A loop material for a hook and loop type fastener is a composite nonwoven. The composite nonwoven consists of a loop layer, a backing layer, and a plurality of bond regions. The loop layer may be a carded nonwoven of thermoplastic crimped staple fiber. The staple fiber may be between 1.5 to 6.0 dTEX. The loop layer may have a basis weight of between 10 and 35 g/m2. The backing layer may be a spunbond or spunmelt nonwoven having a basis weight of 5 to 30 g/m2. The loop layer may be superimposed face-to-face with the backing layer. The plurality of bond regions joins the loop layer to the backing layer and rendering said bond regions substantially air impermeable. The bond regions comprise between 35 to 55% of a surface area of the loop material.

Patent
   RE45946
Priority
Jul 28 2010
Filed
Aug 29 2013
Issued
Mar 29 2016
Expiry
Jul 28 2030

TERM.DISCL.
Assg.orig
Entity
Large
3
53
all paid
0. 29. A loop material for a hook and loop fastener comprising:
a composite nonwoven consisting of
a loop layer of a non-bonded carded nonwoven, and said nonwoven having a basis weight of between 10 and 35 g/m2;
a backing layer of a spunmelt nonwoven having a basis weight of 5 to 30 g/m2, said loop layer being superimposed face-to-face with said backing layer;
a plurality of bond regions joining said loop layer to said backing layer, and
wherein a height of said bond region being less than a height of said backing layer.
0. 21. A loop material for a hook and loop fastener comprising:
a composite nonwoven consisting of
a loop layer of a non-bonded carded nonwoven, and said nonwoven having a basis weight of between 10 and 35 g/m2;
a backing layer of a spunmelt polyethylene or polypropylene nonwoven having a basis weight of 5 to 30 g/m2, said loop layer being superimposed face-to-face with said backing layer;
a plurality of bond regions joining said loop layer to said backing layer, and
said composite nonwoven having an air permeability not exceeding 1500 l/m2/s.
0. 1. A loop material for a hook and loop type fastener comprising: a composite nonwoven consisting of
a loop layer of a non-bonded carded web of thermoplastic crimped staple fibers, said staple fibers being between 1.5 to 6.0 dTEX, and said carded web having a basis weight of between 10 and 35 g/m2;
a backing layer of a spunmelt nonwoven having a basis weight of 5 to 30 g/m2, said loop layer being superimposed face-to-face with said backing layer; and
a plurality of bond regions joining said loop layer to said backing layer;
said composite nonwoven having an air permeability not exceeding 1500 l/m2/s.
0. 2. The loop material of claim 1 wherein said composite nonwoven having an air permeability not exceeding 1300 l/m2/s.
0. 3. The loop material of claim 2 wherein said composite nonwoven having an air permeability in the range of 800 to 1300 l/m2/s.
0. 4. The loop material of claim 1 wherein said bond regions being in the form of continuous or discontinuous lines or waves.
0. 5. The loop material of claim 4 wherein said bond regions extend in a cross machine direction.
0. 6. The loop material of claim 1 wherein a height of said bond region being less than the height of said backing layer.
0. 7. The loop material of claim 1 wherein said bond regions being substantially air impermeable.
0. 8. The loop material of claim 7 wherein substantially air impermeable being an air permeability of said bond region being no more than 5% of an air permeability of a non-bond region.
0. 9. The loop material of claim 1 wherein a plurality of loops being formed in said loop layer between said bond regions, said loops extending away from said backing layer to a substantially equal height.
0. 10. The loop material of claim 1 wherein a loop length being a distance between bond regions, and said loop length being in the range of 1-4 mm.
0. 11. A loop material for a hook and loop type fastener comprising: a composite nonwoven consisting of
a loop layer of a non-bonded carded web of polypropylene crimped staple fibers, said staple fibers being between 1.5 to 6.0 dTEX, and said carded web having a basis weight of between 10 and 35 g/m2;
a backing layer of a polypropylene spunmelt nonwoven having a basis weight of 5 to 30 g/m2, said loop layer being superimposed face-to-face with said backing layer; and
a plurality of bond regions joining said loop layer to said backing layer;
said composite nonwoven having an air permeability not exceeding 1500 l/m2/s.
0. 12. The loop material of claim 11 where said backing layer having a basis weight of between 10 g/m2 and 14 g/m2.
0. 13. The loop material of claim 11 where said backing layer having a basis weight of 14 g/m2.
0. 14. The loop material of claim 11 wherein said bond regions being in the form of continuous or discontinuous lines or waves.
0. 15. The loop material of claim 14 wherein said bond regions extend in a cross machine direction.
0. 16. The loop material of claim 11 wherein a height of said bond region being less than the height of said backing layer.
0. 17. The loop material of claim 11 wherein said bond regions being substantially air impermeable.
0. 18. The loop material of claim 17 wherein substantially air impermeable being an air permeability of said bond region being no more than 5% of an air permeability of a non-bond region.
0. 19. The loop material of claim 11 wherein a plurality of loops being formed in said loop layer between said bond regions, said loops extending away from said backing layer to a substantially equal height.
0. 20. The loop material of claim 11 wherein a loop length being a distance between bond regions, and said loop length being in the range of 1-4 mm.
0. 22. The loop material of claim 21 wherein said composite nonwoven having an air permeability in the range of 800 to 1300 l/m2/s.
0. 23. The loop material of claim 21 wherein said bond regions being in the form of continuous or discontinuous lines or waves.
0. 24. The loop material of claim 23 wherein said bond regions extend in a cross machine direction.
0. 25. The loop material of claim 21 wherein a height of said bond region being less than the height of said backing layer.
0. 26. The loop material of claim 21 wherein substantially air impermeable being an air permeability of said bond region being no more than 5% of an air permeability of a non-bond region.
0. 27. The loop material of claim 21 wherein a plurality of loops being formed in said loop layer between said bond regions, said loops extending away from said backing layer to a substantially equal height.
0. 28. The loop material of claim 21 wherein a loop length being a distance between bond regions, and said loop length being in the range of 1-4 mm.
0. 30. The loop material of claim 29 wherein said composite nonwoven having an air permeability not exceeding 1500 l/m2/s.
0. 31. The loop material of claim 30 wherein said composite nonwoven having an air permeability in the range of 800 to 1300 l/m2/s.
0. 32. The loop material of claim 29 wherein said bond regions being in the form of continuous or discontinuous lines or waves.
0. 33. The loop material of claim 32 wherein said bond regions extend in a cross machine direction.
0. 34. The loop material of claim 29 wherein substantially air impermeable being an air permeability of said bond region being no more than 5% of an air permeability of a non-bond region.
0. 35. The loop material of claim 29 wherein a plurality of loops being formed in said loop layer between said bond regions, said loops extending away from said backing layer to a substantially equal height.
0. 36. The loop material of claim 29 wherein a loop length being a distance between bond regions, and said loop length being in the range of 1-4 mm.
0. 37. The loop material of claim 21 wherein said spunmelt nonwoven being a calendered spunmelt nonwoven.
0. 38. The loop material of claim 29 wherein said spunmelt nonwoven being a calendered spunmelt nonwoven.

This is a divisional of application Ser. No. 13/540,165 (now U.S. Pat. No. Re. 44,842) which is an application for reissue of U.S. Pat. No. 7,960,008.

This application claims the benefit of co-pending U.S. application Ser. No. 12/060,590 filed Apr. 1, 2008 which claims the benefit of U.S. Provisional Application Ser. No. 60/912,244 filed Apr. 17, 2007. Both related applications, in their entireties, are incorporated herein by reference.

The present invention is directed to a loop material for a loop and hook type fastener used in a disposable article or garment.

The use of hook and loop fastener devices in consumer and industrial applications is widely known. Examples of such applications include disposable hygiene absorbent articles such as diapers, disposable garments such as surgical gowns, and the like.

In general, a hook and loop fastener device comprises a hook component and a loop component. The hook component includes a plurality of hook-shaped members anchored to a base material. The loop component includes a plurality of upstanding loop members projecting outwardly from a backing material. The hook-shaped members are designed to engage the loop members in order to provide a strong mechanical bond there between. The hook members and the loop members can typically be engaged and disengaged repeatedly.

However, when the hook and loop fastener device is intended to be used in a disposable hygiene absorbent article or a disposable garment, a low cost loop component, which adequately functions to provide a resealable mechanical closure for a limited number of applications, is desirable. There is no need for the loop component of a disposable article to possess long term capability for repetitious engagements and disengagements with the hook component because such articles only have a short life span. However, the loop component used in conjunction with the hook component should provide a relatively high peel strength, and a relatively high shear strength, i.e. it should secure closure for a limited number of use cycles.

There are a variety of loop materials available. Typical loop materials include knit or nonwoven fabrics laminated to a layer of film for support. These loop materials are typically processed on diaper lines by unwinding the material from a roll, applying adhesive to the back, film side of the loop material, feeding the material over a perforated metal cylinder which holds the material in place with vacuum suction, cutting the material in strips as it is held against the cylinder and applying the strips to diaper backsheet material that is fed in parallel through the diaper assembly line.

Polypropylene is preferred for production of nonwoven materials for diaper applications due to their relatively low cost, soft feel, availability, and ease of processing. For nonwoven loop materials it would be desirable to eliminate the use of a film support layer in order to further reduce the cost and improve the softness and flexibility of the loop material.

However, several problems have been encountered which have limited the use of nonwovens for use as loop fastening materials. These will be discussed in turn.

Typical nonwoven materials are too air permeable. Such high permeability materials cannot be held in place effectively during the strip cutting operation on the typical existing diaper line vacuum cylinders. In order to use such highly permeable materials, extensive modification to the vacuum cylinders and associated equipment would be required.

Typical polypropylene based nonwovens are susceptible to compression. When nonwoven loop materials are wound into rolls and stored for a period of time, the loop regions can become permanently compressed. When a roll of nonwoven loop material is unwound, processed on the diaper line and pieces are cut and attached to the diaper backsheet, the loop may be so flat as to no longer to be useful as an effective fastening material.

The nonwoven fibers and filaments must be bonded together to secure the structure together as well as to leave regions of unbonded fibers or loops available for fastening with a hook counterpart. If an insufficient percentage of the planar area of the nonwoven is bonded together, nonwoven fibers can be easily pulled free from the structure upon retraction of the hook when opening the fastener. If too high a percentage of the planar area of the nonwoven is bonded together there is insufficient loop fiber available for hook engagement and the fastening performance is too low. In addition, the bonding pattern has a large impact on the ease of hook engagement and therefore the fastening performance.

There is a need for low cost nonwovens for use as a loop fastening material for use in hygiene applications such as diapers that overcome these problems.

A loop material for a hook and loop type fastener is a composite nonwoven. The composite nonwoven consists of a loop layer, a backing layer, and a plurality of bond regions. The loop layer may be a carded nonwoven of thermoplastic crimped staple fiber. The staple fiber may be between 1.5 to 6.0 dTEX. The loop layer may have a basis weight of between 10 and 35 g/m2. The backing layer may be a spunbond or spunmelt nonwoven having a basis weight of 5 to 30 g/m2. The loop layer may be superimposed face-to-face with the backing layer. The plurality of bond regions joins the loop layer to the backing layer and rendering said bond regions substantially air impermeable. The bond regions comprise between 35 to 55% of a surface area of the loop material.

For the purpose of illustrating the invention, there is shown in the drawings a form that is presently preferred; it being understood, however, that this invention is not limited to the precise arrangements and instrumentalities shown.

FIG. 1 is a cross sectional view of the nonwoven composite made according to the present invention.

FIG. 2 is a top plan view of one of the embodiments of the nonwoven composite made according to the present invention.

FIG. 3 is a top plan view of one of the embodiments of the nonwoven composite made according to the present invention.

FIG. 4 is a top plan view of “islands”.

FIG. 5 is a schematic illustration of a method of manufacturing the present invention.

FIG. 6 is an illustration associated with the example below.

Referring to the drawing wherein like numerals indicate like elements, there is shown in FIG. 1 an embodiment of the nonwoven composite 10. Nonwoven composite 10 includes a loop layer 12, a backing layer 14, and a plurality of bond regions 16. Each of these elements will be discussed in greater detail below.

Nonwoven composite 10 is intended to be the loop component of a hook and loop type fastener (not shown) for a disposable article/garment. Disposable article/garment includes disposable hygiene absorbent articles (such as diapers), and disposable garments (such as surgical gowns). Disposable, generally, refers to single use.

In the composite nonwoven 10, loop layer 12 and backing layer 14 are in face-to-face contact and are joined together at bond regions 16. Nonwoven composite 10 may include at least two different nonwoven materials. The loop layer 12 in the non-bonded areas forms a ‘mound’ whereby the loop layer nonwoven is open and adapted for hook engagement. The loop layer 12 in the bonded areas is flat whereby the loop layer is closed and not adapted for hook engagement. The total air permeability of the composite nonwoven 10 should not exceed 1500 l/m2/s. In one embodiment, the permeability should not exceed 1300 l/m2/s. In another embodiment, the permeability should be at 800 l/m2/s. The upper limits on permeability represent a threshold where the composite nonwoven functions well in a diaper manufacturing process (as discussed above), and the lower limit represents a threshold where the composite nonwoven has sufficient suppleness (i.e., does not feel stiff like a film). Permeability is measured using an Air Permeability Tester III, Model FX 3300 from Textest AG of Zurick, Switzerland.

Loop layer 12 is adapted to, among other things, engage the hooks (not shown) of the hook and loop type fastener. In one embodiment, the loop layer 12 may be a carded nonwoven made of thermoplastic crimped staple fibers. In one embodiment, the staple fibers may have a dTEX in the range of 1.5 to 6.0. The basis weight of the carded nonwoven may be in the range of 10 to 35 g/m2. Alternatively, the basis weight may be in the range of 18 to 27 g/m2. Prior to its inclusion in the composite nonwoven 10, the carded nonwoven may be non-bonded (preferred) or bonded. If bonded, bonding may be accomplished by any know means (bicomponent fibers; point bonding with heat, ultrasonic, microwave; adhesives; and the like); but preferably, bonding would be accomplished by the use of bicomponent fibers. The thermoplastic, as used herein, refers to any thermoplastic material. Thermoplastic materials include, but are not limited to, polyolefins, polyesters, nylons, and combinations thereof. Polyolefins include, but are not limited to: polyethylene, polypropylene, polybutene, polymethylpentene, copolymers thereof and blends thereof. Polyesters include, but are not limited to: PET, PBT, copolymers thereof and blends thereof. In one embodiment, the thermoplastic material is polypropylene.

The backing layer 14 is adapted to, among other things, hold the fibers of the loop layer 12 in place, provide a surface so that the loop layer 12 may be secured to the article/garment (not shown), and facilitate assembly of the article/garment. In one embodiment, the backing layer may be a spunbonded or spunmelt nonwoven made of thermoplastic filaments. Spunbond or spunmelt nonwoven, as used herein, refers to a nonwoven made by a spunbond process or a spunmelt process. The spunmelt process is a combination of the spunbond (S) and meltblown (M) processes. The spunmelt nonwoven may have a structure of SM or SMS or SMMS or the like. The basis weight of the spunbonded or spunmelt nonwoven may be in the range of 5 to 30 g/m2. Alternatively, the basis weight may be in the range of 11 to 17 g/m2. The spunbond or spunmelt nonwoven may be adjusted to reduce air permeability. Reduced air permeability is useful in the article/garment manufacturing process when the composite nonwoven is affixed to the article/garment. The backing layer 14, when produced, may be calendered before assembly of composite nonwoven 10. After this calendering, one side may be “smooth,” i.e., no dimples from the engraved roller. The smooth side may be an exposed side of the composite nonwoven 10 and may be printed thereon. The thermoplastic, as used herein, refers to any thermoplastic material. Thermoplastic materials include, but are not limited to, polyolefins, polyesters, nylons, and combinations thereof. Polyolefins include, but are not limited to: polyethylene, polypropylene, polybutene, polymethylpentene, copolymers thereof and blends thereof. Polyesters include, but are not limited to: PET, PBT, copolymers thereof and blends thereof. In one embodiment, the thermoplastic material is polypropylene.

Bond regions 16, as used herein, refers to the areas where the loop layer and the backing layer are joined together and where the nonwoven composite is substantially impermeable. ‘Substantially impermeable’ refers to the permeability relative to the non-bonded areas, where air may pass through the nonwoven composite. In the bonded areas, no air may pass (or no more than 5% of the air that would pass through the non-bonded area), whereas in the non-bonded areas air may pass through the nonwoven composite. The bond regions 16 may comprise about 35 to 55% of the surface area of the loop material. The bond regions 16 may comprise 40-50% of the surface area of the loop material. The bond regions 16 may be lines or waves (continuous or discontinuous) as illustrated, for example, in FIGS. 2, and 3; but are not “islands” 19 as illustrated, for example, in FIG. 4. In one embodiment, the bond regions are disposed in the cross machine direction. Hooks (not shown) will not engage the nonwoven composite in the bonded areas, but the hooks will engage the nonwoven composite in the non-bonded areas. As noted in FIG. 1, the combined height of the loop layer 12 and the backing layer 14 in the bonded areas is less than the height of the backing layer 14 in the non-bonded areas.

When the bond regions 16 are lines or waves, loop length is the distance between bond regions. Loop lengths in the loop material maybe equal or substantially equal. Loop lengths, in the machine direction, may be 1-4 mm or 2-3 mm. The loop height is the distance between the backing layer 14 and the uppermost part of the loop layer 12. The loop height is substantially equal between non-bonded areas.

The composite nonwoven 10 is manufactured as follows, see FIG. 5: A first web 20, spunmelt or spunbond, is formed by extruding filaments from thermoplastic resin. This web is then consolidated by calendering. A second web 22 is produced by carding crimped staple fibers to produce a web that is not consolidated. The two webs are then superimposed (i.e., face-to-face). The resulting web composed of the two superimposed webs is passed through a hot calender 24 (roll 26 being, for example, an engraved roller, and roll 28 being, for example, a smooth roller) to achieve the following results: consolidation of the carded web by bonding the crimped staple fibers at multiple zones, joining both webs together along multiple bond zones. In the calendering process, the web bonding will be at or near the melting point of the thermoplastic polymer from which the nonwoven is produced. It is important to process at a temperature and pressure sufficient to allow the proper bonding of the webs together. Thereafter, the composite nonwoven is wound-up 30.

The 180 Degree Peel results are compared for composite nonwovens that were produced with a relatively low percentage of area bonding and a bonding pattern according to the present invention. Peel testing was conducted using a tensile tester, Model No. MTC Alliance RT/5 from MTS Systems Corporation of Eden Prairie, Minn.

Master rolls of each composite nonwovens were produced using the bonding patterns, noted below, and then slit into rolls and wound at the same level of tension. One slit roll of each bond pattern was then stored for more than two weeks. Samples were then taken from similar sites within each roll and tested for 180 degree peel, see FIG. 6.

The 180° peel strength test involves attaching a hook component to a loop component of a hook and loop fastening system and then peeling the hook component from the loop component at a 180° angle. The maximum load needed to disengage the two components is recorded in newtons.

Slit Sample Roll 1
SMS base layer: 14 g/m2
Carded fiber top layer: 23 g/m2
Bonded Area: 17.4%
Engraving: Islands (See FIG. 4)
180 Degree peel test conducted with the use of Aplix 94x prototype
hook (13 mm wide tape with mushroom shaped hooks with a density
of 385 hooks/cm2)
Samples taken from roll 17 days after slitting master roll
Slit Sample Roll 2
SMS base layer: 14 g/m2
Carded fiber top layer: 23 g/m2
Bonded Area: 42%
Engraving: Horizontal discontinuous waves (See FIG. 3)
180 Degree peel test conducted with the use of Aplix 94x prototype
hook (13 mm wide tape with mushroom shaped books with a density
of 385 hooks/cm2)
Samples taken from roll 21 days after slitting master roll
Sample Master
Site Roll A B C D
Slit Sample Roll 1
180° 5.6 3.5 3.0 4.4 2.8
Peel, N*
Slit Sample Roll 2
180° 5.3 5.3 5.0 5.3 4.9
Peel, N*
*average of ten data points

The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicated the scope of the invention.

Lester, Jr., Donald H., Hoyas, Stephanie

Patent Priority Assignee Title
11850128, Sep 27 2018 The Procter & Gamble Company Garment-like absorbent articles
11918442, Sep 27 2018 The Procter & Gamble Company Garment-like absorbent articles
11998427, Sep 27 2018 The Procter & Gamble Company Nonwoven webs with visually discernible patterns
Patent Priority Assignee Title
4761318, Apr 15 1985 Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY, SAINT PAUL, MINNESOTA, A CORP OF DE Loop fastener portion with thermoplastic resin attaching and anchoring layer
5256231, May 13 1988 Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP OF DE Method for making a sheet of loop material
5326612, May 20 1991 The Procter & Gamble Company Nonwoven female component for refastenable fastening device and method of making the same
5614281, Nov 29 1995 Kimberly-Clark Worldwide, Inc Creped nonwoven laminate loop fastening material for mechanical fastening systems
5669900, Nov 03 1993 Kimberly-Clark Worldwide, Inc Spunbond loop material for hook and loop fastening systems
5763041, Dec 21 1995 Kimberly-Clark Worldwide, Inc Laminate material
5773120, Feb 28 1997 Kimberly-Clark Worldwide, Inc Loop material for hook-and-loop fastening system
5858515, Dec 17 1996 Kimberly-Clark Worldwide, Inc Pattern-unbonded nonwoven web and process for making the same
5888607, Jul 03 1997 Minnesota Mining and Manufacturing Co. Soft loop laminate and method of making
5997981, Sep 15 1997 Kimberly-Clark Worldwide, Inc Breathable barrier composite useful as an ideal loop fastener component
6192556, Feb 23 1998 Japan Vilene Company, Ltd. Female component for touch and close fastener and method of manufacturing the same
6329016, Sep 03 1997 Velcro BVBA Loop material for touch fastening
6637079, Jan 31 1989 The Procter & Gamble Company; Procter & Gamble Company, The Multi-layer female component for refastenable fastening device and method of making the same
6647600, Jan 25 1999 DANIONICS INTERNATIONAL A S Hook and loop fastener for flat materials
6770065, May 26 1998 Kao Corporation Fastener and absorbing article using it
6783834, Sep 03 1997 Velcro BVBA Loop material for touch fastening
6869659, Sep 03 1997 Velcro BVBA Fastener loop material, its manufacture, and products incorporating the material
6955847, Aug 03 1999 KURARAY CO , LTD Nonwoven fabric having engaging function
6969377, Dec 31 2001 Kimberly-Clark Worldwide, Inc Mechanical fastening system for an absorbent article
6998164, Apr 30 1999 Glaxo Group Limited Controlled loft and density nonwoven webs and method for producing same
7008888, Jul 24 2003 3M Innovative Properties Company Multiple component spunbond web
7078089, Dec 28 2001 Kimberly-Clark Worldwide, Inc Low-cost elastic laminate material
7465366, Dec 03 2002 Velcro BVBA Needling loops into carrier sheets
7544628, Nov 03 2004 Paul Hartmann AG Loop-forming nonwoven material for a mechanical closure element
20030077430,
20030124310,
20030124938,
20030232170,
20040072491,
20040123939,
20050023711,
20050101930,
20050208259,
20060019055,
20060019572,
20060069380,
20060148359,
20060154017,
20060182927,
20060217022,
20070098953,
20070099531,
20070293835,
20100015386,
DE102004053469,
EP341993,
EP585401,
GB1589181,
JP2002315607,
JP2004081254,
JP200481254,
WO2006014127,
WO2006048173,
//////////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 29 2013Aplix, Inc.(assignment on the face of the patent)
Aug 29 2013Dounor SAS(assignment on the face of the patent)
Dec 22 2020Letica CorporationU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020PROVIDENCIA USA, INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020Berry Global Films, LLCU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020Fiberweb, LLCU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020Pliant, LLCU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020PRIME LABEL AND SCREEN INCORPORATEDU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020AVINTIV SPECIALTY MATERIALS INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020PRIME LABEL & SCREEN, INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020BPREX HEALTHCARE PACKAGING INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020BERRY FILM PRODUCTS COMPANY, INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Dec 22 2020BERRY GLOBAL, INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0548400047 pdf
Jan 15 2021BERRY FILM PRODUCTS COMPANY, INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021BERRY GLOBAL, INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021Letica CorporationU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021PROVIDENCIA USA, INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021Berry Global Films, LLCU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021Fiberweb, LLCU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021BPREX HEALTHCARE PACKAGING INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021PRIME LABEL & SCREEN, INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021AVINTIV SPECIALTY MATERIALS INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021PRIME LABEL AND SCREEN INCORPORATEDU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021Pliant, LLCU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021Fiberweb, LLCU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021Berry Global Films, LLCU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021PROVIDENCIA USA, INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021Letica CorporationU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 058954 FRAME: 0677 ASSIGNOR S HEREBY CONFIRMS THE FIRST LIEN PATENT SECURITY AGREEMENT 0640530867 pdf
Jan 15 2021Pliant, LLCU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021PRIME LABEL AND SCREEN INCORPORATEDU S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021AVINTIV SPECIALTY MATERIALS INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021BERRY FILM PRODUCTS COMPANY, INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021BPREX HEALTHCARE PACKAGING INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021PRIME LABEL & SCREEN, INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021AVINTIV SPECIALTY MATERIALS INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021PRIME LABEL AND SCREEN INCORPORATEDU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021Pliant, LLCU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021Fiberweb, LLCU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021Berry Global Films, LLCU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021PROVIDENCIA USA, INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021Letica CorporationU S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Jan 15 2021BERRY GLOBAL, INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021BERRY FILM PRODUCTS COMPANY, INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021BPREX HEALTHCARE PACKAGING INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021PRIME LABEL & SCREEN, INC U S BANK NATIONAL ASSOCIATIONCORRECTIVE ASSIGNMENT TO CORRECT THE THE LISTING OF PATENTS PREVIOUSLY RECORDED AT REEL: 055009 FRAME: 0450 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0589540677 pdf
Jan 15 2021BERRY GLOBAL, INC U S BANK NATIONAL ASSOCIATIONFIRST LIEN PATENT SECURITY AGREEMENT0550090450 pdf
Date Maintenance Fee Events
Nov 15 2018M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 09 2022M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Mar 29 20194 years fee payment window open
Sep 29 20196 months grace period start (w surcharge)
Mar 29 2020patent expiry (for year 4)
Mar 29 20222 years to revive unintentionally abandoned end. (for year 4)
Mar 29 20238 years fee payment window open
Sep 29 20236 months grace period start (w surcharge)
Mar 29 2024patent expiry (for year 8)
Mar 29 20262 years to revive unintentionally abandoned end. (for year 8)
Mar 29 202712 years fee payment window open
Sep 29 20276 months grace period start (w surcharge)
Mar 29 2028patent expiry (for year 12)
Mar 29 20302 years to revive unintentionally abandoned end. (for year 12)