In a method for capturing three-dimensional data of an area of space, a plurality of measuring beams (Ls) are sent out to a plurality of measuring points. A detector (50) receives a plurality of reflected beams (Lr) which are reflected by the measuring points (34a). A plurality of distances to the measuring points (34a, 34b) are determined as a function of the reflected beams (Lr). According to one aspect of the invention, at least one object (30) which comprises a hidden channel (66) having a visible entry opening (72) is located in the area of space. A rod-shaped element (32) is inserted into the channel (66) in such a manner that a free end proximal portion (70) protrudes from the entry opening (72). A first distance to a first measuring point (34a) and a second distance to a second measuring point (34b) are determined. An orientation (74) of the hidden channel (66) is determined as a function of the first and the second distances.
|
1. A method for capturing three-dimensional data of an area of space, comprising:
providing a laser scanner comprising a transmitter and a receiver,
sending out a plurality of measuring beams (Ls) by means of the transmitter to a plurality of measuring points in the area of space,
receiving a plurality of reflected beams (Lr) which are reflected by the measuring points, and
determining a plurality of distances to the plurality of measuring points as a function of the reflected beams (Lr),
determining for each measuring point of the plurality of measuring points a gray scale value that depends on an intensity of respective ones of the plurality of reflected beams (Lr), and
recording a cloud of points, representative of the plurality of measuring points in the area of space, determined as a function of the plurality of distances and respective gray scale values,
wherein the area of space comprises at least one object which contains a hidden channel having a visible entry opening, a rod-shaped element being inserted into the channel in such a manner that a free end proximal portion of the rod-shaped element protrudes from the entry opening, a first distance the rod-shaped element comprising a defined geometric shape having a first three-dimensional coordinate and at least one second three-dimensional coordinate in the area of space, an ideal image of the geometric shape being matched to the cloud of points that represents measuring points of the geometric shape, the first three-dimensional coordinate to a first measuring point at the free end proximal portion and at least one second distance the at least one second three-dimensional coordinate to a second measuring point at the free end proximal portion being determined using the ideal image that is matched to the cloud of points that represent measuring points of the geometric shape, and an orientation of the hidden channel being determined as a function of a vector between the first and second distance three-dimensional coordinates.
13. An apparatus structured to capture three-dimensional data of an area of space, comprising:
a laser scanner having a transmitter and a receiver, the transmitter being configured for sending out a plurality of measuring beams (Ls) to a plurality of measuring points in the area of space, and the receiver being configured to receive a plurality of reflected beams (Lr) which are reflected by the measuring points and, to determine a plurality of distances to the plurality of measuring points as a function of the reflected beams (Lr), to determine for each measuring point of the plurality of measuring points a gray scale value that depends on an intensity of respective ones of the plurality of reflected beams (Lr), and to record a cloud of points, representative of the plurality of measuring points in the area of space, determined as a function of the plurality of distances and respective gray scale values, and
a rod-shaped element comprising a defined geometric shape,
wherein the receiver is also arranged configured for determining an orientation of a hidden channel at an object in the area of space, wherein a the rod-shaped element has a free end proximal portion which protrudes from an entry opening of the hidden channel,
wherein the receiver is configured for: matching an ideal image of the geometric shape to the cloud of points that represent measuring points of the geometric shape, the geometric shape having a first three-dimensional coordinate and at least one second three-dimensional coordinate in the area of space; determining a first distance the first three-dimensional coordinate to a first measuring point at the free end proximal portion and at least one second distance the at least one second three-dimensional coordinate to a second measuring point at the free end proximal portion using the ideal image that is matched to the cloud of points that represent measuring points of the geometric shape; and, determining the orientation of the hidden channel as a function of a vector between the first and second three-dimensional coordinates.
2. The method according to
3. The method according to
4. The method according to
5. The method according to
6. The method according to claim 1 2, wherein the at least one body has an elongated shape, particularly a cylindrical shape.
7. The method according to
8. The method according to
9. The method according to
10. The method according to
11. The method according to claim 1 2, wherein the rod-shaped element comprises a marking in the distal area portion, which marking has more reflective and less reflective sections.
12. The method according to
14. The apparatus according to
|
This is a U.S. national stage of application No. PCT/EP2007/005789, filed on 29 Jun. 2007. Priority under 35 U.S.C. §119(a) and 35 U.S.C. §365(b) is claimed from German Application No. 10 2006 031 580.4, filed 3 Jul. 2006, the disclosure of which is also incorporated herein by reference.
The present invention relates to a method for capturing three-dimensional data of an area of space, comprising the steps of:
The invention also relates to an apparatus for capturing three dimensional data of an area of space, comprising a laser scanner having a transmitter and a receiver, the transmitter being configured for sending out a plurality of measuring beams to a plurality of measuring points in the area of space, the receiver being configured for receiving a plurality of reflected beams which are reflected by the measuring points and for determining a plurality of distances to the plurality of measuring points as a function of the reflected beams.
Such a method and such an apparatus are known, for example, from DE 103 61 870 B4.
This document discloses a laser scanner comprising a measuring head which holds a rotor rotatably supported. The rotor is rotated about a horizontal axis whilst sending out a plurality of laser beams. Due to the rotation of the rotor, the laser beams are sent out into a plurality of directions in space which cover an elevation angle of 270° or more. In addition, the measuring head is rotated about a vertical axis so that the laser beams sent out almost completely scan the surrounding area of space. In the measuring head, a receiver is arranged which receives the reflected beams reflected from object points in the area of space and which determines the distances to the object points by means of a difference in delay time between the beams sent out and the received beams. In addition, the receiver generates for each measuring point a gray scale value which depends on the intensity of the reflected measuring beam. Altogether, this known laser scanner can be used for recording a three-dimensional image of an area of space, the plurality of gray scale values producing an all-rotund image which is comparable to a black/white recording of the area of space. In addition, a distance information item is provided for each measuring point so that the area of space can be examined more accurately, surveyed and/or documented later by means of the recorded data. A typical application for such a laser scanner is the surveying of factory halls in which, for example, a new production line is to be planned and set up. In another known application, such a laser scanner is moved through a tunnel tube (if necessary without rotation about the vertical axis) in order to check, e.g., the state of the tunnel and determine the clear width at every point in the tunnel.
In principle, such a laser scanner is suitable for capturing three-dimensional data of any area of space which is bounded by objects such as walls or natural obstacles. The relatively fast and extensive data acquisition including an “optical image” of the area of space in an all-round view also allows such a laser scanner to be advantageous for forensic applications, i.e. the coverage and documentation of crime scenes. However, forensic coverage of a crime scene requires further information which cannot be supplied by laser scanners hitherto known. This includes primarily information about the location and the course of bullet channels produced when a projectile penetrates into a wall or into another obstacle.
For the forensic coverage of bullet channels, rods marked with end portion 68 (best seen with reference to FIG. 2) into the opening of the channel. At the free a freely protruding proximal end portion 70 (best seen with reference to FIG. 2) of the rod-shaped element 32, a body in the form of a sphere 34 is arranged here.
Reference number 36 designates a person who stands at a position in the area of space 38 from which a shot has presumably been fired, the projectile of which has created the hidden channel in the object 30. This position can be determined from the orientation of the hidden channel by means of the novel method and the novel apparatus.
The measuring head 12 has a base 40 on which two support walls 42, 44 are arranged vertically. The support wall 42, together with a housing part 46, forms an internal space in which a light transmitter 48 and a detector 50 are arranged. The light transmitter 48 is here a laser diode, the detector 50 comprises a plurality of light-sensitive elements in a matrix-type arrangement.
Reference number 52 designates an evaluation and control unit which contains a PC-based computing unit in a preferred embodiment. The evaluation and control unit 52 drives the light transmitter 48 in such a manner that it generates a modulated measuring beam Ls. In addition, the evaluation and control unit 52 reads out the detector 50 for determining the distance d and the light intensity of the reflected light beam Lr.
The rotor 20 here carries a mirror 54 which is arranged opposite the transmitter 48 and the detector 50 and which is inclined by 45° with respect to the latter. The rotor 20 is connected to a drive 56 which produces a rotation of the mirror 54 about the horizontal axis 22. Due to this rotation, the measuring beam Ls is deflected along a vertical circular area in the area of space 38.
As already mentioned with respect to
Reference number 66 designates a hidden channel in the object 30, for example a wall. According to an illustrative embodiment of the invention, the distal end portion 68 of the rod-shaped element 32 is pushed into the channel 66. The proximal end portion 70 of the rod-shaped element 32 protrudes from the entry or exit opening 72 of the channel 66. At the proximal end portion 70, two spheres 34a, 34b are arranged here as will still be described in greater detail by means of
The rod-shaped element 32 defines a longitudinal axis 74 which corresponds to the orientation of the hidden channel 66. This orientation can be determined in an automated manner by means of the two spheres 34a, 34b by determining the position of the two spheres 34a, 34b by means of the laser scanner 10. The positions of the spheres can be used for determining a vector which represents the orientation 74.
In one illustrative embodiment, the spheres 34a, 34b are of polystyrene and are pushed onto the rod of the rod rod-shaped element 32. The spheres 34a, 34b can be movable on the rod or can be fixed in their respective position, for example by bonding.
Each sphere 34a, 34b has a center point 76a, 76b of the sphere which is determined in preferred illustrative embodiments of the novel method. As shown in
In the text which follows, a preferred illustrative embodiment of the novel method is described by means of
Once all measurement data have been recorded, the body or bodies on the rod-shaped element 32, such as, for example, the spheres 34a, 34b, is/are identified according to step 106. Following this, the coordinates of the center points 76a, 76b are determined according to step 108. In preferred embodiments, this is done by fitting ideal spheres into the “clouds of points” which were recorded by means of the laser scanner 10. For example, the fitting-in can take place in accordance with the method of least squares. Following this, the center point coordinates of the spheres fitted in are calculated.
From the center point coordinates calculated, the orientation 74 is determined according to step 110. Following this, the assumed position of the gunman who has fired a projectile which has formed the (bullet) channel 66 is determined according to step 112. For this purpose, a position or position range is sought along the orientation 74 at which a “typical height” above ground intersects the orientation 74. The typical height is within the range of between about 1 m and 1.80 m. As an alternative or additionally, the assumed position of the gunman can be determined by inserting an image of a person along the orientation 74 into the image of the area of space which was recorded by means of the laser scanner 10 (from the intensities of the reflected beams). In further illustrative embodiments, a person 36 can be recorded during the scanning of the area of space 38 so that the coordinates of the person 36 can be compared with the orientation 74.
Becker, Reinhard, Becker, Bernd-Dietmar, Gittinger, Juergen
Patent | Priority | Assignee | Title |
10782118, | Feb 21 2018 | FARO TECHNOLOGIES, INC | Laser scanner with photogrammetry shadow filling |
10983218, | Jun 01 2016 | VELODYNE LIDAR USA, INC | Multiple pixel scanning LIDAR |
11073617, | Mar 19 2016 | VELODYNE LIDAR USA, INC | Integrated illumination and detection for LIDAR based 3-D imaging |
11082010, | Nov 06 2018 | VELODYNE LIDAR USA, INC | Systems and methods for TIA base current detection and compensation |
11137480, | Jan 31 2016 | VELODYNE LIDAR USA, INC | Multiple pulse, LIDAR based 3-D imaging |
11215597, | Apr 11 2017 | AGERPOINT, INC. | Forestry management tool for assessing risk of catastrophic tree failure due to weather events |
11294041, | Dec 08 2017 | VELODYNE LIDAR USA, INC | Systems and methods for improving detection of a return signal in a light ranging and detection system |
11550036, | Jan 31 2016 | VELODYNE LIDAR USA, INC | Multiple pulse, LIDAR based 3-D imaging |
11550056, | Jun 01 2016 | VELODYNE LIDAR USA, INC | Multiple pixel scanning lidar |
11561305, | Jun 01 2016 | VELODYNE LIDAR USA, INC | Multiple pixel scanning LIDAR |
11698443, | Jan 31 2016 | VELODYNE LIDAR USA, INC | Multiple pulse, lidar based 3-D imaging |
11703569, | May 08 2017 | VELODYNE LIDAR USA, INC | LIDAR data acquisition and control |
11796648, | Sep 18 2018 | VELODYNE LIDAR USA, INC | Multi-channel lidar illumination driver |
11808854, | Jun 01 2016 | VELODYNE LIDAR USA, INC | Multiple pixel scanning LIDAR |
11808891, | Mar 31 2017 | VELODYNE LIDAR USA, INC | Integrated LIDAR illumination power control |
11822012, | Jan 31 2016 | VELODYNE LIDAR USA, INC | Multiple pulse, LIDAR based 3-D imaging |
11874377, | Jun 01 2016 | VELODYNE LIDAR USA, INC | Multiple pixel scanning LIDAR |
11885916, | Dec 08 2017 | Velodyne LIDAR USA, Inc. | Systems and methods for improving detection of a return signal in a light ranging and detection system |
11885958, | Jan 07 2019 | VELODYNE LIDAR USA, INC | Systems and methods for a dual axis resonant scanning mirror |
11906670, | Jul 01 2019 | VELODYNE LIDAR USA, INC | Interference mitigation for light detection and ranging |
RE47942, | Jul 13 2006 | VELODYNE LIDAR USA, INC | High definition lidar system |
RE48490, | Jul 13 2006 | VELODYNE LIDAR USA, INC | High definition LiDAR system |
RE48491, | Jul 13 2006 | VELODYNE LIDAR USA, INC | High definition lidar system |
RE48503, | Jul 13 2006 | VELODYNE LIDAR USA, INC | High definition LiDAR system |
RE48504, | Jul 13 2006 | VELODYNE LIDAR USA, INC | High definition LiDAR system |
RE48666, | Jul 13 2006 | VELODYNE LIDAR USA, INC | High definition LiDAR system |
RE48688, | Jul 13 2006 | VELODYNE LIDAR USA, INC | High definition LiDAR system |
Patent | Priority | Assignee | Title |
5898484, | May 30 1997 | Hand-held distance-measurement device with an enhanced viewfinder | |
6675122, | Apr 19 1999 | Leica Geosystems AG | Indirect position determination with the aid of a tracker |
7230689, | Aug 26 2002 | Multi-dimensional measuring system | |
7242590, | Mar 15 2006 | Agilent Technologies, Inc. | Electronic instrument system with multiple-configuration instrument modules |
7246030, | Feb 14 2002 | Faro Technologies, Inc. | Portable coordinate measurement machine with integrated line laser scanner |
7249421, | Dec 22 2005 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Hysteresis compensation in a coordinate measurement machine |
7256899, | Oct 04 2006 | PATENT ARMORY INC | Wireless methods and systems for three-dimensional non-contact shape sensing |
7269910, | Feb 14 2002 | Faro Technologies, Inc. | Method for improving measurement accuracy of a portable coordinate measurement machine |
7285793, | Jul 15 2005 | Verisurf Software, Inc.; VERISURF SOFTWARE INC | Coordinate tracking system, apparatus and method of use |
7296364, | Jul 23 2004 | Carl Zeiss Industrielle Messtechnik GmbH | Sensor module for a probe head of a tactile coordinated measuring machine |
7296955, | Feb 23 2006 | DREIER TECHNOLOGY GMBH | Device for examining the precision of a circular path which is to be executed by a working spindle |
7296979, | Feb 26 2002 | Faro Technologies Inc | Stable vacuum mounting plate adapter |
7306339, | Feb 01 2005 | FARO TECHNOLOGIES, INC | Laser projection with object feature detection |
7307701, | Oct 30 2003 | Raytheon Company | Method and apparatus for detecting a moving projectile |
7312862, | Mar 29 2005 | Leica Geosystems AG | Measurement system for determining six degrees of freedom of an object |
7313264, | Jul 26 1995 | 3D Scanners Limited | Scanning apparatus and method |
7319512, | Jun 10 2004 | Kabushiki Kaisha Topcon | Surveying instrument |
7330242, | Nov 21 2003 | FERROTRON TECHNOLOGIES, GMBH | System for recording an object space |
7337344, | Jan 31 2003 | FLIR COMMERCIAL SYSTEMS, INC | Methods and apparatus for synchronizing devices on different serial data buses |
7342650, | Oct 12 2002 | Leica Geosystems AG | Electronic display and control device for a measuring device |
7348822, | Jan 30 2006 | Keysight Technologies, Inc | Precisely adjusting a local clock |
7352446, | Sep 30 2004 | Faro Technologies, Inc. | Absolute distance meter that measures a moving retroreflector |
7360648, | Sep 15 2004 | AA & E LEATHERCRAFT LLC | Gun protector |
7372558, | Oct 11 2001 | FARO TECHNOLOGIES, INC | Method and system for visualizing surface errors |
7372581, | Apr 11 2005 | FARO TECHNOLOGIES, INC | Three-dimensional coordinate measuring device |
7383638, | Oct 21 2005 | Romer | System for identifying the position of three-dimensional machine for measuring or machining in a fixed frame of reference |
7388654, | Feb 24 2004 | Faro Technologies, Inc.; FARO TECHNOLOGIES, INC | Retroreflector covered by window |
7389870, | Dec 05 2005 | Robert, Slappay | Instrument caddy with anti-magnetic shield |
7395606, | Apr 28 2003 | NIKON METROLOGY N V | CMM arm with exoskeleton |
7400384, | Apr 12 2005 | Lockheed Martin Corporation | Method and apparatus for varying pixel spatial resolution for ladar systems |
7403268, | Feb 11 2005 | UATC, LLC | Method and apparatus for determining the geometric correspondence between multiple 3D rangefinder data sets |
7403269, | Feb 04 2004 | HOKUYO AUTOMATIC CO , LTD | Scanning rangefinder |
7430068, | Dec 29 2003 | FARO TECHNOLOGIES, INC | Laser scanner |
7430070, | Mar 29 2006 | The Boeing Company | Method and system for correcting angular drift of laser radar systems |
7441341, | Jan 14 2004 | Romer, Inc. | Automated robotic measuring system |
7443555, | Sep 15 2005 | Fraunhofer-Gesellschaft zur Forderung der Angewandten Forschung E.V. | Laser scanner |
7447931, | Dec 09 2005 | Rockwell Automation Technologies, Inc. | Step time change compensation in an industrial automation network |
7449876, | May 03 2006 | Keysight Technologies, Inc | Swept-frequency measurements with improved speed using synthetic instruments |
7454265, | May 10 2006 | The Boeing Company | Laser and Photogrammetry merged process |
7463368, | Sep 10 2003 | Nikon Metrology NV | Laser projection system, intelligent data correction system and method |
7477359, | Feb 11 2005 | UATC, LLC | Method and apparatus for making and displaying measurements based upon multiple 3D rangefinder data sets |
7477360, | Feb 11 2005 | UATC, LLC | Method and apparatus for displaying a 2D image data set combined with a 3D rangefinder data set |
7480037, | Dec 02 2005 | The Boeing Company | System for projecting flaws and inspection locations and associated method |
7508496, | Nov 16 2004 | Z+F ZOLLER & FROEHLICH GMBH | Method for driving a laser scanner |
7508971, | May 28 2004 | The Boeing Company | Inspection system using coordinate measurement machine and associated method |
7515256, | Oct 18 2002 | Kabushiki Kaisha Topcon | Position measuring instrument |
7525276, | Sep 13 2005 | HEXAGON METROLOGY, INC | Vehicle having an articulator |
7527205, | Jun 07 1999 | Metrologic Instruments, Inc. | Automated package dimensioning system |
7528768, | Jun 13 2007 | Mitsubishi Electric Corporation | Radar device |
7541830, | Dec 30 2002 | Robert Bosch GmbH | Device for a line termination of two-wire lines |
7545517, | Sep 10 2003 | Nikon Metrology NV | Laser projection systems and methods |
7546689, | Jul 09 2007 | Hexagon Metrology AB | Joint for coordinate measurement device |
7551771, | Sep 20 2005 | UATC, LLC | Methods, systems, and computer program products for acquiring three-dimensional range information |
7552644, | Oct 30 2003 | Hottinger Baldwin Messtechnik GmbH | Device for determining strains on fiber composite components |
7557824, | Dec 18 2003 | CORTLAND CAPITAL MARKET SERVICES LLC, AS THE SUCCESSOR COLLATERAL AGENT | Method and apparatus for generating a stereoscopic image |
7561598, | Sep 13 2004 | Keysight Technologies, Inc | Add-on module for synchronizing operations of a plurality of devices |
7564250, | Jan 31 2006 | Onset Computer Corporation | Pulsed methods and systems for measuring the resistance of polarizing materials |
7568293, | May 01 2006 | Hexagon Metrology AB | Sealed battery for coordinate measurement machine |
7578069, | Jan 14 2004 | Hexagon Metrology, Inc. | Automated robotic measuring system |
7589595, | Aug 18 2006 | Keysight Technologies, Inc | Distributing frequency references |
7589825, | Nov 11 2002 | Qinetiq Limited | Ranging apparatus |
7591077, | Apr 27 2004 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Coordinate measuring machine |
7591078, | Apr 28 2003 | NIKON METROLOGY N V | CMM arm with exoskeleton |
7599106, | Nov 21 2003 | Hamamatsu Photonics K.K. | Optical mask and MOPA laser apparatus including the same |
7600061, | Mar 23 2005 | 138 EAST LCD ADVANCEMENTS LIMITED | Data transfer control device and electronic instrument |
7602873, | Dec 23 2005 | Keysight Technologies, Inc | Correcting time synchronization inaccuracy caused by asymmetric delay on a communication link |
7604207, | Mar 19 2002 | FARO TECHNOLOGIES, INC | Tripod and method |
7610175, | Feb 06 2006 | Keysight Technologies, Inc | Timestamping signal monitor device |
7614157, | Apr 20 2005 | Romer | Articulated-arm three-dimensional measurement apparatus having a plurality of articulated axes |
7624510, | Dec 22 2006 | HEXAGON METROLOGY, INC | Joint axis for coordinate measurement machine |
7625335, | Aug 25 2000 | 3Shape ApS | Method and apparatus for three-dimensional optical scanning of interior surfaces |
7626690, | Sep 26 2006 | Kabushiki Kaisha Topcon | Laser scanner |
7656751, | Dec 09 2005 | Rockwell Automation Technologies, Inc. | Step time change compensation in an industrial automation network |
7659995, | Sep 13 2000 | Nextpat Limited | Digitizer using plural capture methods to image features of 3-D objects |
7693325, | Jan 14 2004 | HEXAGON METROLOGY, INC | Transprojection of geometry data |
7697748, | Jul 06 2004 | Topcon Positioning Systems, Inc | Method and apparatus for high resolution 3D imaging as a function of camera position, camera trajectory and range |
7701592, | Dec 17 2004 | The Boeing Company | Method and apparatus for combining a targetless optical measurement function and optical projection of information |
7712224, | Oct 03 2007 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Validating the error map of CMM using calibrated probe |
7721396, | Jan 09 2007 | STABLE SOLUTIONS LLC | Coupling apparatus with accessory attachment |
7728833, | Aug 18 2004 | SRI International | Method for generating a three-dimensional model of a roof structure |
7728963, | Nov 19 2004 | Leica Geosystems AG | Method for determining the orientation of an orientation indicator |
7733544, | Dec 29 2003 | FARO TECHNOLOGIES, INC | Laser scanner |
7735234, | Aug 31 2006 | FARO TECHNOLOGIES, INC | Smart probe |
7743524, | Nov 20 2006 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Coordinate measurement machine with improved joint |
7752003, | Jun 27 2008 | HEXAGON METROLOGY, INC | Hysteresis compensation in a coordinate measurement machine |
7756615, | Jul 26 2005 | MACDONALD, DETTWILER AND ASSOCIATES INC | Traffic management system for a passageway environment |
7765707, | Jul 10 2008 | Nikon Metrology NV | Connection device for articulated arm measuring machines |
7769559, | Nov 22 2004 | Teradyne, Inc. | Instrument with interface for synchronization in automatic test equipment |
7774949, | Sep 28 2007 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Coordinate measurement machine |
7777761, | Feb 11 2005 | UATC, LLC | Method and apparatus for specifying and displaying measurements within a 3D rangefinder data set |
7779548, | Mar 28 2008 | HEXAGON METROLOGY, INC | Coordinate measuring machine with rotatable grip |
7779553, | Apr 03 2007 | Hexagon Metrology AB | Oscillating scanning probe with constant contact force |
7784194, | Nov 30 2006 | FARO TECHNOLOGIES, INC | Portable coordinate measurement machine |
7787670, | May 11 2004 | Canon Kabushiki Kaisha | Radiation imaging device for correcting body movement, image processing method, and computer program |
7793425, | Jul 26 2005 | MakeX Limited | Coordinate measuring machine |
7798453, | Sep 07 2007 | QUICKSET DEFENSE TECHNOLOGIES, LLC | Boresight apparatus and method of use |
7800758, | Jul 23 1999 | FARO TECHNOLOGIES, INC | Laser-based coordinate measuring device and laser-based method for measuring coordinates |
7804602, | Jun 23 2005 | FARO TECHNOLOGIES, INC | Apparatus and method for relocating an articulating-arm coordinate measuring machine |
7805851, | Apr 07 2008 | Leica Geosystems AG | Articulated arm coordinate measuring machine |
7805854, | May 15 2006 | HEXAGON METROLOGY, INC | Systems and methods for positioning and measuring objects using a CMM |
7809518, | Dec 17 2008 | Keysight Technologies, Inc | Method of calibrating an instrument, a self-calibrating instrument and a system including the instrument |
7834985, | Dec 07 2004 | Instro Precision Limited | Surface profile measurement |
7847922, | Jul 03 2006 | FARO TECHNOLOGIES, INC | Method and an apparatus for capturing three-dimensional data of an area of space |
7869005, | Feb 01 2008 | FARO TECHNOLOGIES, INC | Method and device for determining a distance from an object |
7881896, | Feb 14 2002 | FARO TECHNOLOGIES, INC | Portable coordinate measurement machine with integrated line laser scanner |
7889324, | Dec 25 2007 | Casio Computer Co., Ltd. | Distance measuring system and projector |
7891248, | Sep 07 2005 | Rolls-Royce plc | Apparatus for measuring wall thicknesses of objects |
7900714, | Jan 23 2001 | Black & Decker Inc. | Power tool with torque clutch |
7903245, | Aug 20 2007 | Multi-beam optical probe and system for dimensional measurement | |
7903261, | Dec 17 2004 | The Boeing Company | Controlling a projected pattern |
7908757, | Oct 16 2008 | HEXAGON METROLOGY, INC | Articulating measuring arm with laser scanner |
7933055, | Aug 18 2006 | Leica Geosystems AG | Laser scanner |
7935928, | Feb 07 2003 | Robert Bosch GmbH | Device and method for producing images |
7965747, | Jun 30 2008 | Seiko Epson Corporation | Laser light source apparatus |
7982866, | Dec 16 2003 | Trimble Jena GmbH | Calibration of a surveying instrument |
7990397, | Oct 13 2006 | Leica Geosystems AG | Image-mapped point cloud with ability to accurately represent point coordinates |
7994465, | Feb 06 2006 | Microsoft Technology Licensing, LLC | Methods and devices for improved charge management for three-dimensional and color sensing |
7995834, | Jan 20 2006 | Nextpat Limited | Multiple laser scanner |
8001697, | Jan 20 2010 | Faro Technologies, Inc. | Counter balance for coordinate measurement device |
8020657, | Oct 21 2005 | iRobot Corporation | Systems and methods for obstacle avoidance |
8022812, | Jul 17 2007 | Hitachi, Ltd. | Information collection system and information collection robot |
8028432, | Jan 20 2010 | Faro Technologies, Inc. | Mounting device for a coordinate measuring machine |
8036775, | Oct 27 2005 | Hitachi, Ltd. | Obstacle avoidance system for a user guided mobile robot |
8045762, | Sep 25 2006 | Kabushiki Kaisha Topcon | Surveying method, surveying system and surveying data processing program |
8051710, | Nov 28 2007 | NUOVO PIGNONE TECHNOLOGIE S R L | Method and apparatus for balancing a rotor |
8052857, | Sep 26 2002 | Barrett Technology, LLC | Process for anodizing a robotic device |
8064046, | Jan 27 2009 | FARO TECHNOLOGIES, INC | Method and device for determining a distance from an object |
8065861, | Jan 07 2008 | LEVOLOR, INC | Blind packaging |
8082673, | Nov 06 2009 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Systems and methods for control and calibration of a CMM |
8099877, | Nov 06 2009 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Enhanced position detection for a CMM |
8117668, | Apr 27 2006 | 3D SCANNERS LTD | Optical scanning probe |
8123350, | Jun 03 2003 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Computerized apparatus and method for applying graphics to surfaces |
8152071, | Feb 08 2008 | Zebra Technologies Corporation | Multi-purpose portable computer with integrated devices |
8171650, | Jan 20 2010 | FARO TECHNOLOGIES, INC | Intelligent repeatable arm mounting system |
8179936, | Jun 14 2007 | TRUMPF Schweiz AG | Gas-cooled laser device |
8218131, | Sep 22 2006 | Kabushiki Kaisha Topcon | Position measuring system, position measuring method and position measuring program |
8224032, | Nov 14 2005 | PILZ GMBH & CO KG | Apparatus and method for monitoring a spatial area, in particular for safeguarding a hazardous area of an automatically operated installation |
8260483, | Jul 26 2005 | MACDONALD, DETTWILER AND ASSOCIATES INC | Guidance, navigation, and control system for a vehicle |
8269984, | Oct 26 2007 | Leica Geosystems AG | Distance-measuring method for a device projecting a reference line, and such a device |
8276286, | Jan 20 2010 | FARO TECHNOLOGIES, INC | Display for coordinate measuring machine |
8284407, | Jan 20 2010 | Faro Technologies, Inc. | Coordinate measuring machine having an illuminated probe end and method of operation |
8310653, | Dec 25 2008 | Kabushiki Kaisha Topcon | Laser scanner, laser scanner measuring system, calibration method for laser scanner measuring system and target for calibration |
8321612, | Apr 22 2005 | Robert Bosch GmbH | Method and device for synchronizing two bus systems by transmission of a time associated trigger signal from one system to another |
8346392, | Dec 27 2007 | Leica Geosystems AG | Method and system for the high-precision positioning of at least one object in a final location in space |
8346480, | Mar 16 2006 | SAMSUNG ELECTRONICS CO , LTD | Navigation and control system for autonomous vehicles |
8352212, | Nov 18 2009 | HEXAGON METROLOGY, INC | Manipulable aid for dimensional metrology |
8353059, | Apr 27 2006 | Metris N.V. | Optical scanning probe |
8379191, | Jun 23 2004 | Leica Geosystems AG | Scanner system and method for registering surfaces |
8381704, | Mar 25 2008 | Rolls-Royce Solutions GmbH | Method for assigning addresses to injectors |
8384914, | Jul 22 2009 | FARO TECHNOLOGIES, INC | Device for optically scanning and measuring an environment |
8391565, | May 24 2010 | BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS | System and method of determining nitrogen levels from a digital image |
8402669, | Nov 06 2009 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Articulated arm |
8422035, | Oct 26 2007 | Leica Geosystems AG | Distance-measuring method for a device projecting a reference line, and such a device |
8497901, | Apr 03 2007 | HEXAGON AB; HEXAGON TECHNOLOGY CENTER GMBH | Method and device for exact measurement of objects |
8533967, | Jan 20 2010 | Faro Technologies, Inc. | Coordinate measurement machines with removable accessories |
8537374, | Jan 20 2010 | Faro Technologies, Inc. | Coordinate measuring machine having an illuminated probe end and method of operation |
8619265, | Mar 14 2011 | FARO TECHNOLOGIES, INC | Automatic measurement of dimensional data with a laser tracker |
8645022, | Jul 15 2004 | HITACHI ASTEMO, LTD | Vehicle control system |
8659748, | Feb 15 2011 | RD2, LLC | Scanning non-scanning LIDAR |
8659752, | Oct 25 2010 | FARO TECHNOLOGIES, INC | Automated warm-up and stability check for laser trackers |
8661700, | Aug 31 2006 | Faro Technologies, Inc. | Smart probe |
8677643, | Jan 20 2010 | FARO TECHNOLOGIES, INC | Coordinate measurement machines with removable accessories |
8683709, | Jan 20 2010 | Faro Technologies, Inc. | Portable articulated arm coordinate measuring machine with multi-bus arm technology |
8699007, | Jul 26 2010 | FARO TECHNOLOGIES, INC | Device for optically scanning and measuring an environment |
8705012, | Jul 26 2010 | FARO TECHNOLOGIES, INC | Device for optically scanning and measuring an environment |
8705016, | Nov 20 2009 | FARO TECHNOLOGIES, INC | Device for optically scanning and measuring an environment |
8718837, | Jan 28 2011 | TELADOC HEALTH, INC | Interfacing with a mobile telepresence robot |
8784425, | Feb 28 2007 | Smith & Nephew, Inc | Systems and methods for identifying landmarks on orthopedic implants |
8797552, | Jul 03 2009 | Leica Geosystems AG; Hexagon Metrology Kabushiki Kaisha | Apparatus for generating three-dimensional image of object |
8830485, | Aug 17 2012 | FARO TECHNOLOGIES, INC | Device for optically scanning and measuring an environment |
20040119020, | |||
20050188557, | |||
20060066836, | |||
20060182314, | |||
20060244746, | |||
20070171394, | |||
20080218728, | |||
20090322859, | |||
20090323121, | |||
20100095542, | |||
20100321152, | |||
20110001958, | |||
20120069352, | |||
20120113913, | |||
20120140244, | |||
20120217357, | |||
20120260512, | |||
20120260611, | |||
20120262700, | |||
20120287265, | |||
20130010307, | |||
20130025143, | |||
20130025144, | |||
20130027515, | |||
20130062243, | |||
20130070250, | |||
20130094024, | |||
20130097882, | |||
20130125408, | |||
20130162472, | |||
20130176453, | |||
20130201487, | |||
20130205606, | |||
20130212889, | |||
20130222816, | |||
20130300740, | |||
20140002608, | |||
20140049784, | |||
20140063489, | |||
20140226190, | |||
20140240690, | |||
20140362424, | |||
AU2005200937, | |||
CN101024286, | |||
CN101156043, | |||
CN101163939, | |||
CN101371099, | |||
CN101416024, | |||
CN101484828, | |||
CN101506684, | |||
CN101511529, | |||
CN1307241, | |||
CN1630804, | |||
CN1630805, | |||
CN1688867, | |||
CN1735789, | |||
CN1812868, | |||
CN1818537, | |||
CN1838102, | |||
CN1839293, | |||
CN1853084, | |||
CN1926400, | |||
CN201266071, | |||
CN2236119, | |||
CN2508896, | |||
CN2665668, | |||
D423534, | Jul 07 1998 | Faro Technologies, Inc. | Articulated arm |
D441632, | Jul 20 1998 | Faro Technologies Inc. | Adjustable handgrip |
D472824, | Feb 14 2002 | Faro Technologies Inc | Portable coordinate measurement machine |
D479544, | Feb 14 2002 | FARO TECHNOLOGIES, INC | Portable coordinate measurement machine |
D490831, | Feb 14 2002 | Faro Technologies Inc | Portable coordinate measurement machine |
D491210, | Feb 13 2003 | FARO TECHNOLOGIES, INC | Probe for a portable coordinate measurement machine |
D551943, | Feb 28 2006 | Gates Corporation | Dual-mass damper |
D559657, | Aug 28 2006 | Milestone AV Technologies LLC | Mounting device for article |
D599226, | Apr 11 2008 | HEXAGON METROLOGY, INC | Portable coordinate measurement machine |
D607350, | Sep 24 2007 | FARO TECHNOLOGIES, INC | Portable coordinate measurement machine |
D610926, | Apr 11 2008 | Hexagon Metrology, Inc. | Portable coordinate measurement machine |
D643319, | Mar 29 2010 | Hexagon Metrology AB | Portable coordinate measurement machine |
D659035, | Mar 29 2010 | Hexagon Metrology AB | Portable coordinate measurement machine |
D662427, | Nov 16 2010 | FARO TECHNOLOGIES, INC | Measurement device |
D676341, | Nov 16 2010 | Faro Technologies, Inc. | Measurement device |
D678085, | Nov 16 2010 | Faro Technologies, Inc. | Measurement device |
DE10026357, | |||
DE10114126, | |||
DE10137241, | |||
DE10155488, | |||
DE102004010083, | |||
DE102004015111, | |||
DE102004015668, | |||
DE102004028090, | |||
DE102005036929, | |||
DE102005043931, | |||
DE102005056265, | |||
DE102005060967, | |||
DE102006023902, | |||
DE102006024534, | |||
DE102006035292, | |||
DE102006053611, | |||
DE102007037162, | |||
DE102008014274, | |||
DE102008039838, | |||
DE102008062763, | |||
DE102009001894, | |||
DE102009035336, | |||
DE102009055988, | |||
DE102010032725, | |||
DE102010032726, | |||
DE102012107544, | |||
DE102012109481, | |||
DE10219054, | |||
DE10232028, | |||
DE10244643, | |||
DE10304188, | |||
DE10326848, | |||
DE10336458, | |||
DE10361870, | |||
DE19543763, | |||
DE19601875, | |||
DE19607345, | |||
DE19720049, | |||
DE19811550, | |||
DE19820307, | |||
DE19850118, | |||
DE19928958, | |||
DE202005000983, | |||
DE202006005643, | |||
DE202006020299, | |||
DE202011051975, | |||
DE20208077, | |||
DE20320216, | |||
DE2216765, | |||
DE29622033, | |||
DE3227980, | |||
DE3245060, | |||
DE3340317, | |||
DE4027990, | |||
DE4222642, | |||
DE4303804, | |||
DE4340756, | |||
DE4410775, | |||
DE4412044, | |||
DE4445464, | |||
EP546784, | |||
EP614517, | |||
EP667549, | |||
EP727642, | |||
EP730210, | |||
EP767357, | |||
EP838696, | |||
EP949524, | |||
EP1056987, | |||
EP1160539, | |||
EP1189124, | |||
EP1310764, | |||
EP1342989, | |||
EP1347267, | |||
EP1361414, | |||
EP1429109, | |||
EP1452279, | |||
EP1468791, | |||
EP1528410, | |||
EP1669713, | |||
EP1734425, | |||
EP1764579, | |||
EP1878543, | |||
EP1967930, | |||
EP2003419, | |||
EP2023077, | |||
EP2042905, | |||
EP2060530, | |||
EP2068067, | |||
EP2068114, | |||
EP2108917, | |||
EP2177868, | |||
EP2259013, | |||
EP2400261, | |||
FR2603228, | |||
FR2935043, | |||
GB1112941, | |||
GB2222695, | |||
GB2255648, | |||
GB2336493, | |||
GB2341203, | |||
GB2388661, | |||
GB2420241, | |||
GB2447258, | |||
GB2452033, | |||
GB894320, | |||
JP10213661, | |||
JP1123993, | |||
JP1994313710, | |||
JP2000121724, | |||
JP2000249546, | |||
JP2000339468, | |||
JP2001013001, | |||
JP2001021303, | |||
JP2001056275, | |||
JP2001337278, | |||
JP2003050128, | |||
JP2003156330, | |||
JP2003156562, | |||
JP2003194526, | |||
JP2003202215, | |||
JP2003216255, | |||
JP2003308205, | |||
JP2004109106, | |||
JP2004245832, | |||
JP2004257927, | |||
JP2004333398, | |||
JP2004348575, | |||
JP2005030937, | |||
JP2005055226, | |||
JP2005069700, | |||
JP2005174887, | |||
JP2005215917, | |||
JP2005221336, | |||
JP2005257510, | |||
JP2005517908, | |||
JP2006038683, | |||
JP2006102176, | |||
JP2006203404, | |||
JP2006226948, | |||
JP2006241833, | |||
JP2006266821, | |||
JP2006301991, | |||
JP2007178943, | |||
JP2007514943, | |||
JP2008076303, | |||
JP2008082707, | |||
JP2008096123, | |||
JP2008107286, | |||
JP2008304220, | |||
JP2009063339, | |||
JP2009229255, | |||
JP2009524057, | |||
JP2009531674, | |||
JP2009541758, | |||
JP2010169405, | |||
JP2011066211, | |||
JP2013117417, | |||
JP2013516928, | |||
JP2013517508, | |||
JP2013543970, | |||
JP357911, | |||
JP4115108, | |||
JP4225188, | |||
JP4267214, | |||
JP5581525, | |||
JP572477, | |||
JP575584, | |||
JP58171291, | |||
JP5827264, | |||
JP59133890, | |||
JP61062885, | |||
JP61157095, | |||
JP63135814, | |||
JP6313710, | |||
JP6331733, | |||
JP6341838, | |||
JP7128051, | |||
JP7210586, | |||
JP7229963, | |||
JP74950, | |||
JP8129145, | |||
JP8136849, | |||
JP815413, | |||
JP821714, | |||
JP8262140, | |||
JP921868, | |||
RE42055, | Feb 14 2002 | Faro Technologies, Inc. | Method for improving measurement accuracy of a portable coordinate measurement machine |
RE42082, | Feb 14 2002 | Faro Technologies, Inc. | Method and apparatus for improving measurement accuracy of a portable coordinate measurement machine |
WO14474, | |||
WO20880, | |||
WO26612, | |||
WO33149, | |||
WO34733, | |||
WO63645, | |||
WO63681, | |||
WO177613, | |||
WO2084327, | |||
WO2101323, | |||
WO2004096502, | |||
WO2005008271, | |||
WO2005059473, | |||
WO2005072917, | |||
WO2005075875, | |||
WO2005100908, | |||
WO2006000552, | |||
WO2006014445, | |||
WO2006051264, | |||
WO2006053837, | |||
WO2007002319, | |||
WO2007012198, | |||
WO2007028941, | |||
WO2007051972, | |||
WO2007087198, | |||
WO2007118478, | |||
WO2007125081, | |||
WO2007144906, | |||
WO2008019856, | |||
WO2008027588, | |||
WO2008047171, | |||
WO2008048424, | |||
WO2008052348, | |||
WO2008064276, | |||
WO2008066896, | |||
WO2008068791, | |||
WO2008075170, | |||
WO2008121073, | |||
WO2008157061, | |||
WO2009001165, | |||
WO2009016185, | |||
WO2009053085, | |||
WO2009083452, | |||
WO2009095384, | |||
WO2009123278, | |||
WO2009127526, | |||
WO2009130169, | |||
WO2009149740, | |||
WO2010040742, | |||
WO2010092131, | |||
WO2010108089, | |||
WO2010108644, | |||
WO2010148525, | |||
WO2011000435, | |||
WO2011000955, | |||
WO2011002908, | |||
WO2011021103, | |||
WO2011029140, | |||
WO2011057130, | |||
WO2011060899, | |||
WO2011090829, | |||
WO2011090895, | |||
WO2012013525, | |||
WO2012037157, | |||
WO2012038446, | |||
WO2012061122, | |||
WO2012103525, | |||
WO2012112683, | |||
WO2012125671, | |||
WO2013112455, | |||
WO2013188026, | |||
WO2013190031, | |||
WO2014128498, | |||
WO8801924, | |||
WO8905512, | |||
WO9208568, | |||
WO9711399, | |||
WO9808050, | |||
WO9910706, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 21 2014 | Faro Technologies, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 23 2018 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 19 2022 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 19 2019 | 4 years fee payment window open |
Jul 19 2019 | 6 months grace period start (w surcharge) |
Jan 19 2020 | patent expiry (for year 4) |
Jan 19 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 19 2023 | 8 years fee payment window open |
Jul 19 2023 | 6 months grace period start (w surcharge) |
Jan 19 2024 | patent expiry (for year 8) |
Jan 19 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 19 2027 | 12 years fee payment window open |
Jul 19 2027 | 6 months grace period start (w surcharge) |
Jan 19 2028 | patent expiry (for year 12) |
Jan 19 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |