure is sometimes referred to as an adhesive-based failure or delamination-based failure. When a polymer exhibits adhesive failure, that polymer becomes a candidate for crimping above Tg of the polymer. Adhesive failure is also caused by a build-up of stress. Heating the polymer above its Tg lowers its modulus and decreases the internal stress within the polymer. When stents are crimped, whether polymer coated or substantially polymeric, certain portions of the stent undergo elongation. If too much elongation occurs, the polymer will crack. The ultimate elongation of polymers depends on the temperature, and heating the polymer above its Tg can increase the ultimate elongation, thereby preventing failure. If the polymer exhibits a cohesive failure due to insufficient elongation, it is also a candidate for crimping above the Tg of the polymer.

In some embodiments, after crimping, the polymer is then heated to set, anneal or otherwise remove internal stresses caused by mechanically stressing the polymer during assembly of the medical device. In some embodiments, the polymer is heated to an annealing temperature.

FIG. 5 shows tensile stress at yield of polypropylene as a function of temperature. This property is not the same as hardness, but correlates with it. Both involve the stress needed to permanently deform the polymer. For thermoplastics in general, a lower temperature leads to greater hardness. FIG. 6 shows how a thermoplastic's stress-strain curve changes with temperature.

For some embodiments of this invention, the target temperature is selected in relation to Tg of the polymer. Tg is the temperature at which the amorphous domains of a polymer change from a brittle vitreous state to a plastic state at atmospheric pressure. In other words, Tg corresponds to the temperature where the onset of segmental motion in the chains of the polymer occurs, and it is discernible in a heat-capacity-versus-temperature graph for a polymer, as is depicted in FIG. 7. When an amorphous or semicrystalline polymer is heated, its coefficient of expansion and heat capacity both increase as the temperature rises, indicating increased molecular motion. As the temperature rises, the sample's actual molecular volume remains constant. Therefore, a higher coefficient of expansion points to a free volume increase of the system and increased freedom of movement for the molecules. The increasing heat capacity corresponds to increasing heat dissipation through movement.

Tg of a given polymer can be dependent on the heating rate and can be influenced by the thermal history of the polymer. Furthermore, polymer chemical structure heavily influences Tg by affecting polymer mobility. Generally, flexible main-chain components lower Tg and bulky side groups raise Tg. Similarly, increasing flexible-side-group length lowers Tg and increasing main-chain polarity increases Tg. Additionally, the presence of crosslinks can increase the observed Tg for a given polymer, and the presence of a drug or therapeutic agent can alter the Tg of a polymer due to plasticization effects. The magnitude of these plasticization effects depends on the miscibility and compatibility of the drug and polymer and the loading of drug in the polymer.

By way of illustration, when a semicrystalline polymer is heated, the polymer crystallinity begins to increase as temperature reaches Tg. At or above Tg, the increased molecular motion allows the polymer chains to adopt a more thermodynamically stable relationship, and thereby increases polymer crystallinity. In FIG. 7, Tg is shown on the first curve, 60, which is the temperature at which half of the increase in heat capacity has occurred. The crystallinity then increases rapidly after Tg and reaches a maximum at Tc (the apex of second curve, 62).

As can be seen in FIG. 7, Tg is somewhat arbitrarily placed on the temperature versus heat capacity curve. For purposes of this disclosure, the Tg range is defined in several different ways for a polymer or polymer combination. Some invention embodiments can be predicated on any one of these Tg range definitions.

Tg Range Definition 1

For this definition, Tg range is greater than or equal to the initial point on the polymer's (or polymer combination's) temperature-versus-heat-capacity curve showing a drop in heat capacity, indicated as Tg1 (100) on FIG. 7 (this point is defined as lower Tg for definition 1). Tg range is less than or equal to Tc (110) on the curve in FIG. 7 (this point is defined as upper Tg for definition 1). This Tg range is referred to in this disclosure as Tg range definition 1. Those of ordinary skill in the art recognize that the specific curvature and temperature points in FIG. 7 depend upon the nature of the polymer or polymer combination. Therefore, the indication of a point on FIG. 7 is meant to communicate a point corresponding to the FIG. 7 point on a similar graph for the particular polymer or polymer combination being used.

A target temperature is within Tg range definition 1 if it is above or equal to Tg1 and below or equal to Tg2. A target temperature is below Tg range definition 1 if it is below or equal to Tg2. A target temperature is above Tg range definition 1 if it is above or equal to Tg1. A target temperature is between a higher temperature and a lower temperature if it is above or equal to the lower temperature and below or equal to the higher temperature. These concepts hold for all temperatures and ranges throughout this disclosure.

Tg Range Definition 2

For this definition, the Tg range is greater than or equal to the point Tg1 (100) on FIG. 7 (lower Tg for definition 2) and less than or equal to point 140 on FIG. 7 (upper Tg for definition 2). This range is referred to in this disclosure as Tg range definition 2. Point 140 corresponds to the onset of the crystallization phase transition for the material.

Tg Range Definitions 3, 4, 5, and 6

For definition 3, the Tg range is the conventionally measured Tg (180) for the polymer (or combination) plus 40° C. (upper Tg for definition 3) and minus 40° C. (lower Tg for definition 3).

For definition 4, the Tg range is the conventionally measured Tg for the polymer (or combination) plus 20° C. (upper Tg for definition 4) and −20° C. (lower Tg for definition 4).

For definition 5, the Tg range is the conventionally measured Tg for the polymer (or combination) plus 10° C. (upper Tg for definition 5) and minus 10° C. (lower Tg for definition 5).

For definition 6, the Tg range is the conventionally measured Tg for the polymer (or combination) plus 5° C. (upper Tg for definition 6) and minus 5° C. (lower Tg for definition 6).

Tg Range Definition 7

For this definition, the Tg range is greater than or equal to the point Tg1 (100) on FIG. 7 (lower Tg for definition 7) and less than or equal to point 160 on FIG. 7 (upper Tg for definition 7). This range is referred to in this disclosure as Tg range definition 7. Point 160 corresponds to the tail off or end of the glass phase transition for the material.

These embodiments also include embodiments in which the Tg range specifically excludes ambient temperature, ambient temperature + or −1° C. or ambient temperature + or −5° C. Also, in some embodiments the target temperature has a maximum at or below the temperature at which any included therapeutic agents substantially decompose. For purposes of this disclosure, “substantially decompose” means decomposition to the extent that one of ordinary skill in the art would conclude that the decomposition would reduce the efficacy of the therapeutic substance too much. In other words, decomposition would reduce the efficacy enough that one of ordinary skill in the art would reject the heated or cooled, crimped composition for use in vivo.

Based on the shore hardness of the polymer or the failure mode of the coating or polymer, several embodiments can be described. For polymers that are too soft, that exhibit cohesive or deformation failures, that have Tg below ambient or room temperature, or that have a shore hardness of shore 60A to 80D (alternatively, shore 80A to 60D), the polymer can be improved by causing the polymer to be harder during crimping. This can be accomplished by choosing a target temperature less than upper Tg. (When this disclosure speaks of upper Tg or lower Tg, but does not specify which definition of Tg range is being used, this disclosure is intended to cover upper and lower Tg for each range definition). Alternatively, the polymer can be hardened during crimping by choosing a target temperature below lower Tg. Alternatively, choosing a target temperature below ambient temperature can harden the polymer. Alternatively, choosing a target temperature below −30° C., −40° C., −50° C., or −60° C. can harden the polymer. In some embodiments, the target temperature is between ambient temperature and upper Tg; ambient temperature and lower Tg; or −30° C., −40° C., −50° C., or −60° C. and upper Tg; −30° C., −40° C., 50° C., or −60° C. and lower Tg; or −30° C., −40° C., −50° C., or −60° C. and ambient temperature.

In addition to choosing the target temperature based on the Tg range definitions discussed above, various embodiments can be described otherwise. For polymers that are too soft, that exhibit cohesive or deformation failures, that have Tg below ambient or room temperature, or that have a shore hardness of shore 60A to 80D (alternatively, shore 80A to 60D), the polymer can be improved by causing the polymer to be harder during crimping. Therefore, an improvement in cohesive or deformation failures can be achieved by choosing a target temperature that yields a 50% increase in shore hardness, alternatively, a 40%, 30%, 20%, or 10% increase in shore hardness.

Medical devices that use polymers with shore hardness of shore 60A to 60D frequently experience cohesive failure during crimping. Invention medical devices prepared with invention crimping methods allow the use of polymers with shore D hardness as low as 30 to 80, or 35 to 60. Alternatively, invention medical devices prepared with invention crimping methods allow the use of polymers with shore D hardness less than or equal to 45, 40, 35, or 30.

For polymers that are too hard, that exhibit adhesive failures, have insufficient elongation, or that have Tg above ambient or room temperature, or that have a shore hardness of 60D to 95D (alternatively, 65D to 90D), the polymer can be improved by causing the polymer to be softer during crimping or by maintaining an increased temperature in the polymer after crimping to relieve any stress. This can be accomplished by choosing a target temperature greater than upper Tg. Alternatively, the target temperature is above lower Tg. Alternatively, the target temperature is above ambient temperature. Alternatively, the target temperature is above 70° C., 80° C., 90° C., or 100° C. In some embodiments, the target temperature is between ambient temperature and upper Tg; ambient temperature and lower Tg; between 70° C., 80° C., 90° C., or 100° C. and upper Tg; between 70° C., 80° C., 90° C., or 100° C. and lower Tg; or between 70° C., 80° C., 90° C., or 100° C. and ambient temperature.

In addition to choosing the target temperature based on the Tg range definitions discussed above, various embodiments can be described otherwise. For polymers that are too hard, that exhibit adhesive failures, that have Tg above ambient or room temperature, or that have a shore hardness of 60D to 95D (alternatively, 65D to 90D), the polymer can be improved by causing the polymer to be softer during crimping. Therefore, an improvement in adhesive failure can be achieved by choosing a target temperature that yields a 50% decrease in shore hardness, alternatively, a 40%, 30%, 20%, or 10% decrease in shore hardness.

Medical devices that use polymers with shore hardness of shore 60D to shore 90D frequently experience adhesive, or elongational failure during crimping. Invention medical devices prepared with invention crimping methods allow the use of polymers with shore hardness as high as 60D to 90D, or 65D to 85D. Alternatively, invention medical devices prepared with invention crimping methods allow the use of polymers with shore hardness greater than or equal to 60D, 70D, 80D, or 90D.

When EVAL is crimped at ambient temperature, it is in a glassy state (FIG. 6, curve A). By crimping at a temperature above its glass transition temperature (Tg) (55° C.), the ultimate elongation becomes higher (FIG. 6, curve B). This should reduce cracking in the tensile regions on the outside of stent junctions. For PBMA, Tg of 20° C., crimping at a low temperature of 0° or less should reduce crimping damage from shear and compression. Similarly, for KYNAR (a polymer consisting of poly(vinylidene fluoride) and available from Atofina of Philadelphia, Pa.), Tg of −30° C., crimping at a temperature of −40° C. should also reduce denting and shearing damage.

In some embodiments, a polymeric stent is crimped onto a delivery device, such as a catheter, after being heated to a target temperature. The target temperature is greater than Tg range for definitions 1-7, any of definitions 1-7, any combination of definitions 1-7, or any combination of definitions 1-7 that also excludes any one or any combination of definitions 1-7.

In some embodiments, a polymeric stent is crimped onto a delivery device, such as a catheter, while being heated to a target temperature. The target temperature is greater than Tg range for definitions 1-7, any of definitions 1-7, any combination of definitions 1-7, or any combination of definitions 1-7 that also excludes any one or any combination of definitions 1-7.

Devices for crimping medical devices are well known in the art. In some embodiments, the device is designed to crimp the polymer-coated stent onto the balloon portion of a catheter for PTCA. For crimpers such as the sliding wedge design, the temperature may be controlled by passage of a stream of dry air, or inert gas through the bore. This air can be heated or cooled by first passing it through a tube heater or chilled heat exchanger. The stent is loosely placed onto the catheter, and then the assembly is inserted into the bore of the crimper. The passage of air would rapidly equilibrate the stent delivery system (SDS) to the crimp temperature. Continuously heated or cooled airflow would bring the crimping jaws to the desired temperature.

Alternative ways include heating or cooling the jaws of the crimper itself. Electrical heating elements can be installed into the crimper jaws. By appropriate placement of thermocouples and feedback controls, an elevated temperature can be maintained. Cooling of the crimper jaws can be accomplished by rendering them with passageways through which a cooling medium is pumped. This may also be used to heat the crimping jaws. If the jaws were composed of an electrically conductive material, application of an oscillating electric field can heat them via eddy currents. If the jaws were made of an IR transparent material, the stent on catheter can be thermostated by infrared radiation.

If the crimper is at ambient temperature, but the jaws themselves are of a material with low thermal conductivity, then processes can be considered where the stent loosely applied to the catheter is pre-equilibrated to a non-ambient temperature before crimping. As the stent is small, with a high surface area to volume ratio, it would have to be rapidly moved from the controlled temperature environment to the crimper to maintain the desired temperature. Heating in an incubator or oven, or cooling in a refrigerator can pre-equilibrate the stent to the desired temperature before crimping.

Processes of the current invention provide medical devices. These medical devices contain a piece or portion that is coated with or constructed of, in some embodiments, polymer(s). In some embodiments, the crimping device used in invention crimping steps can be heated or cooled before it is used to crimp the piece or portion onto the remainder of the medical device or onto another medical device. This heating or cooling causes the temperature of the material to change so that the crimping effectively occurs at a target temperature other than ambient temperature. Other ways of modifying the temperature of the polymer include heating or cooling the substrate of the medical device or heating or cooling the material directly with forced air, among other methods.

Some invention embodiments select medical devices to be those adapted for placement in arterial, venous, neurovascular, urethral, biliary, prostate, intravascular, ureteral, bronchial, esophageal, fallopial, tracheal, laryngeal, gastrointestinal, lymphatic, eustachiaic, pancreatic, cerebral, other genitourinary, other gastrointestinal, or other respiratory lumens or passages.

Invention methods can be used on a variety of polymeric materials including those characterized as having Tg above ambient temperature. In some embodiments the methods act on polymeric materials comprising ABS resins; acrylic polymers and acrylic copolymers; acrylonitrile-styrene copolymers; alkyd resins; biomolecules; cellulose ethers; celluloses; copoly(ether-esters); copolymers of polycarboxylic acids and poly-hydroxycarboxylic acids; copolymers of vinyl monomers with each other and olefins; cyanoacrylates; epoxy resins; ethylene vinyl alcohol copolymers; ethylene-methyl methacrylate copolymers; ethylene-vinyl acetate copolymers; ethylene-α-olefin copolymers; poly(amino acids); poly(anhydrides); poly(butyl methacrylates); poly(ester amides); poly(ester-urethanes); poly(ether-urethanes); poly(imino carbonates); poly(orthoesters); poly(silicone-urethanes); poly(tyrosine arylates); poly(tyrosine-derived carbonates); polyacrylates; polyacrylic acid; polyacrylic acids; polyacrylonitrile; polyacrylonitrile; polyalkylene oxalates; polyamides; polyamino acids; polyanhydrides; polycarbonates; polycarboxylic acids; polycyanoacrylates; polyesters; polyethers; poly-hydroxycarboxylic acids; polyimides; polyisobutylene and ethylene-α-olefin copolymers; polyketones; polymethacrylates; polyolefins; polyorthoesters; polyoxymethylenes; polyphosphazenes; polyphosphoesters; polyphosphoester urethanes; polyphosphoesters; polyphosphoesters-urethane; polyurethanes; polyvinyl aromatics; polyvinyl esters; polyvinyl ethers; polyvinyl ketones; polyvinylidene halides; silicones; starches; vinyl copolymers vinyl-olefin copolymers; and vinyl halide polymers and copolymers. Some embodiments select the group of polymers to specifically exclude any one of or any combination of the polymers listed above.

Specific examples of useful polymers for some embodiments include the following polymers: starch, sodium alginate, rayon-triacetate, rayon, polyvinylidene fluoride, polyvinylidene chloride, polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl chloride, polyvinyl acetate, polystyrene, polyisocyanate, polyisobutylene, polyethylene glycol, polydioxanone, polycaprolactone, polycaprolactam, KYNAR (brand poly(vinylidene fluoride) available from Atofina), polyacrylonitrile, poly(trimethylene carbonate), poly(L-lactic acid), poly(lactide-co-glycolide), poly(hydroxyvalerate), poly(hydroxybutyrate-co-valerate), poly(hydroxybutyrate-co-hydroxyvalerate), poly(hydroxybutyrate), poly(glycolide), poly(glycolic acid), poly(D,L-lactide-co-L-lactide), poly(D,L-lactide-co-glycolide), poly(D,L-lactide), poly(4-hydroxybutyrate), poly(3-hydroxybutyrate), poly(3-hydroxy valerate), Nylon 66, hyaluronic acid, fibrinogen, fibrin, elastin-collagen, collagen, cellulose propionate, cellulose nitrate, cellulose butyrate, cellulose acetate butyrate, cellulose acetate, cellulose, cellophane, carboxymethyl cellulose, or poly(2-hydroxyethyl methacrylate), Chitin, Chitosan, EVAL, poly(butyl methacrylate), poly(D,L-lactic acid), poly(D,L-lactide), poly(glycolic acid-co-trimethylene carbonate), poly(hydroxybutyrate-co-valerate), poly(hydroxyvalerate), poly(iminocarbonate), poly(lactide-co-glycolide), poly(L-lactic acid), poly(N-acetylglucosamine), poly(trimethylene carbonate), poly(vinyl chloride), poly(vinyl fluoride), poly(vinylidene chloride), poly(vinylidene fluoride), poly(yinylidene fluoride-co-chlorotrifluoroethylene), poly(vinylidene fluoride-co-hexafluoropropene), polyanhydride, polyorthoester, polyurethane, polyvinyl alcohol, polyvinyl chloride, rayon, SOLEF 21508 (formulation available from Solvay Solexis), and PEO/PLA. Some embodiments select the group of polymers to specifically exclude any one of or any combination of the polymers listed above.

The polymer for use with this invention can comprise a mixture of polymers, such as an intimate mixture of polymer molecules, or can use a combination of polymers arranged in a layered structure. One of ordinary skill in the art will recognize that the optimal target temperature can be chosen based on the overall thermal behavior of the polymers or combination of polymers.

Some embodiments add conventional drugs, such as small, hydrophobic drugs, to invention polymers (as discussed in any of the embodiments, above), making them biostable, drug systems. Some embodiments graft-on conventional drugs or mix conventional drugs with invention polymers. Invention polymers can serve as base or topcoat layers for biobeneficial polymer layers.

The selected drugs can inhibit vascular, smooth muscle cell activity. More specifically, the drug activity can aim at inhibiting abnormal or inappropriate migration or proliferation of smooth muscle cells to prevent, inhibit, reduce, or treat restenosis. The drug can also include any substance capable of exerting a therapeutic or prophylactic effect in the practice of the present invention. Examples of such active agents include antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, and antioxidant substances, as well as their combinations, and any prodrugs, metabolites, analogs, congeners, derivatives, salts and their combinations.

An example of an antiproliferative substance is actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wis. 53233; or COSMEGEN available from Merck). Synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, and actinomycin C1. Examples of antineoplastics include paclitaxel and docetaxel. Examples of antiplatelets, anticoagulants, antifibrins, and antithrombins include aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogs, dextran, D-pheproarg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor (available from Biogen), and 7E-3B® (an antiplatelet drug from Centocor). Examples of antimitotic agents include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, and mutamycin. Examples of cytostatic or anti-proliferative agents include angiopeptin (a somatostatin analog from Ibsen), angiotensin converting enzyme inhibitors such as CAPTOPRIL (available from Squibb), CILAZAPRIL (available from Hoffman-LaRoche), or LISINOPRIL (available from Merck & Co., Whitehouse Station, N.J.), calcium channel blockers (such as Nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, histamine antagonist, LOVASTATIN (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug from Merck &Co.), monoclonal antibodies (such as PDGF receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor (available from Glazo), Seramin (a PDGF antagonist), serotonin blockers, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), and nitric oxide. Other useful drugs may include alpha-interferon, genetically engineered epithelial cells, dexamethasone, estradiol, clobetasol propionate, cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, and carboplatin. Exposure of the composition to the drug should not adversely alter the drug's composition or characteristic. Accordingly, drug containing embodiments choose drugs that are compatible with the composition. Rapamycin is a suitable drug. Additionally, methyl rapamycin (ABT-578), everolimus, 40-O-(2-hydroxy)ethyl-rapamycin, or functional analogs or structural derivatives thereof, is suitable, as well. Examples of analogs or derivatives of 40-O-(2-hydroxy)ethyl-rapamycin include, among others, 40-O-(3-hydroxy)propyl-rapamycin and 40-O-2-(2-hydroxy)ethoxyethylrapamycin. Those of ordinary skill in the art know of various methods and coatings for advantageously controlling the release rate of drugs, such as 40-O-(2-hydroxy)ethyl-rapamycin.

Some embodiments choose the drug such that it does not contain at least one of or any combination of antiproliferative, antineoplastic, antiinflammatory, antiplatelet, anticoagulant, antifibrin, antithrombin, antimitotic, antibiotic, or antioxidant substances, or any prodrugs, metabolites, analogs, congeners, derivatives, salts or their combinations.

Some invention embodiments choose the drug such that it does not contain at least one of or any combination of actinomycin D, derivatives and analogs of Actinomycin D, dactinomycin, actinomycin IV, actinomycin II, actinomycin X1, actinomycin C1, paclitaxel, docetaxel, aspirin, sodium heparin, low molecular weight heparin, hirudin, argatroban, forskolin, vapiprost, prostacyclin, prostacyclin analogs, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist, recombinant hirudin, thrombin inhibitor and 7E-3B, methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, adriamycin, mutamycin, angiopeptin, angiotensin converting enzyme inhibitors, CAPTOPRIL, CILAZAPRIL, or LISINOPRIL, calcium channel blockers, Nifedipine, colchicine, fibroblast growth factor (FGF) antagonists, histamine antagonist, LOVASTATIN, monoclonal antibodies, PDGF receptors, nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitor, Seramin, PDGF antagonists, serotonin blockers, thioprotease inhibitors, triazolopyrimidine, nitric oxide, alpha-interferon, genetically engineered epithelial cells, dexamethasone, estradiol, clobetasol propionate, cisplatin, insulin sensitizers, receptor tyrosine kinase inhibitors, carboplatin, Rapamycin, 40-O-(2-hydroxy)ethyl-rapamycin, or a functional analogs of 40-O-(2-hydroxy)ethyl-rapamycin, structural derivative of 40-O-(2-hydroxy)ethyl-rapamycin, 40-O-(3-hydroxy)propyl-rapamycin, and 40-O-2-(2-hydroxy)ethoxyethyl-rapamycin, or any prodrugs, metabolites, analogs, congeners, derivatives, salts or their combinations.

Some invention embodiments comprise a drug or drug combination, and some require a drug or combination of drugs. Of the drugs specifically listed above, some invention embodiments exclude a single or any combination of these drugs.

Some embodiments comprise polymers combined with other polymers in multilayer arrangements. For example, one polymer can under- or over-lay another polymer such as a polymer coated on a device, a medical device, an implantable medical device, or a stent. The polymer can be used neat in this regard, or it can first be mixed with another polymer.

Examples of implantable devices useful in the present invention include self-expandable stents, balloon-expandable stents, and stent-grafts. The underlying structure of the device can be of virtually any design. The device can comprise a metallic material or an alloy such as, but not limited to, cobalt chromium alloy (ELGILOY), stainless steel (316 L), high nitrogen stainless steel, e.g., BIODUR 108, cobalt chrome alloy L-605, “MP35N,” “MP20N,” ELASTINITE (Nitinol), tantalum, nickel-titanium alloy, platinum-iridium alloy, gold, magnesium, or combinations thereof. “MP35N” and “MP20N” are trade names for alloys of cobalt, nickel, chromium, and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. “MP35N” consists of 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum. “MP20N” consists of 50% cobalt, 20% nickel, 20% chromium, and 10% molybdenum. Of course, one of ordinary skill in the art recognizes that the invention method is only useful for medical devices that use a crimping step in their production.

Various, specialized tests are used to assay the integrity of a drug eluting stent coating. In all of them, completed units are tested which have been though all stent-catheter assembly processes, including crimping and any heat-pressure processes. One test is inspection of the coated stents by scanning electron microscopy. This can be done on the completed units by cutting the stent-balloon section from the catheter, or the stent can be removed from the catheter by dry expansion in air or wet expansion in aqueous solution. Under SEM, the fraction of compromised coating surface area can be estimated. Compromised coating is coating that has been deformed, torn, or removed. When this fraction of surface area exceeds 5-10%, the drug-release rate properties, and total drug content can be affected. Another measure of coating integrity, which is tied to crimping damage, is the number and size of particles shed when the stent is expanded in aqueous solution. The stent is deployed in a solution of previously filtered water and the particles shed are counted by one of several available particle-counting instruments. Example instruments would be those produced by Malvern that work by light scattering, instruments that work by light obscuration, such as the Hiac-Royco, or the Coulter counter which works by electrical conductivity. Elevated numbers, and sizes, of particles shed are indicative of coating failure, which is affected by crimping damage either in the form of coating pieces that are completely shorn off, or cracks in the coating which propagated during stent expansion to liberate particles. Yet another approach to measuring the effects of coating crimping damage is by acute thrombogenicity testing, one example of which is that detailed by Sukavaneshvar et al. ASIAO Journal, Aug. 11, 2000, p 301 and ASIAO Journal, Jul. 5, 2000, p M393, which approach subjected stents deployed in tubing to a flow of bovine blood in which the platelets have been radiolabeled. Accumulation of platelets and thrombus is a measure of the acute thrombogenicity. The effect of coating cracks and defect can be compared to uncoated stents, or to stents where the coatings have fewer, or no cracks and coating defects.

A first composition was prepared by mixing the following components:

The first composition was applied onto the surface of bare 13 mm TETRA stents (available from Guidant Corporation), which were first pre-expanded by passing them over a 0.071 inch, tapered mandrel. Coating was sprayed and dried to form a primer layer. A spray coater was used having a 0.046 fan nozzle maintained at about 60 C with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). Coating was applied at 10 μg per pass, in between which the stent was dried for 10 seconds in a flowing air stream at 60 C. Approximately 70 μg of wet coating was applied. The stents were baked at 140 C for one hour, yielding a primer layer composed of approximately 50 μg of EVAL.

A simulated reservoir layer was applied onto the primer layer, using the same spraying technique, equipment, and formulation used for the applying the primer. In this case, approximately 340 μg of wet coating is applied, followed by drying, e.g., baking at 50 C for about two hours, yielding about 300 μg of simulated drug-polymer reservoir layer.

A second composition can be prepared by mixing the following components:

The second composition can be applied onto the dried simulated drug reservoir layer to form a topcoat layer. Using the same spraying technique and equipment used for applying the simulated drug reservoir layer. Approximately 340 μg of wet topcoat is applied followed by baking at 80 C for two hours, yielding a 300 μg Elast-Eon 80A topcoat layer.

Using a sliding wedge crimper, the stents were crimped onto 13 mm Tetra catheters (available from Guidant Corporation). The stents were expanded in deionized water at 37 C with a balloon deployment pressure of 12 atm. Examination by SEM yielded FIGS. 1 &2.

A first composition was prepared by mixing the following component

The first composition was applied onto the surface of bare 13 mm TETRA stents (available from Guidant Corporation), which were first pre-expanded by passing them over a 0.071 inch, tapered mandrel. Coating was sprayed and dried to form a primer layer. A spray coater was having a 0.046 fan nozzle maintained at about 60 C with a feed pressure 2.5 psi (0.17 atm) and an atomization pressure of about 15 psi (1.02 atm). Coating was applied at 10 μg per pass, in between which the stent was dried for 10 seconds in a flowing air stream at 60 C. Approximately 65 μg of wet coating was applied. The stents were baked at 140 C for one hour, yielding a primer layer composed of approximately 60 μg of EVAL.

A simulated reservoir layer was applied onto the primer layer, using the same spraying technique, equipment, and formulation used for the applying the primer. In this case approximately 340 μg of wet coating is applied, followed by drying, e.g., baking at 80 C for about two hours, yielding about 315 μg of a simulated drug-polymer reservoir layer.

A second composition can be prepared by mixing the following components:

AMS Defluxer is a blend of dichloropentafluoropropanes and methanol available from Tech Spray Inc. of Amarillo Tex.

The second composition can be applied onto the dried simulated drug reservoir layer to form a topcoat layer. Using the same spraying technique and equipment used for applying the simulated drug reservoir layer. Approximately 345 μg of wet topcoat is applied followed by baking at 50 C for two hours, yielding a 325 μg Solef 21508 topcoat layer.

Using a sliding wedge crimper, the stents were crimped onto 13 mm Tetra catheters (available from Guidant Corporation). After this, they were subjected to a heat and pressure process wherein the balloon was restrained by a sheath, air pressure was applied to the catheter, and heat was applied to the balloon. Units were packaged and sterilized by electron beam radiation at a dose of 35 KGy. The stent coating performance was evaluated in an apparatus where a guiding catheter was connected to flexible silicone tubing embedded in a block with three gradual 90-degree bends. Deionized water at 37 C was recirculated through the guiding catheter. The stents were passed through a rotating hemostatic valve attached to the guiding catheter, through the guiding catheter, through the tortuous silicone tubing, and deployed at a pressure of 12 atmospheres. After the stents were removed from the tubing, examination by SEM yielded FIGS. 3 & 4.

Stents are laser cut from polymer tubing, then crimped to the desired diameter. A sliding wedge style heated crimper is used. The stents are supported on a wire mandrel during the crimping process.

Parameters:
Tubing material: 100% poly(L-lactide)
Tubing OD: 0.084″
Tubing ID: 0.070″
Pre-heat temp: 30 C.
Pre-heat time: 30 seconds
Crimp temperature: 30 C.
Descent time: 3-5 seconds
Mandrel diameter: 0.031″
Post crimp dwell time: 99.9 seconds
Number of crimp cycles: 1

Appropriate standards for the measurement of durometer hardness are ASTM D2240 or ISO868.

While particular embodiments of the present invention have been shown and described, it will be obvious to those skilled in the art that changes and modifications can be made without departing from the embodiments of this invention in its broader aspects and, therefore, the appended claims are to encompass within their scope all such changes and modifications as fall within the true spirit and scope of the embodiments of this invention. Additionally, various embodiments have been described above. For convenience's sake, combinations of aspects composing invention embodiments have been listed in such a way that one of ordinary skill in the art may read them exclusive of each other when they are not necessarily intended to be exclusive. But a recitation of an aspect for one embodiment is meant to disclose its use in all embodiments in which that aspect can be incorporated without undue experimentation. In like manner, a recitation of an aspect as composing part of an embodiment is a tacit recognition that a supplementary embodiment exists that specifically excludes that aspect. All patents, test procedures, and other documents cited in this specification are fully incorporated by reference to the extent that this material is consistent with this specification and for all jurisdictions in which such incorporation is permitted.

Moreover, some embodiments recite ranges. When this is done, it is meant to disclose the ranges as a range, and to disclose each and every point within the range, including end points. For those embodiments that disclose a specific value or condition for an aspect, supplementary embodiments exist that are otherwise identical, but that specifically exclude the value or the conditions for the aspect.

Pacetti, Stephen D., Huang, Bin, Gale, David C., Abbate, Anthony

Patent Priority Assignee Title
10010653, Feb 05 2016 Abbott Cardiovascular Systems Inc. Methods for increasing coating strength to improve scaffold crimping yield
10232147, May 27 2011 Abbott Cardiovascular Systems Inc. Method for assembling a scaffold-balloon catheter
10660773, Feb 14 2017 Abbott Cardiovascular Systems Inc. Crimping methods for thin-walled scaffolds
10967556, Jun 11 2018 Abbott Cardiovascular Systems Inc. Uniform expansion of thin-walled scaffolds
Patent Priority Assignee Title
2072303,
2386454,
3178399,
3773737,
3849514,
3855638,
3929992,
4101984, May 09 1975 Cardiovascular prosthetic devices and implants with porous systems
4151413, Jun 29 1977 Texaco Inc. Method of measuring horizontal fluid flow behind casing in subsurface formations with sequential logging for interfering isotope compensation and increased measurement accuracy
4226243, May 12 1978 Ethicon, Inc. Surgical devices of polyesteramides derived from bis-oxamidodiols and dicarboxylic acids
4316885, Aug 25 1980 WYETH-AYERST CANADA INC Acyl derivatives of rapamycin
4321711, Oct 18 1978 SUMITOMO ELECTRIC INDUSTRIES, LTD Vascular prosthesis
4325903, Jul 15 1980 Celanese Corporation Processing of melt processible liquid crystal polymer by control of thermal history
4329383, Jul 24 1979 Nippon Zeon Co., Ltd. Non-thrombogenic material comprising substrate which has been reacted with heparin
4343931, Dec 17 1979 Minnesota Mining and Manufacturing Company Synthetic absorbable surgical devices of poly(esteramides)
4355426, May 09 1975 BODYCOTE ORTECH INC Porous flexible vascular graft
4374669, May 09 1975 Pacesetter, Inc Cardiovascular prosthetic devices and implants with porous systems
4459252, May 09 1975 BODYCOTE ORTECH INC Method of forming a small bore flexible vascular graft involving eluting solvent-elutable particles from a polymeric tubular article
4529792, Dec 17 1979 Minnesota Mining and Manufacturing Company Process for preparing synthetic absorbable poly(esteramides)
4611051, Dec 31 1985 Union Camp Corporation Novel poly(ester-amide) hot-melt adhesives
4650803, Dec 06 1985 University of Kansas Prodrugs of rapamycin
4656242, Jun 07 1985 Henkel Corporation; HENKEL CORPORATION A DE CORP Poly(ester-amide) compositions
4693721, Oct 17 1984 Porous flexible metal fiber material for surgical implantation
4729871, Jun 21 1985 Hiroshi, Kawaguchi Process for preparing porous metal plate
4733665, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4800882, Mar 13 1987 Cook Incorporated Endovascular stent and delivery system
4816339, Apr 28 1987 Edwards Lifesciences Corporation Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
4882168, Sep 05 1986 American Cyanamid Company Polyesters containing alkylene oxide blocks as drug delivery systems
4886062, Oct 19 1987 Medtronic, Inc. Intravascular radially expandable stent and method of implant
4931287, Jun 14 1988 University of Utah Research Foundation Heterogeneous interpenetrating polymer networks for the controlled release of drugs
4941870, Nov 10 1986 JMS CO , LTD Method for manufacturing a synthetic vascular prosthesis
4977901, Nov 23 1988 Minnesota Mining and Manufacturing Company Article having non-crosslinked crystallized polymer coatings
5019096, Feb 11 1988 Trustees of Columbia University in the City of New York; TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE, A EDUCATIONAL CORP OF NY Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
5059211, Jun 25 1987 Duke University Absorbable vascular stent
5100883, Apr 08 1991 Wyeth Fluorinated esters of rapamycin
5100992, May 04 1989 BIOMEDICAL POLYMERS INTERNATIONAL, LTD A CORPORATION OF DELAWARE Polyurethane-based polymeric materials and biomedical articles and pharmaceutical compositions utilizing the same
5102876, May 07 1991 Wyeth Reduction products of rapamycin
5112457, Jul 23 1990 Case Western Reserve University Process for producing hydroxylated plasma-polymerized films and the use of the films for enhancing the compatiblity of biomedical implants
5118677, May 20 1991 Wyeth Amide esters of rapamycin
5118678, Apr 17 1991 Wyeth Carbamates of rapamycin
5120725, May 29 1991 Wyeth Bicyclic rapamycins
5120727, May 29 1991 Wyeth Rapamycin dimers
5120842, Apr 01 1991 American Home Products Corporation Silyl ethers of rapamycin
5133742, Jun 15 1990 LifeShield Sciences LLC Crack-resistant polycarbonate urethane polymer prostheses
5138051, Aug 07 1991 Wyeth Rapamycin analogs as immunosuppressants and antifungals
5151413, Nov 06 1991 Wyeth Rapamycin acetals as immunosuppressant and antifungal agents
5162333, Sep 11 1991 Wyeth Aminodiesters of rapamycin
5163952, Sep 14 1990 Expandable polymeric stent with memory and delivery apparatus and method
5163958, Feb 02 1989 Cordis Corporation Carbon coated tubular endoprosthesis
5165919, Mar 28 1988 ASAHI MEDICAL CO , LTD Medical material containing covalently bound heparin and process for its production
5169851, Aug 07 1991 Wyeth Rapamycin analog as immunosuppressants and antifungals
5219980, Apr 16 1992 SRI International Polymers biodegradable or bioerodiable into amino acids
5221740, Jan 16 1992 Wyeth Oxepane isomers of rapamycin useful as immunosuppressive agents
5234456, Feb 08 1990 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Hydrophilic stent
5258020, Sep 14 1990 Method of using expandable polymeric stent with memory
5258389, Nov 09 1992 Merck Sharp & Dohme Corp O-aryl, O-alkyl, O-alkenyl and O-alkynylrapamycin derivatives
5272012, Jun 23 1989 Medtronic Ave, Inc Medical apparatus having protective, lubricious coating
5292516, May 01 1990 MDV TECHNOLOGIES, INC Body cavity drug delivery with thermoreversible gels containing polyoxyalkylene copolymers
5298260, May 01 1990 MDV TECHNOLOGIES, INC Topical drug delivery with polyoxyalkylene polymer thermoreversible gels adjustable for pH and osmolality
5300295, May 01 1990 MDV TECHNOLOGIES, INC Ophthalmic drug delivery with thermoreversible polyoxyalkylene gels adjustable for pH
5306286, Jun 25 1987 Duke University Absorbable stent
5306501, May 01 1990 MDV TECHNOLOGIES, INC Drug delivery by injection with thermoreversible gels containing polyoxyalkylene copolymers
5306786, Dec 21 1990 U C B S A Carboxyl group-terminated polyesteramides
5328471, Feb 26 1990 Endoluminal Therapeutics, Inc. Method and apparatus for treatment of focal disease in hollow tubular organs and other tissue lumens
5330768, Jul 05 1991 Massachusetts Institute of Technology Controlled drug delivery using polymer/pluronic blends
5344833, Jan 16 1992 Wyeth Oxepane isomers of rapamycin useful as immunosuppressive agents
5370682, Apr 26 1993 Maquet Cardiovascular, LLC Solid woven tubular prosthesis
5370684, Dec 12 1986 SORIN BIOMEDICA CARDIO S P A Prosthesis of polymeric material coated with biocompatible carbon
5380299, Aug 30 1993 Cook Medical Technologies LLC Thrombolytic treated intravascular medical device
5383928, Jun 10 1992 Emory University Stent sheath for local drug delivery
5417981, Apr 28 1992 Terumo Kabushiki Kaisha Thermoplastic polymer composition and medical devices made of the same
5419760, Jan 08 1993 PDT SYSTEMS, INC Medicament dispensing stent for prevention of restenosis of a blood vessel
5433909, Mar 13 1992 ATRIUM MEDICAL CORPORATION Method of making controlled porosity expanded polytetrafluoroethylene products
5437834, Oct 08 1992 Kyocera Corporation Porous living body repairing member, and a method of imparting elasticity to it
5441515, Apr 23 1993 Advanced Cardiovascular Systems, Inc. Ratcheting stent
5447724, May 17 1990 Harbor Medical Devices, Inc. Medical device polymer
5455040, Jul 26 1990 Case Western Reserve University Anticoagulant plasma polymer-modified substrate
5462990, Aug 05 1991 Board of Regents, The University of Texas System Multifunctional organic polymers
5464650, Apr 26 1993 Medtronic, Inc.; LATHAM, DANIEL W Intravascular stent and method
5468253, Jan 21 1993 Ethicon, Inc. Elastomeric medical device
5480599, Apr 09 1992 Huels Aktiengesellschaft Method of manufacturing foam beads
5485496, Sep 22 1994 Cornell Research Foundation, Inc.; Cornell Research Foundation, Inc Gamma irradiation sterilizing of biomaterial medical devices or products, with improved degradation and mechanical properties
5492768, Oct 08 1992 Kyocera Corporation Porous living body repairing member, and a method of imparting elasticity to it
5516781, Jan 09 1992 Wyeth Method of treating restenosis with rapamycin
5516881, Aug 10 1994 Cornell Research Foundation, Inc. Aminoxyl-containing radical spin labeling in polymers and copolymers
5522894, Dec 14 1984 THURGAUER KANTONALBANK, A CORPORATION CHARTERED IN AND EXISTING UNDER THE LAWS OF SWITZERLAND, THAT MAINTAINS ITS PRINCIPAL OFFICES AT: Bone replacement material made of absorbable beads
5527337, Jun 25 1987 Duke University Bioabsorbable stent and method of making the same
5527907, Nov 19 1993 Abbott Laboratories Macrolide immunomodulators
5563145, Dec 07 1994 Wyeth Rapamycin 42-oximes and hydroxylamines
5569463, May 17 1990 Harbor Medical Devices, Inc. Medical device polymer
5571187, Feb 27 1992 ZIMMER TECHNOLOGY, INC Implant having a metallic porous surface
5575818, Feb 14 1995 Corvita Corporation Endovascular stent with locking ring
5578073, Sep 16 1994 UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY, THE; RAMOT-UNIVERSITY AUTHORITY FOR APPLIED RESEARCH AND INDUSTRIAL DEVELOPMENT, LTD Thromboresistant surface treatment for biomaterials
5583139, Oct 26 1994 Abbott Laboratories Marcolide immunomodulators
5584877, Jun 25 1993 Sumitomo Electric Industries, Ltd. Antibacterial vascular prosthesis and surgical suture
5605693, Nov 22 1993 SM TECHNOLOGIES, LLC Methods of making a porous device
5605696, Mar 30 1995 Advanced Cardiovascular Systems, Inc. Drug loaded polymeric material and method of manufacture
5607463, Mar 30 1993 Medtronic, Inc Intravascular medical device
5607467, Sep 14 1990 Expandable polymeric stent with memory and delivery apparatus and method
5609629, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
5610241, May 07 1996 Cornell Research Foundation, Inc Reactive graft polymer with biodegradable polymer backbone and method for preparing reactive biodegradable polymers
5616338, Feb 11 1988 Trustees of Columbia University in the City of New York Infection-resistant compositions, medical devices and surfaces and methods for preparing and using same
5624411, Apr 26 1993 Medtronic, Inc Intravascular stent and method
5628730, Jun 15 1990 VENTION MEDICAL ADVANCED COMPONENTS, INC Phoretic balloon catheter with hydrogel coating
5630840, May 09 1994 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Clad composite stent
5632779, Jul 25 1989 Smith & Nephew, Inc. Zirconium oxide and zirconium nitride coated vascular grafts
5644020, Aug 12 1993 Bayer Aktiengesellschaft Thermoplastically processible and biodegradable aliphatic polyesteramides
5649977, Sep 22 1994 Advanced Cardiovascular Systems, Inc. Metal reinforced polymer stent
5651174, Mar 19 1992 Medtronic, Inc. Intravascular radially expandable stent
5658995, Nov 27 1995 Rutgers, The State University Copolymers of tyrosine-based polycarbonate and poly(alkylene oxide)
5665772, Oct 09 1992 Sandoz Ltd. O-alkylated rapamycin derivatives and their use, particularly as immunosuppressants
5667767, Jul 27 1995 MICRO THERAPEUTICS, INC Compositions for use in embolizing blood vessels
5670161, May 28 1996 GENERAL VASCULAR DEVICES, LTD Biodegradable stent
5670558, Jul 07 1994 Terumo Kabushiki Kaisha Medical instruments that exhibit surface lubricity when wetted
5672605, Oct 26 1994 Abbott Laboratories Macrolide immunomodulators
5674242, Jun 06 1995 Boston Scientific Scimed, Inc Endoprosthetic device with therapeutic compound
5679400, Apr 26 1993 Medtronic, Inc Intravascular stent and method
5697967, Jun 17 1993 Medtronic, Inc. Drug eluting stent
5700286, Dec 13 1994 Advanced Cardiovascular Systems, Inc. Polymer film for wrapping a stent structure
5702754, Feb 22 1995 Boston Scientific Scimed, Inc Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
5707385, Nov 16 1994 Advanced Cardiovascular Systems, Inc. Drug loaded elastic membrane and method for delivery
5707867, Oct 27 1993 The Regents of the University of California Antiviral compounds
5711958, Jul 11 1996 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd Methods for reducing or eliminating post-surgical adhesion formation
5713949, Aug 06 1996 Vascular Concepts Holdings Limited Microporous covered stents and method of coating
5716981, Jul 19 1993 ANGIOTECH BIOCOATINGS CORP Anti-angiogenic compositions and methods of use
5721131, Mar 06 1987 United States of America as represented by the Secretary of the Navy Surface modification of polymers with self-assembled monolayers that promote adhesion, outgrowth and differentiation of biological cells
5723219, Dec 19 1995 Talison Research Plasma deposited film networks
5725567, Feb 28 1990 Medtronic, Inc. Method of making a intralumenal drug eluting prosthesis
5735897, Oct 19 1993 Boston Scientific Scimed, Inc Intravascular stent pump
5746691, Jun 06 1997 Cook Medical Technologies LLC Method for polishing surgical stents
5746998, Jun 24 1994 The General Hospital Corporation Targeted co-polymers for radiographic imaging
5755771, Nov 03 1994 evYsio Medical Devices ULC Expandable stent and method of delivery of same
5759192, Nov 28 1994 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
5759205, Jan 21 1994 Brown University Research Foundation Negatively charged polymeric electret implant
5766710, Jun 27 1994 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
5769883, Oct 04 1991 SciMed Life Systems, Inc. Biodegradable drug delivery vascular stent
5776184, Apr 26 1993 Medtronic, Inc. Intravasoular stent and method
5783657, Oct 18 1996 CRODA INTERNATIONAL PLC Ester-terminated polyamides of polymerized fatty acids useful in formulating transparent gels in low polarity liquids
5788558, Nov 13 1995 KLEIN, ENRIQUE J Apparatus and method for polishing lumenal prostheses
5788979, Jul 22 1994 Boston Scientific Scimed, Inc Biodegradable coating with inhibitory properties for application to biocompatible materials
5795318, Apr 30 1993 Boston Scientific Scimed, Inc Method for delivering drugs to a vascular site
5798355, Jun 07 1995 GLIAMED, INC Inhibitors of rotamase enzyme activity
5800392, Jan 23 1995 VENTION MEDICAL ADVANCED COMPONENTS, INC Microporous catheter
5800512, Jan 22 1996 LIFEPORT SCIENCES LLC PTFE vascular graft
5820917, Jun 07 1995 Medtronic, Inc Blood-contacting medical device and method
5824048, Apr 04 1993 Medtronic, Inc. Method for delivering a therapeutic substance to a body lumen
5824049, May 16 1996 Cook Medical Technologies LLC Coated implantable medical device
5830178, Oct 11 1996 MICRO THERAPEUTICS, INC Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide
5836965, Oct 19 1994 Medtronic Vascular, Inc Stent delivery and deployment method
5837008, Apr 26 1993 Medtronic, Inc. Intravascular stent and method
5837313, Apr 19 1995 Boston Scientific Scimed, Inc Drug release stent coating process
5843172, Apr 15 1997 Advanced Cardiovascular Systems, Inc. Porous medicated stent
5843960, Jun 07 1995 GLIAMED, INC Inhibitors of rotamase enzyme activity
5846981, May 28 1993 GLIAMED, INC Inhibitors of rotamase enzyme activity
5849859, Mar 27 1992 Novartis AG Polyesters
5851508, Jul 27 1995 MicroTherapeutics, Inc. Compositions for use in embolizing blood vessels
5854376, Mar 09 1995 Sekisui Kaseihin Kogyo Kabushiki Kaisha Aliphatic ester-amide copolymer resins
5856814, Aug 02 1995 Canon Kabushiki Kaisha Driving method for display apparatus
5858746, Apr 20 1992 Board of Regents, The University of Texas System Gels for encapsulation of biological materials
5865814, Jun 07 1995 Medtronic, Inc. Blood contacting medical device and method
5869127, Feb 22 1995 Boston Scientific Scimed, Inc Method of providing a substrate with a bio-active/biocompatible coating
5873904, May 16 1996 Cook Medical Technologies LLC Silver implantable medical device
5876433, May 29 1996 Ethicon, Inc Stent and method of varying amounts of heparin coated thereon to control treatment
5877224, Jul 28 1995 Emory University Polymeric drug formulations
5879398, Feb 14 1995 ZIMMER TECHNOLOGY, INC Acetabular cup
5879713, Oct 12 1994 Genzyme Corporation Targeted delivery via biodegradable polymers
5897911, Aug 11 1997 Advanced Cardiovascular Systems, Inc. Polymer-coated stent structure
5898029, Apr 12 1994 GLIAMED, INC Direct influences on nerve growth of agents that interact with immunophilins in combination with neurotrophic factors
5902875, Jan 28 1997 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
5905168, Dec 11 1992 Rhone-Poulenc Chimie Process for treating a material comprising a polymer by hydrolysis
5910564, Dec 07 1995 Goldschmidt GmbH Polyamino acid ester copolymers
5912253, Dec 17 1993 Novartis AG Rapamycin derivatives
5914387, Jan 28 1997 United States Surgical Corporation Polyesteramides with amino acid-derived groups alternating with alpha-hydroxyacid-derived groups and surgical articles made therefrom
5919893, Jan 28 1997 United States Surgical Corporation Polyesteramide, its preparation and surgical devices fabricated therefrom
5925720, Apr 19 1995 Kazunori, Kataoka Heterotelechelic block copolymers and process for producing the same
5928279, Jul 03 1996 Edwards Lifesciences Corporation Stented, radially expandable, tubular PTFE grafts
5932243, May 27 1993 Novartis AG Galenical formulations
5932299, Apr 23 1996 KT Holdings, LLC Method for modifying the surface of an object
5945029, Sep 03 1996 FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E V Ceramic monofilament or multifilament fiber and processes for their production and use
5955509, May 01 1996 Board of Regents, The University of Texas System pH dependent polymer micelles
5958385, Sep 28 1994 LVMH RECHERCHE Polymers functionalized with amino acids or amino acid derivatives, method for synthesizing same, and use thereof as surfactants in cosmetic compositions, particularly nail varnishes
5961914, May 03 1996 Milliken & Company Method of thermoforming polyolefin resin
5962007, Dec 19 1997 Indigo Medical, Inc. Use of a multi-component coil medical construct
5962138, Dec 19 1995 Talison Research, Inc. Plasma deposited substrate structure
5968091, Mar 26 1996 LifeShield Sciences LLC Stents and stent grafts having enhanced hoop strength and methods of making the same
5971954, Jan 10 1990 Rochester Medical Corporation Method of making catheter
5972027, Sep 30 1997 Boston Scientific Scimed, Inc Porous stent drug delivery system
5980564, Aug 01 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Bioabsorbable implantable endoprosthesis with reservoir
5980928, Jul 29 1997 Implant for preventing conjunctivitis in cattle
5980972, Dec 20 1996 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Method of applying drug-release coatings
5985890, Jun 09 1995 Novartis AG Rapamycin derivatives
5994444, Oct 16 1997 Medtronic, Inc Polymeric material that releases nitric oxide
5997517, Jan 27 1997 SURGICAL SPECIALTIES CORPORATION LIMITED Bonding layers for medical device surface coatings
6001117, Mar 19 1998 Indigo Medical, Inc. Bellows medical construct and apparatus and method for using same
6010529, Dec 03 1996 ATRIUM MEDICAL CORPORATION Expandable shielded vessel support
6010530, Jun 07 1995 BIOMED RESEARCH, INC Self-expanding endoluminal prosthesis
6011125, Sep 25 1998 General Electric Company Amide modified polyesters
6013621, Oct 17 1997 ROCKEFELLER UNIVERSITY, THE Method of treating psychosis and/or hyperactivity
6015541, Nov 03 1997 Covidien LP Radioactive embolizing compositions
6015815, Sep 26 1997 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
6027779, Mar 02 1994 W L GORE & ASSOCIATES, INC Thin-wall polytetrafluoroethylene tube
6033582, Jan 22 1997 Etex Corporation Surface modification of medical implants
6034204, Aug 08 1997 BASF Aktiengesellschaft Condensation products of basic amino acids with copolymerizable compounds and a process for their production
6042875, Apr 30 1997 Schneider (USA) Inc. Drug-releasing coatings for medical devices
6051576, Jan 28 1994 UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION, THE Means to achieve sustained release of synergistic drugs by conjugation
6051648, Dec 18 1995 AngioDevice International GmbH Crosslinked polymer compositions and methods for their use
6054553, Jan 29 1996 LANXESS Deutschland GmbH Process for the preparation of polymers having recurring agents
6056906, Sep 25 1996 Medtronic, Inc. Method of making an intervascular catheter system for implanting a radially expandable stent within a body vessel
6056993, May 30 1997 LifeShield Sciences LLC Porous protheses and methods for making the same wherein the protheses are formed by spraying water soluble and water insoluble fibers onto a rotating mandrel
6060451, Sep 08 1994 NATIONAL RESEARCH COUNCIL OF CANADA, THE Thrombin inhibitors based on the amino acid sequence of hirudin
6060518, Aug 16 1996 SUPRATEK PHARMA INC Polymer compositions for chemotherapy and methods of treatment using the same
6066156, Mar 11 1999 Advanced Cardiovascular Systems, Inc. Temperature activated adhesive for releasably attaching stents to balloons
6080488, Feb 01 1996 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Process for preparation of slippery, tenaciously adhering, hydrophilic polyurethane hydrogel coating, coated polymer and metal substrate materials, and coated medical devices
6083534, Mar 01 1995 Ben-Gurion University of the Negev Pharmaceutical compositions for controlled release of soluble receptors
6095817, Feb 24 1999 Zimmer Dental, Inc Dental implant having multiple textured surfaces
6096070, Jun 07 1995 Cook Medical Technologies LLC Coated implantable medical device
6099562, Jun 13 1996 Boston Scientific Scimed, Inc Drug coating with topcoat
6100346, Mar 06 1995 Ethicon, Inc Copolymers of polyoxaamides
6110188, Mar 09 1998 Ethicon, Inc Anastomosis method
6110483, Jun 23 1997 SURGICAL SPECIALTIES CORPORATION LIMITED Adherent, flexible hydrogel and medicated coatings
6113629, May 01 1998 Micrus Corporation Hydrogel for the therapeutic treatment of aneurysms
6120491, Nov 07 1997 The State University Rutgers Biodegradable, anionic polymers derived from the amino acid L-tyrosine
6120536, Apr 19 1995 Boston Scientific Scimed, Inc Medical devices with long term non-thrombogenic coatings
6120788, Oct 16 1997 ADERANS RESEARCH INSTITUTE, INC Bioabsorbable triglycolic acid poly(ester-amide)s
6120847, Jan 08 1999 Boston Scientific Scimed, Inc Surface treatment method for stent coating
6120904, Feb 01 1995 Schneider (USA) Inc. Medical device coated with interpenetrating network of hydrogel polymers
6121027, Aug 15 1997 Surmodics, Inc Polybifunctional reagent having a polymeric backbone and photoreactive moieties and bioactive groups
6129761, Jun 07 1995 REPROGENESIS, INC Injectable hydrogel compositions
6136333, Jul 11 1996 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd Methods and compositions for reducing or eliminating post-surgical adhesion formation
6139573, Mar 05 1997 LifeShield Sciences LLC Conformal laminate stent device
6143037, Jun 12 1996 MICHIGAN, REGENTS, THE, UNIVERSITY OF Compositions and methods for coating medical devices
6143354, Feb 08 1999 Medtronic, Inc One-step method for attachment of biomolecules to substrate surfaces
6143370, Aug 27 1997 Northeastern University Process for producing polymer coatings with various porosities and surface areas
6153252, Jun 30 1998 Cordis Corporation Process for coating stents
6159978, May 28 1997 AVENTIS PHARMACEUTICALS PRODUCTS INC Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6165210, Apr 01 1994 W L GORE & ASSOCIATES, INC Self-expandable helical intravascular stent and stent-graft
6165212, Oct 21 1993 LIFEPORT SCIENCES LLC Expandable supportive endoluminal grafts
6172167, Jun 28 1996 Dow Global Technologies Inc Copoly(ester-amides) and copoly(ester-urethanes)
6177523, Jul 14 1999 CARDIO TECH INTERNATIONAL, INC Functionalized polyurethanes
6180632, May 18 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6200985, Jun 09 1995 Novartis AG Rapamycin derivatives
6203551, Oct 04 1999 Advanced Cardiovascular Systems, INC Chamber for applying therapeutic substances to an implant device
6206915, Sep 29 1998 Medtronic Ave, Inc Drug storing and metering stent
6211249, Jul 11 1997 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd Polyester polyether block copolymers
6214901, Apr 27 1998 Surmodics, Inc.; Surmodics, Inc Bioactive agent release coating
6221102, Dec 09 1983 STARBOARD VALUE INTERMEDIATE FUND LP, AS COLLATERAL AGENT Intraluminal grafting system
6228934, Jun 09 1998 CJ CheilJedang Corporation Methods and apparatus for the production of amorphous polymer suspensions
6231600, Feb 22 1995 Boston Scientific Scimed, Inc Stents with hybrid coating for medical devices
6240616, Apr 15 1997 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
6245753, May 28 1998 Mediplex Corporation, Korea Amphiphilic polysaccharide derivatives
6245760, May 28 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6248129, Sep 14 1990 Boston Scientific Scimed, Inc Expandable polymeric stent with memory and delivery apparatus and method
6251136, Dec 08 1999 Advanced Cardiovascular Systems, Inc. Method of layering a three-coated stent using pharmacological and polymeric agents
6254632, Sep 28 2000 Advanced Cardiovascular Systems, Inc. Implantable medical device having protruding surface structures for drug delivery and cover attachment
6258121, Jul 02 1999 Boston Scientific Scimed, Inc Stent coating
6258371, Apr 03 1998 JARO, MICHAEL J Method for making biocompatible medical article
6262034, Jun 06 1995 NEUROTECH S A Polymeric gene delivery system
6270788, Apr 03 1998 Medtronic INC Implantable medical device
6273913, Apr 18 1997 Cordis Corporation Modified stent useful for delivery of drugs along stent strut
6277449, Dec 19 1995 Method for sequentially depositing a three-dimensional network
6281225, Jun 11 1998 Cerus Corporation Inhibiting proliferation of arterial smooth muscle cells
6283947, Jul 13 1999 Advanced Cardiovascular Systems, INC Local drug delivery injection catheter
6283949, Dec 27 1999 Advanced Cardiovascular Systems, INC Refillable implantable drug delivery pump
6284305, Jun 13 1996 Schneider (USA) Inc. Drug coating with topcoat
6284788, Feb 21 1997 Bayer Intellectual Property GmbH Use of known agonists of the central cannabinoid receptor CB1
6287337, Dec 03 1996 ATRIUM MEDICAL CORPORATION Multi-stage prosthesis
6287628, Sep 03 1999 Advanced Cardiovascular Systems, INC Porous prosthesis and a method of depositing substances into the pores
6293959, Nov 16 1998 CARDINAL HEALTH SWITZERLAND 515 GMBH Balloon catheter and stent delivery system having enhanced stent retention and method
6299604, Aug 20 1998 Cook Medical Technologies LLC Coated implantable medical device
6306176, Jan 27 1997 SURGICAL SPECIALTIES CORPORATION LIMITED Bonding layers for medical device surface coatings
6309402, Oct 19 1994 Medtronic Vascular, Inc Stent delivery and deployment method
6331313, Oct 22 1999 Allergan, Inc Controlled-release biocompatible ocular drug delivery implant devices and methods
6335029, Aug 28 1998 BOSTON SCIENTIFIC LIMITED Polymeric coatings for controlled delivery of active agents
6344035, Apr 27 1998 Surmodics, Inc. Bioactive agent release coating
6346110, Oct 04 1999 Advanced Cardiovascular Systems, Inc. Chamber for applying therapeutic substances to an implantable device
6358556, Apr 19 1995 Boston Scientific Scimed, Inc Drug release stent coating
6364903, Mar 19 1999 LifeShield Sciences LLC Polymer coated stent
6368346, Jun 03 1999 Boston Scientific Scimed, Inc Bioresorbable stent
6368658, Apr 19 1999 Boston Scientific Scimed, Inc Coating medical devices using air suspension
6379379, May 05 1998 SciMed Life Systems, Inc. Stent with smooth ends
6379381, Sep 03 1999 Advanced Cardiovascular Systems, INC Porous prosthesis and a method of depositing substances into the pores
6384046, Mar 27 1996 ELATA PLC Use of 40-O-(2-hydroxy)ethylrapamycin for treatment of restenosis and other disorders
6387124, Oct 04 1991 SciMed Life Systems, Inc. Biodegradable drug delivery vascular stent
6387379, Apr 10 1987 UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC Biofunctional surface modified ocular implants, surgical instruments, medical devices, prostheses, contact lenses and the like
6395326, May 31 2000 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
6406739, Jan 12 2000 Alcon Inc Coating compositions and methods for reducing edge glare in implantable ophthalmic lenses
6419692, Feb 03 1999 Boston Scientific Scimed, Inc Surface protection method for stents and balloon catheters for drug delivery
6451373, Aug 04 2000 Advanced Cardiovascular Systems, Inc. Method of forming a therapeutic coating onto a surface of an implantable prosthesis
6475235, Nov 16 1999 Vascular Concepts Holdings Limited Encapsulated stent preform
6482834, May 28 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6494862, Jul 13 1999 Advanced Cardiovascular Systems; Advanced Cardiovascular Systems, INC Substance delivery apparatus and a method of delivering a therapeutic substance to an anatomical passageway
6503538, Aug 30 2000 Cornell Research Foundation, Inc Elastomeric functional biodegradable copolyester amides and copolyester urethanes
6503556, Dec 28 2000 Advanced Cardiovascular Systems, INC Methods of forming a coating for a prosthesis
6503954, Mar 31 2000 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing actinomycin D and a method of forming the same
6506437, Oct 17 2000 Advanced Cardiovascular Systems, Inc. Methods of coating an implantable device having depots formed in a surface thereof
6524347, May 28 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6527801, Apr 13 2000 Advanced Cardiovascular Systems, Inc. Biodegradable drug delivery material for stent
6527863, Jun 29 2001 Advanced Cardiovascular Systems, Inc.; Advanced Cardiovascular Systems, INC Support device for a stent and a method of using the same to coat a stent
6528526, May 18 1997 Aventis Pharmaceuticals Inc Quinoline and quinoxaline compounds which inhibit platelet-derived growth factor and/or p56lck tyrosine kinases
6530950, Jan 12 1999 Quanam Medical Corporation Intraluminal stent having coaxial polymer member
6530951, Oct 24 1996 Cook Medical Technologies LLC Silver implantable medical device
6540776, Dec 28 2000 Advanced Cardiovascular Systems, Inc. Sheath for a prosthesis and methods of forming the same
6544223, Jan 05 2001 Advanced Cardiovascular Systems, Inc. Balloon catheter for delivering therapeutic agents
6544543, Dec 27 2000 Advanced Cardiovascular Systems, Inc. Periodic constriction of vessels to treat ischemic tissue
6544582, Jan 05 2001 Advanced Cardiovascular Systems, Inc. Method and apparatus for coating an implantable device
6547819, Jul 10 1995 Endoprosthesis percutaneously implantable in the body of a patient
6555157, Jul 25 2000 Advanced Cardiovascular Systems, INC Method for coating an implantable device and system for performing the method
6558733, Oct 26 2000 Advanced Cardiovascular Systems, Inc.; Advanced Cardiovascular Systems, INC Method for etching a micropatterned microdepot prosthesis
6565659, Jun 28 2001 Advanced Cardiovascular Systems, Inc. Stent mounting assembly and a method of using the same to coat a stent
6572644, Jun 27 2001 Advanced Cardiovascular Systems, Inc. Stent mounting device and a method of using the same to coat a stent
6574497, Dec 22 2000 Advanced Cardiovascular Systems, Inc. MRI medical device markers utilizing fluorine-19
6585755, Jun 29 2001 Advanced Cardiovascular Systems, INC Polymeric stent suitable for imaging by MRI and fluoroscopy
6585765, Jun 29 2000 Advanced Cardiovascular Systems, Inc.; Advanced Cardiovascular Systems, INC Implantable device having substances impregnated therein and a method of impregnating the same
6585926, Aug 31 2000 Advanced Cardiovascular Systems, Inc. Method of manufacturing a porous balloon
6605154, May 31 2001 Advanced Cardiovascular Systems, Inc. Stent mounting device
6610087, Nov 16 1999 Boston Scientific Scimed, Inc Endoluminal stent having a matched stiffness region and/or a stiffness gradient and methods for providing stent kink resistance
6616765, May 31 2000 Advanced Cardiovascular Systems, Inc. Apparatus and method for depositing a coating onto a surface of a prosthesis
6623448, Mar 30 2001 Advanced Cardiovascular Systems, Inc. Steerable drug delivery device
6623764, Dec 20 1996 Aventis Pastuer Limited Biodegradable targetable microparticle delivery system
6625486, Apr 11 2001 Advanced Cardiovascular Systems, Inc. Method and apparatus for intracellular delivery of an agent
6629350, Jun 08 2000 MACHINE SOLUTIONS, INC Stent crimping apparatus and method
6645135, Mar 30 2001 Advanced Cardiovascular Systems, Inc. Intravascular catheter device and method for simultaneous local delivery of radiation and a therapeutic substance
6645195, Jan 05 2001 Advanced Cardiovascular Systems, Inc. Intraventricularly guided agent delivery system and method of use
6652581, Jul 07 1998 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Medical device with porous surface for controlled drug release and method of making the same
6656216, Jun 29 2001 ABBOTT CARDIOVASCULAR SYSTEMS INC Composite stent with regioselective material
6656506, May 09 2001 Advanced Cardiovascular Systems, Inc. Microparticle coated medical device
6660034, Apr 30 2001 Advanced Cardiovascular Systems, Inc.; Advanced Cardiovascular Systems, INC Stent for increasing blood flow to ischemic tissues and a method of using the same
6663662, Dec 28 2000 Advanced Cardiovascular Systems, Inc. Diffusion barrier layer for implantable devices
6663880, Nov 30 2001 Advanced Cardiovascular Systems, Inc. Permeabilizing reagents to increase drug delivery and a method of local delivery
6666880, Jun 19 2001 Advised Cardiovascular Systems, Inc. Method and system for securing a coated stent to a balloon catheter
6673154, Jun 28 2001 Advanced Cardiovascular Systems, Inc. Stent mounting device to coat a stent
6673385, May 03 2000 Advanced Cardiovascular Systems, Inc. Methods for polymeric coatings stents
6689099, Jul 13 1999 Advanced Cardiovascular Systems, Inc. Local drug delivery injection catheter
6695920, Jun 27 2001 Advanced Cardiovascular Systems, Inc. Mandrel for supporting a stent and a method of using the mandrel to coat a stent
6706013, Jun 29 2001 Advanced Cardiovascular Systems, Inc. Variable length drug delivery catheter
6709514, Dec 28 2001 Advanced Cardiovascular Systems, INC Rotary coating apparatus for coating implantable medical devices
6712845, Apr 24 2001 Advanced Cardiovascular Systems, Inc. Coating for a stent and a method of forming the same
6713119, Sep 03 1999 Advanced Cardiovascular Systems, INC; ADVANCED CARDIOVASCULAR SYSTEMS, IN Biocompatible coating for a prosthesis and a method of forming the same
6716444, Sep 28 2000 Advanced Cardiovascular Systems, Inc. Barriers for polymer-coated implantable medical devices and methods for making the same
6723120, Apr 15 1997 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis
6733768, Aug 04 2000 Advanced Cardiovascular Systems, Inc. Composition for coating an implantable prosthesis
6739033, Mar 29 2001 Boston Scientific Scimed, Inc Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece
6740040, Jan 30 2001 Advanced Cardiovascular Systems, Inc. Ultrasound energy driven intraventricular catheter to treat ischemia
6743462, May 31 2001 ADVANCED CARDIOVASCULAR SYSTEM, INC ; Advanced Cardiovascular Systems, INC Apparatus and method for coating implantable devices
6746773, Sep 29 2000 Ethicon, Inc Coatings for medical devices
6749626, Mar 31 2000 Advanced Cardiovascular Systems, Inc. Actinomycin D for the treatment of vascular disease
6753071, Sep 27 2001 Advanced Cardiovascular Systems, Inc. Rate-reducing membrane for release of an agent
6758859, Oct 30 2000 Advanced Cardiovascular Systems, INC Increased drug-loading and reduced stress drug delivery device
6759054, Sep 03 1999 Advanced Cardiovascular Systems, INC Ethylene vinyl alcohol composition and coating
6764505, Apr 12 2001 Advanced Cardiovascular Systems, INC Variable surface area stent
6783543, Jun 05 2000 Boston Scientific Scimed, Inc Intravascular stent with increasing coating retaining capacity
6790228, Dec 23 1999 Advanced Cardiovascular Systems, INC Coating for implantable devices and a method of forming the same
6823576, Sep 22 1999 Boston Scientific Scimed, Inc Method and apparatus for contracting, loading or crimping self-expanding and balloon expandable stent devices
6861088, Mar 28 2002 Boston Scientific Scimed, Inc. Method for spray-coating a medical device having a tubular wall such as a stent
6865810, Jun 27 2002 Boston Scientific Scimed, Inc Methods of making medical devices
6869443, Oct 04 1991 SciMed Life Systems, Inc. Biodegradable drug delivery vascular stent
6878160, Mar 27 2001 Boston Scientific Scimed, Inc Stent with controlled expansion
6887270, Feb 08 2002 Boston Scientific Scimed, Inc Implantable or insertable medical device resistant to microbial growth and biofilm formation
6887485, May 10 2000 METRONIC VASCULAR, INC ; Medtronic Vascular, Inc Nitric oxide-releasing metallic medical devices
6890546, Sep 24 1998 Abbott Laboratories Medical devices containing rapamycin analogs
6899731, Dec 30 1999 SciMed Life Systems, INC Controlled delivery of therapeutic agents by insertable medical devices
6948223, May 03 2002 Medtronic Vascular, Inc Apparatus for mounting a stent onto a stent delivery system
7010850, Mar 29 2001 Boston Scientific Scimed, Inc Thermal regulation of a coated work-piece during the reconfiguration of the coated work-piece
7077859, Dec 22 2000 Avantec Vascular Corporation Apparatus and methods for variably controlled substance delivery from implanted prostheses
7291165, Jan 31 2002 Boston Scientific Scimed, Inc Medical device for delivering biologically active material
7316148, Feb 15 2005 Boston Scientific Scimed, Inc. Protective sheet loader
7591844, Sep 29 2000 Ethicon, Inc Medical devices, drug coatings and methods for maintaining the drug coatings thereon
7682647, Sep 03 1999 Advanced Cardiovascular Systems, Inc. Thermal treatment of a drug eluting implantable medical device
8123793, Sep 10 2008 Boston Scientific Scimed, Inc. Pre-crimp balloon inflation
20010007083,
20010014717,
20010018469,
20010020011,
20010029351,
20010037145,
20010046518,
20010051608,
20020005206,
20020007213,
20020007214,
20020007215,
20020009604,
20020016625,
20020032414,
20020032434,
20020035774,
20020038145,
20020051730,
20020071822,
20020077693,
20020082679,
20020082685,
20020087123,
20020091433,
20020094440,
20020100998,
20020111590,
20020120326,
20020123801,
20020127263,
20020142039,
20020143382,
20020155212,
20020165608,
20020176849,
20020183581,
20020188037,
20020188277,
20030004141,
20030028243,
20030028244,
20030031780,
20030032767,
20030036794,
20030039689,
20030040712,
20030040790,
20030059520,
20030060877,
20030065377,
20030072868,
20030073961,
20030083646,
20030083739,
20030097088,
20030097173,
20030099712,
20030105518,
20030113439,
20030144727,
20030150380,
20030157241,
20030158517,
20030190406,
20030207020,
20030208254,
20030211230,
20040018296,
20040029952,
20040047978,
20040047980,
20040052858,
20040052859,
20040054104,
20040060508,
20040062853,
20040063805,
20040071861,
20040072922,
20040073298,
20040086542,
20040086550,
20040096504,
20040098117,
20040220665,
20050037052,
20050038134,
20050038497,
20050043786,
20050049693,
20050049694,
20050054774,
20050055044,
20050055078,
20050060020,
20050064088,
20050065501,
20050065545,
20050065593,
20050074406,
20050074545,
20050075714,
20050079274,
20050084515,
20050106210,
20050113903,
20050118344,
20050119720,
20050143752,
20050233062,
20050238686,
20070289117,
DE4224401,
EP301856,
EP323042,
EP396429,
EP401747,
EP414632,
EP475230,
EP514406,
EP604022,
EP623354,
EP665023,
EP687008,
EP701802,
EP716836,
EP809999,
EP832655,
EP850651,
EP875218,
EP879595,
EP910584,
EP923953,
EP950386,
EP953320,
EP970711,
EP978288,
EP982041,
EP1023879,
EP1036562,
EP1064942,
EP1192957,
EP1273314,
EP1440699,
EP1470830,
FR2785812,
JP10305105,
JP11299901,
JP2000051367,
JP2001190687,
JP2003210570,
JP2004523275,
JP2005512959,
JP314516,
JP4215768,
JP63160645,
JP821306,
JP833718,
JP985028,
SU1016314,
SU1293518,
SU790725,
SU811750,
SU872531,
SU876663,
SU905228,
WO2599,
WO9085,
WO12147,
WO15208,
WO18446,
WO24390,
WO32234,
WO32238,
WO33878,
WO38590,
WO38703,
WO38754,
WO42949,
WO56247,
WO57818,
WO64506,
WO66122,
WO71052,
WO74665,
WO101890,
WO114387,
WO115751,
WO117577,
WO123395,
WO145763,
WO149338,
WO151027,
WO174414,
WO187372,
WO187373,
WO203890,
WO2056790,
WO2058753,
WO2074194,
WO2102283,
WO226139,
WO226162,
WO234311,
WO3000308,
WO3022323,
WO3028780,
WO3035131,
WO3037223,
WO3080147,
WO3082368,
WO3090818,
WO3097015,
WO3309612,
WO2004000383,
WO2004009145,
WO2004032987,
WO2004060428,
WO2005004945,
WO9001969,
WO9112846,
WO9409760,
WO9413268,
WO9510989,
WO9511817,
WO9524929,
WO9531104,
WO9613273,
WO9628115,
WO9640140,
WO9640174,
WO9703654,
WO9710011,
WO9729793,
WO9731020,
WO9745105,
WO9746590,
WO9802441,
WO9804256,
WO9808463,
WO9809523,
WO9810747,
WO9817331,
WO9823228,
WO9832398,
WO9836784,
WO9838687,
WO9844921,
WO9844922,
WO9901118,
WO9916386,
WO9919471,
WO9919473,
WO9924036,
WO9938546,
WO9939720,
WO9942104,
WO9944584,
WO9944597,
WO9960997,
WO9961040,
WO9963981,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 09 2007Advanced Cardiovascular Systems, INCABBOTT CARDIOVASCULAR SYSTEMS INCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0323080399 pdf
Nov 07 2013Abbott Cardiovascular Systems Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Apr 11 2019M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 26 2023REM: Maintenance Fee Reminder Mailed.
Dec 11 2023EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Oct 13 20184 years fee payment window open
Apr 13 20196 months grace period start (w surcharge)
Oct 13 2019patent expiry (for year 4)
Oct 13 20212 years to revive unintentionally abandoned end. (for year 4)
Oct 13 20228 years fee payment window open
Apr 13 20236 months grace period start (w surcharge)
Oct 13 2023patent expiry (for year 8)
Oct 13 20252 years to revive unintentionally abandoned end. (for year 8)
Oct 13 202612 years fee payment window open
Apr 13 20276 months grace period start (w surcharge)
Oct 13 2027patent expiry (for year 12)
Oct 13 20292 years to revive unintentionally abandoned end. (for year 12)