A low-cost crimping tool is provided for crimping non-metallic tubing such as PEX tubing connections. The tool includes two primary pieces which fit together forming an integral pivot without being pinned together about which the tool may be closed with pliers to form a secure tubing connection.
|
11. A crimping tool for use in crimping a connector crimp ring with non-metallic tubing, said tool comprising:
a. a first jaw having a first end, a second end and a forming surface between said first end and said second end, wherein said forming surface includes a crimping die section; and
b. a second jaw pivotally connected to said first jaw, said second jaw having a first end, a second end, an outer surface and a forming surface between said first end and said second end opposing said forming surface of said first jaw, wherein said forming surface of said second jaw includes a crimping die section in alignment with said crimping die section of said first jaw such that the opposing crimping die sections of said first jaw and said second jaw together form a crimping die, wherein the crimping tool has a centerline from said first ends to said second ends of said first jaw and said second jaw when the first jaw and the second jaw are together to form the crimping die, wherein said crimping die is located closer to said first ends of said first jaw and said second jaw than to said second ends of said first jaw and said second jaw, wherein said second ends of said first jaw and said second jaw include lands adapted to enable squeezing together of said first jaw and said second jaw and wherein a distance from the centerline to the outer surfaces of said first jaw and said second jaw at the crimping die is greater than a distance from the centerline to the outer surfaces of said first jaw and said second jaw at the lands.
0. 24. A crimping tool for use in crimping a connector crimp ring with non-metallic tubing, said tool comprising:
a. a first jaw having a first end, a second end and a forming surface between said first end and said second end, wherein said forming surface includes a crimping die section; and
b. a second jaw pivotally connected to said first jaw, said second jaw having a first end, a second end, an outer surface and a forming surface between said first end and said second end opposing said forming surface of said first jaw, wherein said forming surface of said second jaw includes a crimping die section in alignment with said crimping die section of said first jaw such that the opposing crimping die sections of said first jaw and said second jaw together form a crimping die, wherein the crimping tool has a centerline from said first ends to said second ends of said first jaw and said second jaw when said first jaw and said second jaw are together to form the crimping die, wherein said crimping die is located closer to said first ends of said first jaw and said second jaw than to said second ends of said first jaw and said second jaw, wherein said second ends of said first jaw and said second jaw include lands adapted to enable squeezing together of said first jaw and said second jaw, wherein said lands of said first jaw and said second jaw have gripping surfaces and wherein a distance from the centerline to the outer surfaces of said first jaw and said second jaw at the crimping die is greater than a distance from the centerline to said gripping surfaces of the lands of the first jaw and the second jaw.
1. A crimping tool for use in crimping a connector crimp ring with non-metallic tubing, said tool comprising:
a. a first jaw having a first end, a second end and a forming surface between said first end and said second end, wherein said forming surface includes a plurality of crimping die sections spaced from one another; and
b. a second jaw pivotally connected to said first jaw, said second jaw having a first end, a second end, an outer surface and a forming surface between said first end and said second end opposing said forming surface of said first jaw, wherein said forming surface of said second jaw includes a plurality of crimping die sections spaced from one another and corresponding in number to, and in alignment with, the plurality of crimping die sections of said first jaw such that opposing crimping die sections of said first jaw and said second jaw together form a plurality of crimping dies, wherein the crimping tool has a centerline from said first ends to said second ends of said first jaw and said second jaw when the first jaw and the second jaw are together to form a plurality of crimping dies, wherein a first crimping die adjacent to said first ends of said first jaw and said second jaw is larger than a second crimping die adjacent to said second ends of said first jaw and said second jaw and any intermediate crimping dies between said first crimping die and said second crimping die are smaller than said first crimping die and larger than said second crimping die,
wherein said second ends of said first jaw and said second jaw include lands adapted to enable squeezing together of said first jaw and said second jaw and wherein a distance from the centerline to the outer surfaces of said first jaw and said second jaw at the plurality of crimping dies is greater than a distance from the centerline to the outer surfaces of said first jaw and said second jaw at the lands.
2. The crimping tool of
3. The crimping tool of
4. The crimping tool of
5. The crimping tool of
6. The crimping tool of
7. The crimping tool of
8. The crimping tool of
10. The crimping tool of
12. The crimping tool of
13. The crimping tool of
14. The crimping tool of
15. The crimping tool of
16. The crimping tool of
17. The crimping tool of
18. The crimping tool of
19. The crimping tool of
0. 25. The crimping tool of claim 24 wherein said first jaw and said second jaw are separable from one another.
0. 26. The crimping tool of claim 24 wherein said first jaw and said second jaw are fixedly connected together.
0. 27. The crimping tool of claim 24 wherein said first end of said first jaw includes a protrusion and said first end of said second jaw includes a cavity, wherein said first jaw and said second jaw are pivotally connected together when said protrusion is engaged in said cavity.
0. 28. The crimping tool of claim 24 wherein said first jaw and said second jaw are pivotally connected together with a protrusion of said second jaw.
0. 29. The crimping tool of claim 28, wherein said protrusion is a separable pin.
0. 30. The crimping tool of claim 28 wherein said protrusion is an integral part of said second jaw.
|
The present application is a continuation, and claims the priority benefit, of U.S. Nonprovisional patent application Ser. No. 11/665,105, filed 2007 Apr. 10 by the same inventor, which Nonprovisional Patent Application is a 371 of International Application PCT/US2006/037048, filed 2006 Sep. 22, which PCT application claims the priority benefit of U.S. Provisional Patent Application 60/720,241 filed 2005 Sep. 23 by the same inventor. The entire contents of those applications are incorporated herein by reference.
Not applicable.
This invention relates to an improvement on tools for crimping non-metallic tubing, including plastic tubing, especially cross-linked polyethylene (PEX) tubing.
As with all technologies, the art of plumbing continues to evolve, and with it the tools for effecting it. Currently popular is the use of non-metallic tubing to supplant copper tubing and formerly cast iron pipe in distributing hot, cold and potable water throughout a building. Where iron pipe was threaded and copper pipe was soldered, the polymers used in non-metallic tubing lend themselves well to neither of these connection methods.
Consequently, clamps or compression fittings which can be effected at room temperature are used most commonly to join non-metallic tubing. One such technique, used with plastic tubing, particularly PEX tubing, is to compress or crimp a malleable band around the tubing to create a leak-proof joint. When it was a comparatively new and initially unproven technology, the use of PEX tubing called for new tools and new testing standards before its crimped connections could become trusted and widely used.
These tools are today widely known in the prior art, some of which is discussed below, but all share in common one principle of operation: they all work to compress the malleable band uniformly around its entire circumference. Consequently, they all, in essence, comprise a pair of limber C-shaped crimping sections built uniquely for one single size of tubing. Some comprise more than just two crimping sections, linked together as a chain around the joint to be crimped. They act in concert with a separate power tool or a specialized pliers-like actuator which closes the C-shaped sections around the band and then, by tensile stresses in the sections, compress the band inward. Many elaborations on this theme have evolved, to guarantee precise, proper and complete compression and to afford different actuation mechanisms. A consequence of all this development has been that the available tooling is both cumbersome and expensive.
U.S. Pat. Nos. 6,923,037 to Bowles et al., and 6,477,757 to Viegener disclose details of the complexity of typical actuators. U.S. Pat. No. 6,044,681 to Frenken illustrates a three-segment crimping tool, while U.S. Pat. No. 5,697,135 to Dischler is exemplary of a 5-segment tool. Recently granted U.S. Pat. No. 7,059,166 to Bowles et al. reinforces the currency and commonplace use of C-shaped crimping sections and the delicate, complex measures which are needed in properly closing their sections to effect an adequately crimped connection.
By comparison, the crimping tool described herein is simple, highly convenient to carry and use, well adapted to crimping in cramped locations, and low in cost. Its use obviates the need for elaborate actuators and instead uses commonplace Vise-Grip® pliers, such as are commercially available and offered by Irwin Industrial Tool Company and carried ubiquitously by every plumber or handyman, to effect the crimp. Furthermore, the crimping tool can be used universally for several common diameters of tubing.
Accordingly, several objects and advantages of my invention are to provide a much simpler and more convenient crimping tool, rugged, easy to carry on-the-job in a pocket or tool pouch, and readily closed with common Vise-Grip®-like pliers. Other objects are to provide one tool which may be used on several sizes of tubing, so that separate tools are not necessary. Other advantages will become apparent from the drawings and description that follows.
The following reference numerals correspond to the following items:
10 first crimping jaw
11 top beam surface
12 bottom beam surface
20 second crimping jaw
21 top beam surface
22 bottom beam surface
30 non-metallic tubing
40 crimp ring
50 fitting
60 pivot
61 cylindrical cavity
62 cylindrical protrusion
70 end
80 stop
81 relief
90 chamfer
100 crimping tool assembly
110 first crimping die
120 second crimping die
130 third crimping die
140 lands
150 Vise-Grip® pliers
A general perspective view of the crimping tool assembly 100 in its preferred embodiment may be seen at
Included for reference in
Also included for reference in
From
What can also be seen in
In its most closed position, as shown in
Lands 140 provided at the far ends of each crimping jaw 10 and 20 can be seen as ideally adapted for gripping and closure by pliers, as compared to the elegant and complex ends customary in the prior devices. By extending crimping jaws 10 and 20 far beyond crimping die 110, a substantial mechanical advantage is gained over prior devices. In the preferred embodiment shown, this advantage is approximately 3.6-to-1, whereas prior devices provide little more than a 2-to-1 advantage. A standard set of 10-inch Vise-Grip®-type pliers, coupled with this advantage, provides more than adequate force to complete a properly-dimensioned crimp connection.
In all these views, it can well be understood that crimping jaws 10 and 20 are rigid beams acting as levers, with a fulcrum at pivot 60, a force toward opening exerted by the crimped ring 40 and a force toward closing exerted on ends 70 by plier jaws 150. This beam action is structurally and functionally different from, and much simpler to use than, the prior techniques of crimping the ring by drawing a noose around it involving assembly pins, bolts, springs, elaborate actuators, position sensors and the like.
Unlike existing equipment and methods for crimping non-metallic tubing with tubing connectors, the tool assembly 100 may be purchased as a simple hand tool like a screwdriver or a pair of pliers. Where prior devices dictated expensive and cumbersome lever arms or the need to use hydraulic equipment, tool assembly 100 simply slips over a joint and is closed using ubiquitous Vise-Grip® pliers or the like. Crimping tool assembly 100 is a two-piece tool formed of high-strength steel or comparable material, the two pieces of which are assembled in place around a joint to be crimped and then closed together with pliers applied at any convenient angle to the tool assembly 100 at ends 70. The tool assembly 100 is simple in design, adaptable to several sizes of tubing, of inherently rugged and low-cost construction, and compact enough to easily be carried in a pocket or a small toolbox.
From the foregoing description, it can be appreciated that this invention affords a low cost, convenient crimping tool that can be used to make effective crimp connections in non-metallic tubing such as PEX tubing. It can also be appreciated that numerous modifications to the examples disclosed can be made within the claims of the invention which follow.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
1085461, | |||
2728133, | |||
2774269, | |||
3791189, | |||
4043174, | Sep 27 1976 | American Eyelet Co. Inc. | Wire connector crimping device |
446972, | |||
4536958, | Jun 17 1982 | Merisinter S.p.A. | Twin element, cylindrically disassemblably hinged tool |
6694586, | Oct 26 1999 | Emerson Electric Co | Press tool for connecting workpieces by cold forming |
6923037, | Jun 17 2002 | Emerson Electric Co. | Assembly for articulating crimp ring and actuator |
839651, | |||
20050241359, | |||
20080022748, | |||
20080216543, | |||
D455060, | Apr 23 2001 | AWI Acquisition Company | Pliers head |
D685239, | Sep 01 2011 | Oetiker Tool Corporation | Crimping tool |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jan 13 2016 | M3551: Payment of Maintenance Fee, 4th Year, Micro Entity. |
Sep 30 2019 | M3552: Payment of Maintenance Fee, 8th Year, Micro Entity. |
Aug 18 2023 | M3553: Payment of Maintenance Fee, 12th Year, Micro Entity. |
Date | Maintenance Schedule |
Nov 24 2018 | 4 years fee payment window open |
May 24 2019 | 6 months grace period start (w surcharge) |
Nov 24 2019 | patent expiry (for year 4) |
Nov 24 2021 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 24 2022 | 8 years fee payment window open |
May 24 2023 | 6 months grace period start (w surcharge) |
Nov 24 2023 | patent expiry (for year 8) |
Nov 24 2025 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 24 2026 | 12 years fee payment window open |
May 24 2027 | 6 months grace period start (w surcharge) |
Nov 24 2027 | patent expiry (for year 12) |
Nov 24 2029 | 2 years to revive unintentionally abandoned end. (for year 12) |