The present invention is an integrated and automated irrigation and aspiration system for use in an endoscopic imaging system. The system provides for the automated cleaning of poorly prepared patients during a colonoscopy procedure as well as automated cleaning of an imaging system of an endoscope. The invention analyzes images obtained from an image sensor to detect the presence of an obstructed field of view, whereupon a wash routine is initiated to remove the obstruction. The wash routine may be adjusted in accordance with environmental conditions within the patient that are sensed by one or more sensors within the endoscope. In another embodiment, insufflation is automatically controlled to inflate a patient's colon as a function of one or more sensor readings obtained from one or more environmental sensor(s) on the endoscope.

Patent
   RE46007
Priority
Sep 30 2004
Filed
Feb 23 2015
Issued
May 24 2016
Expiry
Sep 30 2024

TERM.DISCL.
Assg.orig
Entity
Large
50
680
currently ok
7. A system for automatically controlling the delivery of insufflation gas fluid, the system comprising:
a control cabinet unit including a processor and at least one valve configured to control the delivery of insufflation gas fluid; and
an endoscope removably connected to the control cabinet unit and including a pressure sensor and an image sensor at or adjacent a distal end of the endoscope;
wherein the processor is configured to receive an image signals signal from the image sensor and a pressure readings reading from the pressure sensor and automatically control the delivery of insufflation gas fluid as a function of the image signals signal and the pressure readings by controlling actuation of the at least one valve reading.
1. A system for automatically controlling the delivery of insufflation gas gas or liquid to a patient, the system comprising:
a control cabinet including a processor and one or more valves configured to control the delivery of insufflation gas or liquid to a the patient; and
an endoscope removably connected to the control cabinet and elongate member including a pressure sensor and an image sensor at or adjacent a distal end of the endoscope elongate member;
wherein the processor is configured to obtain an image signals signal from the image sensor and a pressure readings reading from the pressure sensor and automatically control insufflation gas or liquid delivered to the patient as a function of the image signals signal and the pressure readings reading.
13. A system for automatically controlling the delivery of insufflation gas or liquid, the system comprising:
a control cabinet unit including a processor and at least one valve configured to control the delivery of insufflation gas or liquid; and
an endoscope removably connected to the control cabinet unit and including a pressure sensor configured to determine a pressure in a body cavity and an image sensor;
wherein the processor is configured to receive an image signals signal from the image sensor and a pressure readings reading from the pressure sensor and automatically control the delivery of insufflation gas or liquid as a function of the image signals signal and the pressure readings reading to maintain a predetermined pressure in the body cavity by controlling actuation of the at least one valve.
2. The system of claim 1, wherein the delivery of insufflation gas is controlled to maintain a predefined field of view in the image signals signal produced by the image sensor.
3. The system of claim 1, further comprising a sensor configured to determine a size of an inflated body cavity, and wherein the processor is configured to control the delivery of insufflation gas to maintain a predetermined inflated cavity size.
4. The system of claim 1, wherein the processor is configured to control the delivery of insufflation gas to maintain a predetermined pressure in a body cavity.
5. The system of claim 1, further comprising a sensor configured to detect a thickness of a tissue wall surrounding the endoscope elongate member, and wherein the processor is configured to control the delivery of insufflation gas as a function of the wall thickness detected.
0. 6. The system of claim 1, wherein the endoscope is dispensable.
8. The system of claim 7, wherein the processor is configured to control the delivery of insufflation gas fluid to maintain a predefined view produced by the image sensor.
9. The system of claim 7, wherein the processor is configured to control the delivery of insufflation gas fluid to maintain a predetermined pressure in the body cavity and to maintain a predefined view produced by the image sensor.
10. The system of claim 7, wherein the control cabinet unit includes a manifold configured to supply insufflation at least one of gas, a liquid, and aspiration to the endoscope.
11. The system of claim 10, wherein the further including at least one valve that is configured to control the supply of insufflation at least one of gas, the liquid, and aspiration from the manifold.
0. 12. The system of claim 11, wherein the endoscope is removably coupled to the manifold.
14. The system of claim 13, wherein the processor is configured to control the delivery of insufflation gas or liquid to maintain the predetermined pressure in the body cavity and to maintain a predefined view produced by the image sensor.
15. The system of claim 13, wherein the control cabinet unit includes a manifold configured to supply insufflation gas, a liquid, and aspiration to the endoscope.
16. The system of claim 15, wherein the at least one valve is configured to control the supply of insufflation gas, the liquid, and aspiration from the manifold, wherein the endoscope is removably coupled to the manifold.
0. 17. The system of claim 16, wherein the endoscope is removably coupled to the manifold.
0. 18. The system of claim 1, wherein the elongate member is an endoscope.
0. 19. The system of claim 18, wherein a control cabinet includes the processor and one or more valves configured to control the delivery of gas or liquid to the patient, and wherein the endoscope is removably connected to the control cabinet.
0. 20. The system of claim 19, wherein the processor is configured to obtain image signals from the image sensor and pressure readings from the pressure sensor and automatically control gas or liquid delivered to the patient as a function of the image signals and the pressure readings.
0. 21. The system of claim 7, wherein the control unit is a control cabinet that further includes at least one valve, and the processor is configured to control the delivery of fluid by controlling actuation of the at least one valve.
0. 22. The system of claim 21, wherein the processor is configured to receive image signals from the image sensor and pressure readings from the pressure sensor and automatically control fluid delivered to the patient as a function of the image signals and the pressure readings.
0. 23. The system of claim 13, wherein the control unit is a control cabinet, and wherein the processor is configured to obtain image signals from the image sensor and pressure readings from the pressure sensor and automatically control gas or liquid delivered to the patient as a function of the image signals and the pressure readings.

This application is a reissue application of U.S. Pat. No. 8,435,172, which issued from U.S. patent application Ser. No. 12/330,470, filed Dec. 8, 2008, which is a continuation of U.S. patent application Ser. No. 10/955,901, filed Sep. 30, 2004, now U.S. Pat. No. 7,479,106, the disclosure of which is expressly incorporated herein by reference.

The present invention relates to an endoscope system. In particular, it relates to an integrated and automated irrigation and aspiration system for use in an endoscope system.

Endoscopes have been used for many years in the medical field to look within a selected region of a patient's body or to perform surgical, therapeutic, diagnostic, or other medical procedures under direct visualization. A conventional endoscope generally contains several components including illuminating means such as light-emitting diodes or fiber optic light guides connected to a proximal source of light, an imaging means such as a miniature video camera or a fiber optic image guide, and a working channel. These components are positioned within an endoscope sheathing tube. Flexible or steerable endoscopes also incorporate an elongated flexible shaft and an articulating distal tip to facilitate navigation through the internal curvature of a body cavity or channel.

Colonoscopy is a medical procedure in which a flexible endoscope, or colonoscope, is inserted into a patient's colon for diagnostic examination and/or surgical treatment of the colon. A standard colonoscope is typically 135-185 cm in length and 12-13 mm in diameter. Colonoscopes generally include a fiber optic imaging bundle, illumination fibers, one or two instrument channels that may also be used for insufflation or irrigation, and a suction channel that extends the length of the colonoscope to facilitate removal of occlusions such as mucus, plaque, fecal matter, or other material that can obstruct the physician's view or interfere with the endoscopic procedure. The colonoscope is inserted via the patient's anus and is advanced through the colon, allowing direct visual examination of the colon, the ileocecal valve, and portions of the terminal ileum. Approximately six million colonoscopies are performed each year.

In order to examine a patient's anatomy during a colonoscopy, it is essential to have a clear field of view. Currently, about 20% of colon polyps are undetected due to low visibility, which can arise from inadequate lens cleaning. Poor colon preparation is also a cause of reduced visibility in the colon. Presently, about 10% of all patients are non-compliant with preparatory procedures and approximately 4% of all patients are unable to complete the exam due to an excess of stool in the colon. The remaining 6% of all cases are considered marginal, and the colonoscopy may still be performed if the colon is evacuated as a part of the procedure. Conventionally, the colons of marginal cases are cleared by repeatedly administering several small (60 cc) fluid flushes through an endoscope's working channel by means of an ancillary apparatus that employs a low-volume wash and suction. The waste is then removed through the suction channel in the endoscope. However, this tedious and inefficient process is limited by the amount of stool that can be removed with each flush. The process also causes a loss of productivity due to the added time required to evacuate the colon. Therefore, there is a need for a system and method of efficiently cleaning poorly prepared colons.

One example of a colon irrigation method for colonoscopy is described in U.S. Pat. No. 5,279,542, entitled “Colon Irrigation Method.” The '542 patent describes an irrigation instrument for use in evacuating the colon prior to endoscopic surgery. The instrument consists of an elongate tube with a plurality of longitudinally and circumferentially spaced apertures along its entire length. A pressurized source of irrigation fluid is connected to the tube for feeding fluid through the channel and out through the apertures with an essentially uniform radial distribution. The tube is thin enough to fit down the biopsy channel of an endoscope. The invention essentially provides an improved method for providing irrigating fluid to a distal end of an endoscope or to a surgical site.

Although the apparatus and method of the colon irrigation method described in the '542 patent provides a means of irrigation for colonoscopy and other endoscopic procedures, the device is an accessory to standard endoscopes that uses the working channel of the endoscope. As such, the apparatus requires labor-intensive assembly on an as-needed basis. Furthermore, it is up to the physician to determine the amount of cleaning that is required and to control the apparatus such that the patient is sufficiently prepped for an examination. This reduces the time that the physician has to perform the actual examination.

Given these problems, there is a need for a system that can automatically prepare poorly prepped patients for an endoscopic examination with minimal physician supervision. In addition, the system should operate based on the patient's individual physical anatomy and detected level of cleanliness so that a desired field of view is created in which an examination is conducted.

To address the foregoing deficiencies in the prior art, the present invention is an endoscopic system that provides automated irrigation and aspiration of patients undergoing colonoscopy. The endoscopic examination system according to the present invention includes an endoscope with a source of illuminative light and an image sensor to produce images of a patient's colon. An image processor is coupled to receive image signals from the image sensor. The image processor or a computer automatically analyzes the images obtained from the image sensor to determine if irrigation and aspiration is required to provide a clear field of view. If so, the computer operates one or more control valves that supply the insufflation, irrigation, and aspiration to the patient.

In one embodiment, the endoscope may include one or more sensors that sense environmental conditions within the patient's colon such that the amount, rate, or composition of the cleaning solution delivered can be adjusted to the patient's individual anatomy and level of preparation. In one embodiment, the level of insufflation and aspiration are automatically adjusted to provide a desired field of view in the region of the distal tip of the endoscope.

The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:

FIG. 1 illustrates a single-use endoscopic imaging system in accordance with one embodiment of the present invention;

FIG. 2 is a functional block diagram that shows the interrelationship of the major components of a single-use endoscopic imaging system shown in FIG. 1;

FIG. 3 illustrates a distal end of a single-use imaging endoscope in accordance with an embodiment of the present invention; and

FIGS. 4A and 4B illustrate an imaging sensor and heat exchanger positioned at the distal end of the endoscope in accordance with an embodiment of the present invention.

As indicated above, the present invention is an endoscopic examination system that provides integrated and automated irrigation and aspiration for prepping poorly prepared patients for examination. The system is integral to the overall endoscope architecture. Further, the physical hardware implementation of the endoscope improves upon previous means of irrigation by the use of an automated mechanism that administers one or more colon irrigation modalities depending on an analysis of the patient's anatomy or level of preparation. Although the present invention is described with respect to its use within the colon, it will be appreciated that the invention can be used in any body cavity that can be expanded and/or prepared for examination or surgery.

FIG. 1 illustrates the major components of an exemplary single-use endoscopic imaging system 10. The components of the system 10 include a display 12, a user input device 16, and a single-use imaging endoscope 18, all of which are functionally connected to a control cabinet 14 that executes application software (not shown) residing therein. Display 12 is any special-purpose or conventional computer display device, such as a computer monitor, that outputs graphical images and/or text to a user. Single-use imaging endoscope 18 is a single-use flexible tube that contains one or more lumens for the purpose of performing endoscopic procedures and facilitating the insertion and extraction of fluids, gases, and/or medical devices into and out of the body. Single-use endoscope 18 further contains a digital imaging system (not shown) comprised of, in one example, an image sensor such as a CMOS imager, optical lenses such as plastic optics, a light source such as a number of LEDs, and an articulating tip that enables steering of the endoscope in a desired direction.

Control cabinet 14 is a special-purpose electronic and electromechanical apparatus that processes and manages all system functions, and includes a network-enabled image-processing CPU, a physical connection to the single-use endoscope 18, an optional dock for the user interface 16, and valves that control the delivery of gas/water to the endoscope and a vacuum line that removes the air/gas and debris, etc., from the patient. User input device 16 is a hand-held device, either wired to the control cabinet 14 or wireless, that accepts inputs from a human operator via standard push buttons, joysticks, or other activation devices either singularly or in combination to control the operation of single-use endoscopic imaging system 10.

Operation of single-use endoscopic imaging system 10 is as follows: the system is initiated and operated upon command by means of user input device 16, causing the application software executed by a processor within the control cabinet 14 to activate the appropriate hardware to perform surgical, therapeutic, diagnostic, or other medical procedures and to deliver insufflation and/or suction to the lumen(s) of single-use endoscope 18. Display 12 provides live endoscopic video images and visual feedback of control parameters to the physician or operator so that an examination of the patient can be completed. Upon termination of the examination, the endoscope 18 is disconnected from the control cabinet and disposed of.

FIG. 2 is a functional block diagram of single-use endoscopic imaging system 10 that shows the operational interrelationship of the major hardware and software elements of the system. A complete description of the control cabinet 14 and other components is set forth in U.S. patent application Ser. No. 10/811,781, filed Mar. 29, 2004, and U.S. patent application Ser. No. 10/956.007, entitled VIDEO ENDOSCOPE, filed concurrently herewith) and herein incorporated by reference. The single-use endoscopic imaging system 10 includes the control cabinet 14 that operates to control the orientation and functions of a single-use imaging endoscope 18. The control cabinet 14 includes a controller interface 106 that receives commands from the user input device 16 such as a joystick, that is used by a physician or their assistant to control the operation of the single-use endoscope 18. Commands from the joystick are supplied to a programmable processor such as a digital signal processor that controls the overall operation of the imaging system and a servo control unit 108. The processor and servo control unit 108 control the operation of a pair of servo motors 110, 112 that in turn drive control cables within the single-use endoscope 18. The orientation of the distal tip is controlled in response to directional signals received from the user input device as well as feedback signals obtained from sensors that measure the position and torque of each of the servo motors 110, 112.

In one embodiment of the invention, the processor and servo control unit 108 implement a position-to-rate control that varies the speed at which the distal tip is moved as a function of the position of the directional switch on the user input device 16. However, other control algorithms such as position-to-position or position-to-force (i.e., acceleration) could also be implemented.

The control cabinet 14 also includes an imaging board 114 that produces images from the signals that are received from the image sensor at the distal end of the single-use endoscope 18. The imaging board 114 deserializes the digital video signals from the CMOS imager sensor and performs the necessary algorithms such as demosaicing, gain control and white balance to produce a quality color image. The gain control of the system is implemented by adjusting the intensity of the illumination (current supplied to a number of LEDs) and adjusting the RGB gains of the CMOS imager. The imaging board 114 also includes isolation circuitry to prevent a patient from becoming shocked in the event of an electrical failure on the imaging board 114 or within the control cabinet 14 as well as circuitry for transmitting control signals to the image sensor and for receiving image signals from the image sensor. In one embodiment of the invention, the imaging board 114 is provided on a standard PC circuit board to allow individual endoscopes to be tested with a personal computer and without the need for an additional control cabinet 14.

In the embodiment shown in FIG. 2, the single-use endoscope 18 has a distal shaft portion 120 that is connected to a breakout box 122 with a swivel connection 124. The breakout box 122 provides access to a working channel in the distal portion of the endoscope. In addition, the proximal portion 126 of the shaft is connected to the breakout box 122 with a second swivel connection 128. The swivel connections 124, 128 allow the distal and proximal ends of the endoscope to rotate with respect to the breakout box 122 and without twisting the breakout box 122 in the hands of the physician or their assistant.

In the embodiment shown, the single-use endoscope 18 is connected to the control cabinet 14 with a connector 130. Within the connector 130 are a pair of spools 132, 134 that are engageable with the driveshafts of the servo motors 110, 112. Each spool 132, 134 drives a pair of control cables that are wound in opposite directions. One pair of control cables drives the distal tip of the endoscope in the up and down direction, while the other pair of control cables drives the distal tip of the endoscope in the left and right direction. In an alternate embodiment, the endoscope may include a manual handle having control knobs that selectively tension or release the control cables to move the distal tip and one or more buttons that activate functions of the endoscope.

The connector 130 also includes a manifold 140 that controls the supply of irrigation fluid, air and vacuum to various tubes or lumens within the endoscope 18. In addition, the connector 130 includes an electrical connector 142 that mates with the corresponding electrical connector on the control cabinet 14. The connector 142 transfers signals to and from the image sensor as well as power to the illumination LEDs and allows connection to a thermal sensor at the distal end of the endoscope. In addition, the connector 142 carries signals from one or more remotely located environmental sensors as will be described below. Water or another irrigation liquid is supplied to the endoscope with a pump 145. The pump 145 is preferably a peristaltic pump that moves the water though a flexible tube that extends into the proximal connector 130. Peristaltic pumps are preferred because the pump components do not need to come into contact with the water or other fluids within the endoscope and it allows the wetted component to be single-use. A water or other irrigation liquid reservoir 150 is connected to the pump 145 and supplies water to cool the illumination LEDs as well as to irrigate the patient. The water supplied to cool the LEDs is returned to the reservoir 150 in a closed loop. Waste water or other debris are removed from the patient with a vacuum line that empties into a collection bottle 160. Control of the vacuum to the collection bottle 160 is provided at the manifold 140 within the proximal connector 130. A gas source provides insufflation by delivering an inert gas such as carbon dioxide, nitrogen, air, etc., to the lumen(s) of single-use endoscope 18 via the manifold 140.

The processor and control unit 108 executes application software, including a GUI software application, a system control software application, and a network software application that reside on a computer readable medium such as a hard disc drive, CD-ROM, DVD, etc., or in a solid state memory. GUI software application is well known to those skilled in the art, and provides the physician or operator with live endoscopic video or still images and, optionally, with visual, audible, or haptic control and feedback on display 12 using user input device 16. System control software application is the central control program of application software that receives input from sensors, such as from the one or more environmental sensors at the distal end of the endoscope as described below, as well as from the input device 16. System control software application provides system control for the functions necessary to operate single-use endoscope system 10. The network software application operates a network connection to allow the endoscopic imaging system 10 to be connected to a local area network and/or the Internet.

As set forth in the 10/811,781 application, the manifold 140 supplies insufflation gas, water and vacuum to one or more lumens of single-use endoscope 18. The manifold is preferably constructed as a series of passages that are formed between sheets of a thermoplastic material. Water, air, and vacuum are applied to inputs of the manifold and selectively delivered to outputs that are in turn connected to lumens within the endoscope 18 by pinch valves on the control cabinet 14 that open or close the passages in the manifold. The passages are preferably formed by rf welding the sheets of thermoplastic into the desired pattern of the passages.

In accordance with FIG. 2, the basic process of insufflation and exsufflation using single-use endoscopic imaging system 10 is as follows:

During operation, live endoscopic video images are provided on display 12 by the GUI software application, which processes information from the imaging board 114, and the single-use endoscope 18. Prior to operation, insufflation is initiated upon operator command by means of the user input device 16, or according to a pre-programmed routine. As a result, system control software application activates the manifold 140 by means of the pinch valves on the control cabinet 14. Upon advancing single-use endoscope 18, images are produced by the image sensor at the distal tip of the endoscope and analyzed by the image processor 114 and/or the processor and servo control unit 108 to determine if either irrigation or insufflation is required. If insufflation is required, an insufflation gas is channeled through a lumen of single-use endoscope 18 and into the patient. In one embodiment of the invention, the gas delivery lumen terminates at directional port 256, that directs the insufflation gas and/or irrigation liquid over a lens 270 of the imaging sensor, as shown in FIG. 3. As the distal tip of single-use endoscope 18 is advanced into the colon during the endoscopic procedure, further areas of the colon are insufflated, bringing new examination regions into view.

As shown in FIG. 3, the distal end of the single-use endoscope 18 includes a distal cap 250 having a number of openings on its front face. The openings include an opening to a working channel 252 and an opening 254 for a low pressure lavage lumen, whereby a stream of liquid can be delivered through the endoscope to remove debris or obstructions from the patient. A lens wash and insufflation port includes the integrated directional port or flush cap 256 that directs water across the lens of an image sensor and delivers the insufflation gas to expand the lumen in which the endoscope is inserted. Offset from the longitudinal axis of the endoscope is a lens port 258 that is surrounded by a pair of windows or lenses 260 and 262 that cover the illumination sources. One or more environmental sensors 245 are also disposed on or adjacent the front face of the distal cap 250 to detect environmental conditions within the body cavity of the patient. Signals from the one or more environmental sensors are transmitted back to the processor and servo control unit 108 through the electrical connector 142. Suitable environmental sensors 245 include, but are not limited to, pressure, temperature, pH sensors to measure conditions in the patient adjacent the distal tip. In addition, sensors such as laser distance sensor or ultrasonic probes can be used to measure the size of the area or thickness of the colon wall surrounding the endoscope.

As best shown in FIG. 4A, the imaging assembly at the distal end of the endoscope also includes a heat exchanger 280. The heat exchanger 280 comprises a semi-circular section having a concave recess 282 into which a cylindrical lens assembly 270 is fitted. The concave recess 282 holds the position of the lens assembly 270 in directions perpendicular to the longitudinal axis of endoscope, thereby only permitting the lens assembly 270 to move along the longitudinal axis of the endoscope. Once the lens assembly is positioned such that it is focused on an image sensor 290 that is secured to a rear surface of the heat exchanger 280, the lens assembly is fixed in the heat exchanger with an adhesive. A pair of LEDs 282, 284 are bonded to a circuit board that is affixed in the heat exchanger such that a channel is formed behind the circuit board for the passage of a fluid or gas to cool the LEDs. A circuit board or flex circuit 292 containing circuitry to transmit and receive signals to and from the control cabinet is secured behind the image sensor 290 and to the rear surface of the heat exchanger 280. With the lens assembly 270, the LEDs 280, 282, the image sensor 290, and associated circuitry 292 secured in the heat exchanger 280, the heat exchanger assembly can be fitted within the distal cap 250 to complete the imaging assembly.

As discussed, the images obtained from the image sensor are analyzed by an image analysis program to determine when cleaning of the imaging system or the colon itself is desired. In addition, measurements of the colon cavity obtained from the one or more environmental sensors may be combined with image information as analyzed by the image analysis program to control the supply of irrigation and aspiration when a cleaning cycle is required.

The basic process of irrigation and aspiration for the purpose of prepping a poorly prepared patient during a colonoscopy procedure using the endoscopic imaging system 100 is as follows.

The GUI software application displays the live video or still images produced by the imaging board 114 on the display 110. In addition, an image analysis program that is executed by a processor on the imaging board 114 or the processor and servo control unit 108 analyzes the image signals to determine if it is necessary to employ a wash routine in the patient or to clean the lens of the endoscope 18. If the image analysis program determines that a lens cleaning or wash routine should be initiated, the control software application activates one or more valves controlling the manifold to deliver an irrigation liquid and vacuum aspiration to the endoscope. The modality of the washing routine supplied can be determined based on an analysis of the images produced as well as volumetric, environmental or other measurements obtained by the one or more environmental sensors 245 at the distal end of the endoscope.

To determine if the field of view of the single-use endoscope 18 is clear or obstructed, the image analysis program analyzes images of the patient's body for the presence of obstructing matter within the area of view or on the surface of imaging optics. For example, the image analysis program determines if the position of an obstruction changes with a change in probe position. If an obstruction remains in the same place within an image despite moving the endoscope, then the system control software initiates a blast of cleaning solution over the surface of the imaging lens. However, if the image appears to indicate that the patient has not been properly prepped, then the system control software proceeds to initiate one or more cleaning or washing routines.

In one embodiment of the invention, the presence of obstructing material in the field of view is detected by the image analysis program on the basis of the color or spectral reflectance of the tissue being observed. Healthy colon tissue is typically characterized by white or pinkish tissue. Therefore, the image analysis program searches an image to determine the number of pixels in the image that display the desired tissue color. If the image contains too many dark or other colored pixels, the presence of obstructing material is presumed. Of course, it will be appreciated that the color of healthy, clean tissue can vary from patient to patient. Therefore, the physician may be prompted to direct the probe at a known portion of healthy, clean tissue to calibrate the image analysis program prior to beginning the colonoscopy.

In performing the washing routine, the system control software may take into consideration measurements obtained from the one or more environmental sensors 245 included in the single-use endoscope 18. For example, measurements of the size of the colon cavity, thickness of the colon wall, pressure within the colon, or other factors such as temperature, pH, etc. can be obtained from the one or more environmental sensors 245 and used to adjust the volume or rate of delivery and/or aspiration of liquid supplied or the composition of the washing liquid can be adjusted based on the measurements obtained. Similarly, the environmental sensor 245 positioned along the length of the endoscope can measure the depth of insertion of the distal tip of the endoscope.

With the endoscopic imaging system 10, any obstructions that interfere with the endoscopic procedure are automatically detected. Washing or lens cleaning routines are initiated upon command by the system control software or may be initiated by an operator command received via user interface 16. Wash routines may include, for example, a continuous spray, a pulsating jet, and a large bolus wash. Sequential mixtures of fluids or gases can be augmented with aeration and/or additives. Additives are added into the irrigant solution, either singularly or in combination, upon operator command using user interface 16 or as directed by preprogrammed wash routines or based on an analysis of signals produced from the image sensor and/or the one or more environmental sensors 245. New wash routines may be downloaded through network connection by means of network software application. Alternatively, a user may also manually define new irrigant mixes and/or wash routines by recording a series of operator commands on user interface 16.

After irrigation, the resulting maceration is aspirated under control of the system control software application, which activates the manifold 140. The manifold 140 applies vacuum through a working or aspiration channel of the single-use endoscope 18. At any time, the physician or their assistant may manually interrupt the wash routine or aspiration.

The endoscopic imaging system of the present invention also determines if the body cavity is properly inflated. Such a determination is made by measuring the pressure and/or analyzing images obtained from the image sensor. If the body cavity is not properly inflated, insufflation gas is delivered to the patient in a manner that is adjusted for environmental conditions in the patient. As with the washing mode, the insufflation gas can be delivered in accordance with the detected pressure in the body cavity, the size of the cavity, or until the image signals produced by the image sensor indicate that the colon is inflated to produce a desired field of view. Furthermore, the insufflation gas can be adjusted in accordance with the sensed thickness of the colon wall or other parameters that assure that insufflation gas is not delivered too quickly so as to cause discomfort or potential injury to the patient. By automatically controlling the insufflation of the colon at the region of the distal tip a desired field of view is provided and inadvertent collapse of the colon is prevented. Furthermore, the physician can concentrate on performing the procedure without having to manually control insufflation.

As will be appreciated, the automated irrigation and aspiration features of the present invention reduce the need for the physician to actively control the preparation of poorly prepared patients for examination. Because obstructions and poor fields of view are automatically detected and cleared, the physician can concentrate on performing the required procedure. Furthermore, the evacuation wash routines may be tailored to a patient's individual condition as detected by the image analysis program and one or more sensors 122.

While the preferred embodiment of the invention has been illustrated and described, it will be appreciated that various changes can be made therein without departing from the scope of the invention. For example, although the present invention is described with respect to single use, disposable endoscopes, it will be appreciated that the present invention is also applicable to non-disposable, reusable endoscopes as well. It is therefore intended that the scope of the invention be determined from the following claims and equivalents thereof.

Nguyen, Anh, Banik, Michael S., Stahley, William H., Couvillon, Lucien Alfred

Patent Priority Assignee Title
10111712, Sep 09 2014 MEDOS INTERNATIONAL SARL Proximal-end securement of a minimally invasive working channel
10264959, Sep 09 2014 DEPUY SYNTHES PRODUCTS, INC Proximal-end securement of a minimally invasive working channel
10299838, Feb 05 2016 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Method and instruments for interbody fusion and posterior fixation through a single incision
10682130, Sep 04 2015 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Surgical access port stabilization
10758220, Sep 04 2015 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Devices and methods for providing surgical access
10779810, Sep 04 2015 MEDICAL DEVICE BUSINESS SERVICES, INC Devices and methods for surgical retraction
10786264, Mar 31 2015 MEDOS INTERNATIONAL SARL Percutaneous disc clearing device
10786330, Sep 09 2014 MEDOS INTERNATIONAL SARL Proximal-end securement of a minimally invasive working channel
10863994, Aug 04 2014 Medos International Sàrl Flexible transport auger
10869659, Sep 04 2015 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Surgical instrument connectors and related methods
10874425, Sep 04 2015 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Multi-shield spinal access system
10987129, Sep 04 2015 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Multi-shield spinal access system
11000312, Sep 04 2015 MEDOS INTERNATIONAL SARL Multi-shield spinal access system
11013530, Mar 08 2019 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Surface features for device retention
11020153, Feb 05 2016 MEDOS INTERNATIONAL SARL Method and instruments for interbody fusion and posterior fixation through a single incision
11045324, Dec 08 2006 DePuy Synthes Products, Inc. Method of implanting a curable implant material
11051862, Nov 03 2001 DePuy Synthes Products, Inc. Device for straightening and stabilizing the vertebral column
11129727, Mar 29 2019 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Inflatable non-distracting intervertebral implants and related methods
11134987, Oct 27 2011 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
11213196, Sep 09 2014 MEDOS INTERNATIONAL SARL Proximal-end securement of a minimally invasive working channel
11219439, Sep 26 2012 DePuy Synthes Products, Inc. NIR/RED light for lateral neuroprotection
11234736, Oct 27 2011 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
11241252, Mar 22 2019 DEPUY SYNTHES PRODUCTS, INC Skin foundation access portal
11241255, Oct 27 2011 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
11278323, Oct 27 2011 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
11331090, Sep 04 2015 Synthes GmbH; DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Surgical visualization systems and related methods
11344190, Sep 04 2015 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Surgical visualization systems and related methods
11439380, Sep 04 2015 MEDOS INTERNATIONAL SARL; DEPUY SYNTHES PRODUCTS, INC Surgical instrument connectors and related methods
11464523, Mar 31 2015 MEDOS INTERNATIONAL SARL Percutaneous disc clearing device
11559295, Sep 26 2012 DePuy Synthes Products, Inc. NIR/red light for lateral neuroprotection
11559328, Sep 04 2015 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Multi-shield spinal access system
11660082, Nov 01 2011 DePuy Synthes Products, Inc. Dilation system
11672562, Sep 04 2015 MEDOS INTERNATIONAL SARL Multi-shield spinal access system
11712252, Aug 04 2014 MEDOS INTERNATIONAL SARL Flexible transport auger
11712264, Sep 04 2015 MEDOS INTERNATIONAL SARL Multi-shield spinal access system
11737743, Oct 05 2007 DePuy Synthes Products, Inc. Dilation system and method of using the same
11744447, Sep 04 2015 Medos International Surgical visualization systems and related methods
11771517, Mar 12 2021 MEDOS INTERNATIONAL SARL Camera position indication systems and methods
11793546, Sep 04 2015 MEDOS INTERNATIONAL SARL Surgical visualization systems and related methods
11801070, Sep 04 2015 MEDOS INTERNATIONAL SARL Surgical access port stabilization
11806043, Sep 04 2015 MEDOS INTERNATIONAL SARL Devices and methods for providing surgical access
11813026, Apr 05 2019 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Systems, devices, and methods for providing surgical trajectory guidance
11911017, Oct 27 2011 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
11937797, Oct 27 2011 DePuy Synthes Products, Inc. Method and devices for a sub-splenius/supra-levator scapulae surgical access technique
11950766, Sep 04 2015 MEDOS INTERNATIONAL SÀRL Surgical visualization systems and related methods
12089873, Mar 22 2019 Medos International Sàrl Skin foundation access portal
9924979, Sep 09 2014 MEDOS INTERNATIONAL SARL Proximal-end securement of a minimally invasive working channel
9980737, Aug 04 2014 MEDOS INTERNATIONAL SARL Flexible transport auger
ER6943,
RE48534, Apr 16 2012 DePuy Synthes Products, Inc. Detachable dilator blade
Patent Priority Assignee Title
3266059,
3470876,
3572325,
3581738,
4108211, Apr 28 1975 Fuji Photo Optical Co., Ltd. Articulated, four-way bendable tube structure
4286585, Dec 22 1978 Olympus Optical Co., Ltd. Bend angle control for endoscope
4294162, Jul 23 1979 United Technologies Corporation Force feel actuator fault detection with directional threshold
4311134, May 19 1978 Olympus Optical Co., Ltd. Fluid feeding device for an endoscope
4315309, Jun 25 1979 Integrated medical test data storage and retrieval system
4351323, Oct 20 1979 Asahi Kogaku Kogyo Kabushiki Kaisha Curvable pipe assembly in endoscope
4425113, Jun 21 1982 Baxter Travenol Laboratories, Inc. Flow control mechanism for a plasmaspheresis assembly or the like
4432349, Apr 03 1979 Fuji Photo Optical Co., Ltd. Articulated tube structure for use in an endoscope
4471766, Nov 24 1977 YOON, INBAE, 2101 HIGHLAND RIDGE RD , PHOENIX, MD 21131 Ring applicator with an endoscope
4473841, Oct 20 1981 FUJIFILM Corporation Video signal transmission system for endoscope using solid state image sensor
4488039,
4491865, Sep 29 1982 Welch Allyn, Inc. Image sensor assembly
4493537, Nov 10 1981 Olympus Optical Co., Ltd. Objective lens system for endoscopes
4495134, Nov 17 1981 Asahi Kogaku Kogyo Kabushiki Kaisha Method for manufacturing a flexible tube for an endoscope
4499895, Oct 15 1981 Olympus Optical Co., Ltd. Endoscope system with an electric bending mechanism
4503842, Nov 04 1981 Olympus Optical Co., Ltd. Endoscope apparatus with electric deflection mechanism
4513235, Jan 22 1982 British Aerospace Public Limited Company Control apparatus
4515444, Jun 30 1983 Smith & Nephew, Inc Optical system
4516063, Jan 22 1982 British Aerospace Public Limited Company Control apparatus
4519391, Oct 20 1981 FUJIFILM Corporation Endoscope with signal transmission system and method of operating same
4552130, Mar 01 1983 Olympus Optical Co., Ltd. Air and liquid supplying device for endoscopes
4559928, Oct 22 1981 Olympus Optical Co., Ltd. Endoscope apparatus with motor-driven bending mechanism
4566437, May 01 1981 Olympus Optical Co., Ltd. Endoscope
4573450, Nov 11 1983 Fuji Photo Optical Co., Ltd. Endoscope
4580210, Apr 18 1983 SAAB-SCANTA AKTIEBOLAG, S-581 88 LINKOPING, A CORP OF SWEDEN Control system having variably biased manipulatable unit
4586923, Jun 25 1984 Cordis Corporation Curving tip catheter
4615330, Sep 05 1983 Olympus Optical Co., Ltd. Noise suppressor for electronic endoscope
4616630, Aug 20 1984 Fuji Photo Optical Co., Ltd. Endoscope with an obtusely angled connecting section
4617915, Apr 24 1984 Fuji Photo Optical Co., Ltd. Construction of manual control section of endoscope
4618884, Sep 05 1983 Olympus Optical Co., Ltd. Image pickup and observation equipment for endoscope
4621618, Feb 28 1984 Olympus Optical Company, Ltd. Dual viewing and control apparatus for endoscope
4622584, Sep 05 1983 Olympus Optical Co., Ltd. Automatic dimmer for endoscope
4625714, Aug 20 1984 Fuji Photo Optical Co., Ltd. Endoscope having a control for image stand still and photographing the image
4631582, Aug 31 1984 Olympus Optical Co., Ltd. Endoscope using solid state image pick-up device
4633303, Aug 31 1984 OLYMPUS OPTICAL CO , LTD , NO 43-2, HATAGAYA 2-CHOME, SHIBUYA-KU TOKYO JAPAN Two-dimensional bandwidth compensating circuit for an endoscope using a solid state image pick-up device
4633304, Aug 27 1983 Olympus Optical Co., Ltd. Endoscope assembly
4643170, Dec 05 1984 Olympus Optical Co., Ltd. Endoscope apparatus
4646723, Aug 23 1984 Fuji Photo Optical Co., Ltd. Construction of a forward end portion of an endoscope using a heat conductive material
4649904, Jan 02 1986 Welch Allyn, Inc. Biopsy seal
4651202, May 16 1984 Fuji Photo Optical Co., Ltd. Video endoscope system
4652093, Nov 19 1982 Gwyndann Group Limited Optical instruments
4652916, Oct 12 1983 OMRON TATEISI ELECTRONICS CO , Image pick-up device
4654701, Sep 03 1984 Olympus Optical Co., Ltd. Biopsy information recording apparatus for endoscope
4662725, Feb 15 1984 Olympous Optical Co., Ltd. Objective lens system for endoscopes
4663657, Sep 05 1983 Olympus Optical Company, Ltd. Image pickup apparatus for endoscopes
4667655, Jan 21 1985 Olympus Optical Co., Ltd. Endoscope apparatus
4674844, Jul 28 1984 Olympus Optical Co., Ltd. Objective lens system for an endscope
4686963, Mar 05 1986 ACMI Corporation Torsion resistant vertebrated probe of simple construction
4697210, Aug 20 1984 Fuji Photo Optical Co., Ltd. Endoscope for displaying a normal image
4700693, Dec 09 1985 EVEREST VIT, INC Endoscope steering section
4714075, Feb 10 1986 Welch Allyn, Inc. Biopsy channel for endoscope
4716457, Feb 27 1986 KABUSHIKI KAISHA TOSHIBA PART INTEREST Electronic endoscopic system
4719508, Oct 02 1985 Olympus Optical Co., Ltd. Endoscopic photographing apparatus
4727417, May 14 1986 Olympus Optical Co., Ltd. Endoscope video apparatus
4727418, Jul 02 1985 Olympus Optical Co., Ltd. Image processing apparatus
4745470, Apr 04 1986 Olympus Optical Co., Ltd. Endoscope using a chip carrier type solid state imaging device
4745471, May 13 1986 Olympus Optical Co., Ltd. Solid-state imaging apparatus and endoscope
4746974, Feb 06 1986 Kabushiki Kaisha Toshiba Endoscopic apparatus
4748970, May 30 1986 Olympus Optical Co., Ltd. Endoscope systems
4755029, May 22 1986 Olympus Optical Co., Ltd. Objective for an endoscope
4762119, Jul 28 1987 Welch Allyn, Inc. Self-adjusting steering mechanism for borescope or endoscope
4765312, Jul 30 1986 Olympus Optical Co., Ltd. Endoscope
4766489, Aug 01 1986 Olympus Optical Co., Ltd. Electronic endoscope with image edge enhancement
4787369, Aug 14 1987 GE Inspection Technologies, LP Force relieving, force limiting self-adjusting steering for borescope or endoscope
4790294, Jul 28 1987 GE Inspection Technologies, LP Ball-and-socket bead endoscope steering section
4794913, Dec 04 1986 Olympus Optical Co., Ltd. Suction control unit for an endoscope
4796607, Jul 28 1987 GE Inspection Technologies, LP Endoscope steering section
4800869, Feb 13 1987 Olympus Optical Co. Ltd. Endoscope
4805596, Apr 03 1987 Olympus Optical Co., Ltd. Endoscope
4806011, Jul 06 1987 Spectacle-mounted ocular display apparatus
4819065, May 08 1986 Olympus Optical Co., Ltd. Electronic endoscope apparatus
4819077, May 14 1986 Kabushiki Kaisha Toshiba Color image processing system
4821116, Sep 30 1983 Olympus Optical Co., Ltd. Endoscope equipment
4824225, Dec 28 1985 Olympus Optical Co., Ltd. Illumination optical system for an endoscope
4831437, Aug 11 1987 Olympus Optical Co., Ltd. Video endoscope system provided with color balance adjusting means
4836187, Dec 27 1986 Kabushiki Kaisha Toshiba; Kabushiki Kaisha Machidaseisakujyo Constant pressure apparatus of an endoscope
4844052, Mar 11 1987 Kabushiki Kaisha Toshiba Apparatus for transmitting liquid and gas in an endoscope
4844071, Mar 31 1988 Edwards Lifesciences Corporation Endoscope coupler device
4845553, May 22 1987 Olympus Optical Co., Ltd. Image data compressing device for endoscope
4845555, Feb 13 1987 Olympus Optical Co., Ltd. Electronic endoscope apparatus
4847694, Dec 03 1986 Kabushiki Kaisha Toshiba Picture archiving and communication system in which image data produced at various locations is stored in data bases at various locations in accordance with lists of image ID data in the data bases
4853772, Jun 24 1987 Olympus Optical Co., Ltd. Electronic endoscope apparatus having isolated patient and secondary circuitry
4860731, Dec 17 1987 Olympus Optical Co., Ltd. Endoscope
4867546, Jan 11 1985 Olympus Optical Co., Ltd. Objective lens system for an endoscope
4868647, Sep 14 1987 Olympus Optical Co., Ltd. Electronic endoscopic apparatus isolated by differential type drive means
4869237, Mar 02 1987 Olympus Optical Co., Ltd. Electronic endoscope apparatus
4873965, Jul 31 1987 Flexible endoscope
4875468, Dec 23 1988 Welch Allyn, Inc. Elastomer-ePTFE biopsy channel
4877314, May 25 1987 Olympus Optical Co., Ltd. Objective lens system for endoscopes
4882623, Aug 11 1988 Olympus Optical Co., Ltd. Signal processing apparatus for endoscope capable of changing outline enhancement frequency
4884134, Oct 07 1987 Olympus Optical Co., Ltd. Video endoscope apparatus employing device shutter
4885634, Oct 27 1987 Olympus Optical Co., Ltd. Endoscope apparatus capable of monochrome display with respect to specific wavelength regions in the visible region
4890159, Feb 04 1988 Olympus Optical Co., Ltd. Endoscope system and method of unifying picture images in an endoscope system
4894715, Jan 08 1988 Olympus Optical Co., Ltd. Electronic endoscope
4895431, Nov 13 1986 OLYMPUS OPTICAL CO , LTD Method of processing endoscopic images
4897789, Feb 27 1986 MCNEILAB, INC Electronic device for authenticating and verifying disposable elements
4899731, Oct 16 1986 Olympus Optical Co., Ltd. Endoscope
4899732, Sep 02 1988 Spectrum Medsystems Corporation Miniscope
4899787, Nov 17 1981 Asahi Kogaku Kogyo Kabushiki Kaisha Flexible tube for endoscope
4905666, Mar 27 1987 Olympus Optical Co., Ltd. Bending device for an endoscope
4916533, Dec 31 1988 Olympus Optical Co., Ltd. Endoscope insertion direction detecting method
4918521, Jan 20 1987 Olympus Optical Co., Ltd. Solid state imaging apparatus
4919112, Apr 07 1989 PHOENIXCOR, INC Low-cost semi-disposable endoscope
4919114, Jan 14 1988 Olympus Optical Co., Ltd. Endoscope provided with flexible signal wires
4920980, Sep 14 1987 Cordis Corporation Catheter with controllable tip
4928172, Jan 07 1988 Olympus Optical Co., Ltd. Endoscope output signal control device and endoscope apparatus making use of the same
4931867, Mar 01 1988 Olympus Optical Co., Ltd. Electronic endoscope apparatus having an isolation circuit for isolating a patient circuit from a secondary circuit
4941454, Oct 05 1989 GE Inspection Technologies, LP Servo actuated steering mechanism for borescope or endoscope
4941456, Oct 05 1989 GE Inspection Technologies, LP Portable color imager borescope
4951134, May 18 1987 Asahi Kogaku Kogyo Kabushiki Kaisha Color tone controller for endoscope
4951135, Jan 11 1988 Olympus Optical Co., Ltd. Electronic-type endoscope system having capability of setting AGC variation region
4952040, Jun 26 1987 Olympus Optical Co., Ltd. Illumination optical system for an endoscope
4960127, Jan 23 1989 LON ACQUISITION CORPORATION, A DE CORP ; LON RESEARCH, INC Disposable transducer manifold
4961110, Nov 02 1988 Olympus Optical Co., Ltd. Endoscope apparatus
4967269, Jul 28 1988 Olympus Optical Co., Ltd. Endoscope automatic light control apparatus and endoscope apparatus making use of the same
4971034, Feb 16 1985 Asahi Kogaku Kogyo Kabushiki Kaisha Body cavity pressure adjusting device for endoscope and laser medical treatment apparatus including body cavity pressure adjusting device
4973311, Dec 27 1986 Kabushiki Kaisha Toshiba; Kabushiki Kaisha Machidaseisakujyo Aspirator for endoscopic system
4979497, Jun 06 1989 Olympus Optical Co., Ltd. Endoscope
4982725, Jul 04 1989 Olympus Optical Co., Ltd. Endoscope apparatus
4984878, Sep 29 1988 Fuji Photo Optical Co., Ltd. Ojective lens for endoscope
4986642, Nov 20 1987 Olympus Optical Co., Ltd. Objective lens system for endoscopes and image pickup system equipped with said objective lens system
4987884, Dec 28 1984 Olympus Optical Co., Ltd. Electronic endoscope
4989075, Aug 26 1987 Kabushiki Kaisha Toshiba Solid-state image sensor device
4989581, Jun 01 1990 EVEREST VIT, INC Torsional strain relief for borescope
4996974, Apr 17 1989 Welch Allyn, Inc. Adjustable steering control for flexible probe
4996975, Jun 01 1989 Kabushiki Kaisha Toshiba Electronic endoscope apparatus capable of warning lifetime of electronic scope
5001556, Sep 30 1987 Olympus Optical Co., Ltd. Endoscope apparatus for processing a picture image of an object based on a selected wavelength range
5005558, May 16 1988 Kabushiki Kaisha Toshiba Endoscope
5005957, Sep 07 1988 Olympus Optical Co., Ltd. Objective lens system for endoscopes
5007408, Mar 16 1989 Olympus Optical Co., Ltd. Endoscope light source apparatus
5018509, Feb 21 1989 Olympus Optical Co., Ltd. Endoscope insertion controlling apparatus
5019056, Sep 22 1988 Aegis Medical, Inc.; AEGIS MEDICAL, INC , A CORP OF DE Bowel care apparatus
5022382, May 25 1988 Kabushiki Kaisha Toshiba Endoscope
5029016, Sep 07 1988 Olympus Optical Co., Ltd. Medical image filing apparatus and filing method for registering images from a plurality of image output devices in a single examination
5034888, Feb 26 1988 Olympus Optical Co., Ltd. Electronic endoscope apparatus having different image processing characteristics for a moving image and a still image
5040069, Jun 16 1989 Fuji Photo Optical Co., Ltd. Electronic endoscope with a mask bump bonded to an image pick-up device
5045935, Apr 12 1989 KABUSHIKI KAISHA TOSHIBA PART INTEREST Electronic endoscope system including image processing unit with photographing unit
5049989, Jan 04 1990 Olympus Optical Co., Ltd. Method and circuit for reducing the influence of a bright image area in an endoscope image signal
5050584, Sep 22 1989 Olympus Optical Co., Ltd. Endoscope with a solid-state image pickup device
5050974, Sep 12 1988 OLYMPUS OPTICAL CO , LTD Optical system for endoscopes
5056503, Oct 03 1983 Olympus Optical Co., Ltd. Endoscope with high frequency accessory and reduced video interference
5061994, Nov 25 1987 Olympus Optical Co., Ltd. Endoscope device using a display and recording system with means for monitoring the status of the recording medium
5068719, Jun 07 1989 OLYMPUS OPTICAL CO LTD Endoscope photometric apparatus
5074861, May 23 1988 Medical laser device and method
5081524, May 22 1987 Olympus Optical Co., Ltd. Image inputting device for endoscope
5087989, Apr 19 1989 Olympus Optical Co., Ltd. Objective optical system for endoscopes
5110645, Oct 03 1986 Olympus Optical Company Ltd. Sheath of articulated tube for endoscope
5111281, Sep 28 1987 Kabushiki Kaisha Toshiba Color correction device for an endoscope
5111306, Apr 18 1990 Olympus Optical Co., Ltd. Endoscope image filing system
5111804, Feb 15 1989 Kabushiki Kaisha Toshiba Electronic endoscope
5113254, Jun 04 1989 OLYMPUS OPTICAL CO , LTD Electronic endoscope apparatus outputting ternary drive signal
5119238, Oct 13 1989 Olympus Optical Co., Ltd. Objective lens system for endoscopes
5131393, Jun 25 1990 Fuji Photo Optical Co., Ltd. Ultrasound internal examination system
5137013, Jun 29 1990 Olympus Optical Company Limited Joint structure composed of flexible tubing and a handling apparatus comprising such a joint structures
5140265, Dec 20 1989 Olympus Optical Co., LTD Eddy current flaw detecting endoscope apparatus which produces signals which control other devices
5159446, Jun 21 1991 Olympus Optical Co., Ltd. Electronic endoscope system provided with a separate camera controlling unit and motor controlling unit
5170774, Mar 17 1990 Richard Wolf GmbH Endoscope with viewable and targetable irrigation and aspiration system
5170775, Jun 20 1990 Olympus Optical Co., Ltd. Endoscope
5172225, Nov 25 1987 Olympus Optical Co., Ltd. Endoscope system
5174293, Nov 17 1988 Olympus Optical Co., Ltd. Medical apparatus including on isolating transformer apparatus for isolating medical apparatus from non-medical apparatus to prevent electrical shocks to patients
5176629, Jul 31 1989 C. R. Bard, Inc. Irrigation system for use with endoscopic procedure
5188111, Jan 18 1991 Catheter Research, Inc.; CATHETER RESEARCH, INC Device for seeking an area of interest within a body
5191878, Apr 12 1990 Olympus Optical Co., Ltd. Endoscope device
5198931, Apr 19 1989 Olympus Optical Co., Ltd. Objective optical system for endoscopes
5201908, Jun 10 1991 ENDOMEDICAL TECHNOLOGIES, INC Sheath for protecting endoscope from contamination
5208702, Apr 11 1990 Olympus Optical Co., Ltd. Objective lens system for endoscopes
5209220, Oct 05 1989 Olympus Optical Co., Ltd. Endoscope image data compressing apparatus
5225958, Oct 09 1990 KABUSHIKI KAISHA TOSHIBA PART INTEREST Electronic endoscope apparatus capable of protecting overvoltage for solid-state image sensor
5228356, Nov 25 1991 Variable effort joystick
5243416, Apr 13 1990 Kabushiki Kaisha Toshiba Method and apparatus for recording plurality of non-synchronous image data
5243967, Mar 26 1991 Olympus Optical Co., Ltd. Endoscope system providing mutual operative communication between the drive control means and the video signal control means
5257628, Jul 11 1991 Fujinon Corporation Ultrasound internal examination system
5271381, Nov 18 1991 Vision Sciences, Inc. Vertebrae for a bending section of an endoscope
5279542, Jul 23 1992 Colon irrigation method
5291010, Oct 04 1990 Olympus Optical Co., Ltd. Solid state imaging device having a chambered imaging chip corner
5299559, Mar 13 1992 Siemens Medical Solutions USA, Inc Endoscope with overload protective device
5311858, Jun 15 1992 Imaging tissue or stone removal basket
5325845, Jun 08 1992 Steerable sheath for use with selected removable optical catheter
5331551, Oct 02 1989 Olympus Optical Co., Ltd. Endoscope image recording system for compressing and recording endoscope image data
5342299, Jul 06 1992 CATHETER IMAGING SYSTEMS, A GEORGIA CORPORATION Steerable catheter
5347987, Apr 08 1991 Self-centering endoscope system
5347989, Sep 11 1992 GE Inspection Technologies, LP Control mechanism for steerable elongated probe having a sealed joystick
5374953, Feb 01 1991 Olympus Optical Co., Ltd. Electronic endoscope apparatus with signal validity monitor
5379757, Aug 28 1990 Olympus Optical Co. Ltd. Method of compressing endoscope image data based on image characteristics
5381782, Jan 09 1992 Spectrum Medsystems Corporation Bi-directional and multi-directional miniscopes
5390662, Mar 02 1992 Fuji Photo Optical Co., Ltd. Electronic endoscope apparatus using circuit board having cavity
5400769, Feb 18 1991 OLYMPUS OPTICAL CO , LTD Electrically bendable endoscope apparatus having controlled fixed bending speed
5402768, Sep 01 1992 MICRO-MEDICAL DEVICES, INC Endoscope with reusable core and disposable sheath with passageways
5402769, Apr 23 1992 Olympus Optical Co., Ltd. Endoscope apparatus which time-sequentially transmits sensor signals with image signals during a blanking period
5409485, Jan 31 1990 Kabushiki Kaisha Toshiba Power supply apparatus for electrosurgical unit including electrosurgical-current waveform data storage
5412478, Sep 30 1992 Olympus Optical Co., Ltd. Endoscope system which changes over switches in interlocking relation to each other within video processor and image display apparatus to perform display of endoscope image
5418649, Apr 28 1992 Olympus Optical Co., Ltd. Objective lens system for endoscopes
5420644, Sep 21 1990 Olympus Optical Co., Ltd. Color smear correcting apparatus
5429596, Oct 09 1992 Symbiosis Corporation Endoscopic electrosurgical suction-irrigation instrument
5431645, Feb 18 1992 Symbiosis Corporation Remotely activated endoscopic tools such as endoscopic biopsy forceps
5434615, Sep 25 1992 Fuji Photo Optical Co., Ltd. Signal processing circuit adaptable to electronic endoscopes having different lengths
5436640, Oct 29 1993 GUILLEMOT CORPORATION, A FRENCH SOCIETE ANONYME Video game and simulator joystick controller with geared potentiometer actuation
5436767, Mar 05 1991 Olympus Optica Co., Ltd. Objective lens system for endoscopes
5440341, May 20 1993 Fuji Photo Optical Co., Ltd. Signal processing circuit for a simultaneous electronic endoscope apparatus
5464007, Feb 23 1994 Welch Allyn, Inc. Fluid insensitive braking for an endoscope
5469840, Dec 10 1991 Olympus Optical, Ltd. Electromotive warping type endoscope with velocity control
5473235, Dec 21 1993 Honeywell Inc. Moment cell counterbalance for active hand controller
5482029, Jun 26 1992 Kabushiki Kaisha Toshiba Variable flexibility endoscope system
5484407, Jun 24 1993 Catheter with steerable distal end
5485316, Oct 25 1991 Olympus Optical Co., Ltd. Illumination optical system for endoscopes
5492131, Sep 06 1994 Boston Scientific Scimed, Inc Servo-catheter
5496260, May 16 1994 Welch Allyn, Inc. Torque override knob for endoscopes, borescopes, or guide tubes
5515449, Jan 26 1989 Olympus Optical Co., Ltd. Endoscope image processing apparatus
5518501, Jul 08 1993 Vision-Sciences, Inc. Endoscopic contamination protection system to facilitate cleaning of endoscopes
5518502, Jun 08 1994 The United States Surgical Corporation Compositions, methods and apparatus for inhibiting fogging of endoscope lenses
5543831, Nov 20 1990 Olympus Optical Co., Ltd. Endoscope system having reduced noise emission/permeation
5549546, Jan 28 1994 Richard Wolf GmbH Insufflation device
5569158, Oct 15 1993 Fuji Photo Optical Co. Ltd. Shielding structure of electronic endoscope apparatus
5569159, Dec 16 1994 Endoscopic sleeve
5586262, Jul 02 1986 Kabushiki Kaisha Toshiba Image data management system particularly for use in a hospital
5589854, Jun 22 1995 IMMERSION CORPORATION DELAWARE CORPORATION Touching feedback device
5591202, Apr 28 1994 Symbiosis Corporation Endoscopic instruments having low friction sheath
5608451, Mar 11 1994 Olympus Optical Co., Ltd. Endoscope apparatus
5609563, Dec 12 1991 Olympus Optical Co., Ltd. Endoscope apparatus provided with curvature and fluid flow control
5619380, May 25 1992 Olympus Optical Co. Ltd. Objective optical system for endoscopes
5622528, Jan 25 1991 Olympus Optical Co., Ltd. Endoscope examination system for processing endoscope picture image
5631695, Oct 18 1993 Olympus Optical Co., Ltd. Endoscope with smear extraction and correction
5633203, Sep 30 1992 Method of making a miniaturized electronic imaging chip from a standard imaging chip
5643203, Aug 21 1991 Smith & Nephew, Inc Fluid management system
5643302, Aug 21 1991 Smith & Nephew, Inc Fluid management system
5645075, Feb 18 1992 Symbiosis Corporation Jaw assembly for an endoscopic instrument
5647840, Sep 14 1994 GYRUS ACMI, INC Endoscope having a distally heated distal lens
5658238, Feb 25 1992 Olympus Optical Co., Ltd. Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned
5667477, Feb 14 1995 Fujinon Corporation Inner structure of endoscope
5674182, Feb 26 1993 Olympus Optical Co., Ltd. Endoscope system including endoscope and protection cover
5674197, Jul 01 1994 Cordis Corporation Controlled flexible catheter
5685823, Mar 30 1994 Asahi Kogaku Kogyo Kabushiki Kaisha End structure of endoscope
5685825, Mar 03 1995 Olympus Optical Co., Ltd. Endoscope
5691853, Oct 05 1994 Fujinon Corporation Objective lens for endoscopes
5695450, Mar 05 1993 Olympus Optical Co., Ltd. Cover-type endoscope apparatus
5698866, Sep 19 1994 PDT Systems, Inc. Uniform illuminator for phototherapy
5702349, Jul 07 1994 Fujinon Corporation Endoscope with acutely angled handle and associated focus adjustment mechanism
5702754, Feb 22 1995 Boston Scientific Scimed, Inc Method of providing a substrate with a hydrophilic coating and substrates, particularly medical devices, provided with such coatings
5703724, May 16 1995 FUJIFILM Corporation Objective lens system for endoscope
5704371, Mar 06 1996 MAGNA CARTA HOLDINGS, LLC, AN ILLINOIS LIMITED LIABILITY CORP Medical history documentation system and method
5704896, Apr 27 1994 Kabushiki Kaisha Toshiba Endoscope apparatus with lens for changing the incident angle of light for imaging
5708482, Sep 08 1994 Asahi Kogaku Kogyo Kabushiki Kaisha Image-signal clamping circuit for electronic endoscope
5721566, Mar 03 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing damping force feedback
5724068, Sep 07 1995 Microsoft Technology Licensing, LLC Joystick with uniform center return force
5728045, Dec 26 1994 Fujinon Corporation Endoscope having auxiliary hole
5730702, Jun 16 1994 Fujinon Corporation Endoscopic illumination light control
5739811, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for controlling human-computer interface systems providing force feedback
5740801, Mar 31 1993 KARL STORZ ENDOSCOPY-AMERICA, INC Managing information in an endoscopy system
5746696, May 16 1995 Fujinon Corporation Flexible sheathing tube construction
5764809, Mar 26 1991 Olympus Optical Co., Ltd. Image processing apparatus using correlation among images
5767839, Jan 18 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing passive force feedback to human-computer interface systems
5779686, Apr 19 1993 Olympus Optical Co., Ltd. Disposable medical instrument
5781172, Dec 05 1990 U.S. Philips Corporation Data input device for use with a data processing apparatus and a data processing apparatus provided with such a device
5788714, Aug 14 1995 Hoya Corporation Flexible tube for an endoscope
5789047, Dec 21 1993 Japan GORE-TEX, Inc; Olympus Optical Co. Flexible, multilayered tube
5793539, Dec 27 1993 Olympus Optical Co., Ltd. Optical system for endoscopes
5805140, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION High bandwidth force feedback interface using voice coils and flexures
5810715, Sep 29 1995 Olympus Optical Co., Ltd. Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member
5812983, Aug 03 1995 Computed medical file and chart system
5819736, Mar 24 1994 STRYKER GI LTD Viewing method and apparatus particularly useful for viewing the interior of the large intestine
5820591, Feb 02 1990 Boston Scientific Scimed, Inc Assemblies for creating compound curves in distal catheter regions
5821466, Dec 23 1996 BELDEN TECHNOLOGIES, INC Multiple twisted pair data cable with geometrically concentric cable groups
5821920, Jul 14 1994 IMMERSION MEDICAL, INC Control input device for interfacing an elongated flexible object with a computer system
5823948, Jul 08 1996 RLIS, Inc. Medical records, documentation, tracking and order entry system
5827176, Feb 13 1996 Fuji Photo Optical Co., Ltd. Endoscopic imaging system with rotating photoelectric line sensor
5827186, Apr 11 1997 PURDUE PHARMACEUTICAL PRODUCTS L P Method and PDT probe for minimizing CT and MRI image artifacts
5827190, Mar 28 1994 NOVADAQ TECHNOLOGIES INC Endoscope having an integrated CCD sensor
5828197, Oct 25 1996 IMMERSION CORPORATION DELAWARE CORPORATION Mechanical interface having multiple grounded actuators
5828363, Dec 15 1993 Interlink Electronics, Inc. Force-sensing pointing device
5830124, May 18 1995 Fuji Photo Optical Co., Ltd. Guide structure for electronic endoscope systems
5830128, Jan 09 1996 Fuji Photo Optical Co., Ltd. Liquid feed device for intracavitary examination instrument
5836869, Dec 13 1994 Olympus Optical Co., Ltd. Image tracking endoscope system
5837023, Aug 08 1996 Olympus Optical Co., Ltd. Process for making gradient index optical elements
5840014, Jan 14 1997 Fuji Photo Optical Co., Ltd. Endoscope
5841126, Nov 16 1995 California Institute of Technology CMOS active pixel sensor type imaging system on a chip
5842971, May 22 1996 Optical endoscopic portals and methods of using the same to establish passages through cavity walls
5843000, May 07 1996 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
5846183, Jun 07 1995 Articulated endoscope with specific advantages for laryngoscopy
5855560, Nov 08 1991 EP Technologies, Inc. Catheter tip assembly
5857963, Jul 17 1996 GE Inspection Technologies, LP Tab imager assembly for use in an endoscope
5865724, Jan 11 1996 Symbiosis Corp. Flexible microsurgical instruments incorporating a sheath having tactile and visual position indicators
5868664, Feb 23 1996 Linvatec Corporation Electrically isolated sterilizable endoscopic video camera head
5868666, Nov 26 1993 Olympus Optical Co., Ltd. Endoscope apparatus using programmable integrated circuit to constitute internal structure thereof
5873816, Nov 02 1994 Olympus Optical Co., Ltd. Electronic endoscope having an insertional portion a part of which is a conductive armor
5873866, Jan 13 1995 Fuji Photo Optical Co., Ltd. Flexible sheathing tube construction, and method for fabrication thereof
5876326, Mar 10 1995 Olympus Optical Co., Ltd. Electronic endoscope with grounded spirally-wound lead wires
5876331, Nov 12 1996 Johnson & Johnson Medical, Inc. Endoscope with improved flexible insertion tube
5876373, Apr 04 1997 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Steerable catheter
5876427, Jan 29 1997 PURDUE PHARMACEUTICAL PRODUCTS L P Compact flexible circuit configuration
5877819, Mar 31 1993 Smith & Nephew, Inc Managing information in an endoscopy system
5879284, Dec 10 1996 FUJIFILM Corporation Endoscope
5880714, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Three-dimensional cursor control interface with force feedback
5882293, Sep 05 1996 Hoya Corporation Treatment accessories for endoscope
5882339, Aug 21 1991 Smith & Nephew, Inc Fluid management system
5889670, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for tactilely responsive user interface
5889672, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Tactiley responsive user interface device and method therefor
5892630, Feb 10 1992 Linvatec Corporation Disposable endoscope
5895350, Oct 28 1992 VIKING SYSTEMS, INC Electronic endoscope
5897507, Nov 25 1996 Boston Scientific Miami Corporation Biopsy forceps instrument having irrigation and aspiration capabilities
5897525, Mar 15 1995 Dey, Uwe and Mueller, Bernd Process and apparatus for introducing a fluid
5907487, Sep 27 1995 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback device with safety feature
5923018, Jan 31 1997 Kameda Medical Information Laboratory Medical care schedule and record aiding system, medical care schedule and record aiding method, and program storage device readable by the system
5928136, Feb 13 1997 KARL STORZ GMBH & CO KG Articulated vertebra for endoscopes and method to make it
5929607, Dec 01 1995 IMMERSION CORPORATION DELAWARE CORPORATION Low cost force feedback interface with efficient power sourcing
5929846, Jul 16 1993 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback interface device including grounded sensor system
5929900, Nov 14 1996 Fuji Photo Optical Co., Ltd. Signal processor circuit for endoscope systems of all-pixels readout type
5929901, Oct 06 1997 MICRO-IMAGING SOLUTIONS, LLC Reduced area imaging devices incorporated within surgical instruments
5931833, Nov 22 1994 Endoscopic accessory and containment system
5933809, Feb 29 1996 Medcom Solutions, Inc.; MEDCOM SOLUTIONS, INC Computer software for processing medical billing record information
5935085, Nov 24 1997 Stephen W., Welsh Method for prepping a patient for an endoscopic procedure
5936778, Mar 19 1997 Fuji Photo Optical Co., Ltd. Objective lens for endoscope
5941817, Nov 14 1996 VIKING SYSTEMS, INC Endoscope wherein electrical components are electrically isolated from patient-engaging components
5950168, Dec 18 1996 US ONCOLOGY CORPORATE, INC , A DELAWARE CORPORATION Collapsible flowsheet for displaying patient information in an electronic medical record
5951462, Dec 11 1997 Fuji Photo Optical Co., Ltd. Electronic endoscope system for displaying unconnected scope
5956416, Mar 23 1989 Olympus Optical Co., Ltd. Endoscope image processing apparatus
5956689, Jul 31 1997 Accordant Health Services, Inc. Systems, methods and computer program products for using event specificity to identify patients having a specified disease
5956690, Sep 03 1997 VHS OF MICHIGAN, INC Bundled billing accounting computer systems
5959613, Dec 01 1995 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for shaping force signals for a force feedback device
5976070, Feb 27 1997 Olympus Optical Co., Ltd. Signal cable of a video endoscope provided with a solid state image pick-up device
5976074, Sep 29 1995 Olympus Optical Co., Ltd. Endoscope provided with function of being locked to flexibility of insertion part which is set by flexibility modifying operation member
5980454, Dec 01 1997 Medtronic, Inc Endoscopic imaging system employing diffractive optical elements
5980468, Sep 22 1997 ZIMMON, DAVID S Apparatus and method for serial collection storage and processing of biopsy specimens
5986693, Oct 06 1997 MICRO-IMAGING SOLUTIONS, INC Reduced area imaging devices incorporated within surgical instruments
5991729, Jun 28 1997 Methods for generating patient-specific medical reports
5991730, Oct 08 1997 Queue Corporation Methods and systems for automated patient tracking and data acquisition
5999168, Sep 27 1995 IMMERSION CORPORATION DELAWARE CORPORATION Haptic accelerator for force feedback computer peripherals
6002425, Sep 12 1996 Fuji Photo Optical Co., Ltd. All pixels read type electronic endoscope system
6007482, Dec 20 1996 BEI SENSORS & SYSTEMS COMPANY, INC Endoscope with stretchable flexible sheath covering
6007531, Nov 21 1995 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
6014630, Aug 26 1993 PATIENT EDUCATION SERVICES, INC Customized system for providing procedure-specific patient education
6015088, Nov 05 1996 HAND HELD PRODUCTS, INC Decoding of real time video imaging
6017322, Nov 21 1995 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
6020875, Oct 31 1997 IMMERSION CORPORATION DELAWARE CORPORATION High fidelity mechanical transmission system and interface device
6020876, Apr 14 1997 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback interface with selective disturbance filter
6026363, Mar 06 1996 MAGNA CARTA HOLDINGS, LLC, AN ILLINOIS LIMITED LIABILITY CORP Medical history documentation system and method
6030360, Dec 30 1996 MYELOTEC CO , LTD Steerable catheter
6032120, Dec 16 1997 Siemens Medical Solutions USA, Inc Accessing stored ultrasound images and other digital medical images
6039728, Apr 06 1992 Biolitec Unternehmensbeteiligungs II AG Working shaft for photo-thermal therapy
6043839, Oct 06 1997 Cellect LLC Reduced area imaging devices
6050718, Mar 28 1996 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing high bandwidth force feedback with improved actuator feel
6057828, Jan 18 1995 Immersion Corporation Method and apparatus for providing force sensations in virtual environments in accordance with host software
6059719, Aug 06 1997 Olympus Corporation Endoscope system
6061004, Nov 26 1995 Immersion Corporation Providing force feedback using an interface device including an indexing function
6066090, Jun 19 1997 Branched endoscope system
6067077, Apr 10 1998 IMMERSION CORPORATION DELAWARE; IMMERSION CORPORATION DELAWARE CORPORATION Position sensing for force feedback devices
6071248, Sep 22 1997 ZIMMON, DAVID S Apparatus for serial collection, storage and processing of biopsy specimens
6075555, Apr 04 1995 Method and apparatus for image enhancement
6078308, Dec 13 1995 IMMERSION CORPORATION DELAWARE CORPORATION Graphical click surfaces for force feedback applications to provide user selection using cursor interaction with a trigger position within a boundary of a graphical object
6078353, Sep 12 1996 Fuji Photo Optical Co., Ltd. All-pixels reading type electronic endoscope apparatus
6078876, Aug 07 1995 Immersion Corporation Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
6080104, May 16 1995 Asahi Kogaku Kogyo Kabushiki Kaisha Electronic endoscope system
6081809, Aug 03 1995 Interpolative method and system for producing medical charts and monitoring and recording patient conditions
6083152, Jan 11 1999 GE Inspection Technologies, LP Endoscopic insertion tube
6083170, May 17 1996 Biosense, Inc. Self-aligning catheter
6095971, Oct 22 1997 Fuji Photo Optical Co., Ltd. Endoscope fluid controller
6099465, Dec 04 1996 Fuji Photo Optical Co., Ltd. Electromagnetically coupled electronic endoscope system
6100874, Nov 17 1995 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback mouse interface
6104382, Oct 31 1997 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback transmission mechanisms
6120435, Jul 16 1997 Olympus Optical Co., Ltd. Endoscope system in which operation switch sets designed to function and be handled same way are included in endoscope and image processing apparatus respectively
6125337, Jul 16 1993 Immersion Corporation Probe apparatus and method for tracking the position and orientation of a stylus and controlling a cursor
6128006, Mar 26 1998 IMMERSION CORPORATION DELAWARE CORPORATION Force feedback mouse wheel and other control wheels
6132369, Aug 21 1997 Fuji Photo Optical Co., Ltd. Opening/closing and flow rate controller for an endoscope pipe
6134056, Aug 01 1997 Olympus Corporation Objective lens system for endoscopes
6134506, Aug 07 1995 Immersion Corporation Method and apparatus for tracking the position and orientation of a stylus and for digitizing a 3-D object
6135946, Jun 23 1997 U S PHILIPS CORPORATION Method and system for image-guided interventional endoscopic procedures
6139508, Aug 04 1998 Medtronic, Inc Articulated medical device
6141037, Mar 18 1998 Linvatec Corporation Video camera system and related method
6142956, Nov 25 1996 Boston Scientific Miami Corporation Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities
6146355, Dec 30 1996 MYELOTEC CO , LTD Steerable catheter
6149607, Aug 04 1998 Medtronic, Inc Multiple sample biopsy device
6152877, Dec 16 1998 Boston Scientific Scimed, Inc Multimode video controller for ultrasound and X-ray video exchange system
6154198, Jan 18 1995 IMMERSION CORPORATION DELAWARE D B A IMMERSION CORPORATION Force feedback interface apparatus including backlash and for generating feel sensations
6154248, May 24 1996 Hoya Corporation Electronic endoscope
6155988, Mar 26 1998 NIVAROX-FAT S A Device for taking samples, for example for a biopsy, and rack system fitted to such a device
6181481, Nov 30 1998 Fuji Photo Optical Co., Ltd. Objective lens for endoscope
6184922, Jul 31 1997 Olympus Corporation Endoscopic imaging system in which still image-specific or motion picture-specific expansion unit can be coupled to digital video output terminal in freely uncoupled manner
6193714, Apr 11 1997 PROJECT TROJAN INTELLECTUAL PROPERTY ACQUISITION, LLC Medical probe device with transparent distal extremity
6195592, Oct 24 1991 IMMERSION CORPORATION DELAWARE CORPORATION Method and apparatus for providing tactile sensations using an interface device
6203493, Feb 15 1996 Biosense, Inc. Attachment with one or more sensors for precise position determination of endoscopes
6206824, Mar 18 1998 Hoya Corporation Flexible tube for endoscope and method of producing the flexible tube
6211904, Sep 11 1997 MICRO-IMAGING SOLUTIONS, INC Surgical devices incorporating reduced area imaging devices
6216104, Feb 20 1998 Philips Electronics North America Computer-based patient record and message delivery system
6219091, Sep 12 1996 Fujinon Corporation All-pixels reading type electronic endoscope apparatus
6221070, Oct 18 1996 Irvine Biomedical, Inc. Steerable ablation catheter system having disposable shaft
6238799, Feb 09 1996 SURFACE SOLUTIONS LABORATORIES, INC, Articles prepared from water-based hydrophilic coating compositions
6241668, Jan 23 1998 Monument Peak Ventures, LLC Medical system architecture
6260994, Aug 21 1998 Fujinon Corporation Battery-powered light source arrangement for endoscope
6261226, Mar 30 1994 LEDYARD NATIONAL BANK Electronically Steerable Endoscope
6272470, Sep 03 1996 Kabushiki Kaisha Toshiba Electronic clinical recording system
6275255, Oct 06 1997 Cellect LLC Reduced area imaging devices
6282442, Sep 11 1998 Surgical Laser Technologies, Inc. Multi-fit suction irrigation hand piece
6283960, Oct 24 1995 Oratec Interventions, Inc Apparatus for delivery of energy to a surgical site
6295082, Feb 23 1994 Smith & Nephew, Inc Camera head with digital memory for storing information about the image sensor
6299625, Aug 12 1998 KARL STORZ SE & CO KG Handle for a medical instrument
6309347, Mar 17 1998 Fujinon Corporation Air and water supply system for endoscopes
6310642, Nov 24 1997 MICRO-IMAGING SOLUTIONS, INC Reduced area imaging devices incorporated within surgical instruments
6319196, Jul 06 1998 Fujinon Corporation Imaging element assembly unit for endoscope
6319197, Nov 20 1990 Olympus Optical Co., LTD Endoscope system having reduced noise emission/permeation
6334844, Aug 17 1999 Fujinon Corporation Mechanical- and electrical-mode changeable endoscope conduit controller
6346075, Feb 01 1999 Fujinon Corporation Air and water supply valve structure in endoscope
6354992, Nov 08 1999 Automated laparoscopic lens cleaner
6366799, Feb 15 1996 Biosense, Inc. Movable transmit or receive coils for location system
6381029, Dec 23 1998 International Business Machines Corporation Systems and methods for remote viewing of patient images
6398724, Mar 16 2000 Medivision, Inc. Focusable optical instrument with a sealed optical system having no internal optical moving parts
6413207, Sep 30 1999 Fuji Photo Optical Co., Ltd. Electronic endoscope apparatus
6421078, Feb 12 1999 FUJI PHOTO OPTICAL CO , LTD Electronic endoscope system
6425535, Aug 02 1999 Fuji Photo Optical Co., Ltd. Fluid supplying apparatus for endoscope
6425858, Mar 19 1999 Fuji Photo Optical Co., Ltd. Electronic endoscope apparatus having magnification changing function
6436032, May 30 2000 Olympus Corporation Data filing system for endoscope
6441845, Mar 31 1998 Olympus Corporation Image pickup apparatus enlarging a dynamic range of an image pickup signal
6447444, Nov 04 1997 STRYKER GI LTD Video rectoscope
6449006, Jun 26 1992 SURGICON, INC LED illumination system for endoscopic cameras
6453190, Feb 15 1996 Biosense, Inc. Medical probes with field transducers
6454162, Jan 25 2001 BEVERAGAE METRICS HOLDING LTD Process for controlling the misuse of disposable medical products
6459447, Sep 30 1998 Fuji Photo Optical Co., Ltd. Video signal transmission device
6468204, May 25 2000 FUJIFILM Corporation Fluorescent endoscope apparatus
6475141, Jun 29 2000 Fuji Photo Optical Co., Ltd. Electronic endoscope device using separated area photometry
6478730, Sep 09 1998 VISIONQUEST HOLDINGS, LLC Zoom laparoscope
6489987, Jan 09 1998 Fuji Photo Optical Co., Ltd. Electronic endoscope apparatus
6496827, May 12 1997 DATASCI LLC Methods and apparatus for the centralized collection and validation of geographically distributed clinical study data with verification of input data to the distributed system
6498948, Aug 25 1999 Hoya Corporation Endoscope system
6503193, Apr 14 1999 Hoya Corporation Flexible tube for endoscope
6520908, Sep 30 1999 Olympus Corporation Electronic endoscope
6524234, Sep 18 2000 PENTAX Corporation Tip portion of an endoscope
6530882, Jun 30 2000 Inner Vision Imaging, L.L.C.; INNER VISION IMAGING, L L C Endoscope having microscopic and macroscopic magnification
6533722, Dec 03 1999 Hoya Corporation Electronic endoscope having reduced diameter
6540669, Aug 31 2000 Hoya Corporation Flexible tube for an endoscope and electronic endoscope equipped with the flexible tube
6544194, Nov 25 1996 Boston Scientific Miami Corporation Proximal actuation handle for a biopsy forceps instrument having irrigation and aspiration capabilities
6545703, Jun 26 1998 Hoya Corporation Electronic endoscope
6551239, May 28 1999 KARL STORZ SE & CO KG Shaft for a flexible endoscope and flexible endoscope
6558317, Mar 17 1998 Fuji Photo Optical Co., Ltd. Air and water supply system for endoscopes
6561971, May 07 1999 Fuji Photo Optical Co., Ltd. Endoscope with magnification change function
6565507, Sep 13 2000 Fuji Photo Optical Co., Ltd. Flexible tube, and method for manufacturing same
6574629, Dec 23 1998 AGFA HEALTHCARE CORPORATION Picture archiving and communication system
6589162, Feb 21 2000 Hoya Corporation Endoscope system and video camera for endoscope
6595913, Sep 07 2000 FUJI PHOTO OPTICAL CO , LTD Cable structure in electronic endoscope
6597390, Jan 11 1999 Fuji Photo Optical Co., Ltd.; FUJI PHOTO OPTICAL CO , LTD Electronic endoscope apparatus
6599239, Dec 13 1999 Hoya Corporation Flexible tube for endoscope, material used for producing outer cover of the flexible tube, and production method of the flexible tube
6602186, Nov 11 1999 Hoya Corporation Electronic endoscope system
6605035, Sep 07 2000 Fuji Photo Optical Co., Ltd. Endoscope
6609135, Jul 22 1999 Olympus Corporation Image file equipment, and database creating method in an image file equipment
6611846, Oct 30 1999 MEDTECH GLOBAL LIMITED Method and system for medical patient data analysis
6614969, Jul 26 2001 LUDLOW COMPANY LP, THE High speed electronic remote medical imaging system and method
6616601, Jan 21 2000 PENTAX Corporation Flexible tube for endoscope
6623424, Sep 01 2000 Hoya Corporation Flexible tube for an endoscope and electronic endoscope equipped with the flexible tube
6638214, Aug 02 2000 Fuji Photo Optical Co., Ltd. Observation window washing device of endoscope
6638215, Aug 25 2000 Hoya Corporation Video endoscope system
6641528, Sep 08 2000 Fuji Photo Optical Co., Ltd. Bending part of endoscope
6641553, Jun 02 1999 Boston Scientific Scimed, Inc Devices and methods for delivering a drug
6651669, Sep 07 1999 Boston Scientific Scimed, Inc Systems and methods to identify and disable re-used single use devices based on cataloging catheter usage
6656110, Apr 16 1997 Karl Storz GmbH & Co. KG Endoscopic system
6656112, Sep 08 1998 Olympus Corporation Distal endoscope part having light emitting source such as light emitting diodes as illuminating means
6659940, Apr 10 2000 GYRUS ACMI, INC D B A OLYMPUS SURGICAL TECHNOLOGIES AMERICA Image sensor and an endoscope using the same
6663561, Oct 05 2000 PENTAX Corporation Video endoscope system
6669629, Apr 24 2001 Olympus Corporation Endoscope system comprising an electrically bendable endoscope
6673012, Apr 19 2000 PENTAX Corporation Control device for an endoscope
6677984, Nov 30 1999 PENTAX Corporation Electronic endoscope system
6678397, Jan 26 1999 Olympus Corporation Medical image filing system
6682479, Feb 02 1999 PENTAX Corporation Air feeding device for endoscope
6685631, Mar 16 2001 FUJI PHOTO OPTICAL CO , LTD Electronic endoscope system having variable power function
6686949, Jan 14 2000 PENTAX Corporation Electronic endoscope system
6690409, Sep 16 1998 PENTAX Corporation Electronic endoscope system
6690963, Jan 24 1995 Biosense, Inc System for determining the location and orientation of an invasive medical instrument
6692431, Sep 07 2001 Smith & Nephew, Inc.; Smith & Nephew, Inc Endoscopic system with a solid-state light source
6697101, Sep 20 1999 PENTAX Corporation Electronic endoscope
6699181, Jan 19 2001 Fuji Photo Optical Co., Ltd. Connector device for endoscope
6702737, Mar 30 2001 Fujinon Corporation Bending manipulation device for endoscope
6711426, Apr 09 2002 JB IP ACQUISITION LLC Spectroscopy illuminator with improved delivery efficiency for high optical density and reduced thermal load
6715068, Mar 31 1999 Fuji Photo Optical Co., Ltd. Multi-microcomputer system
6716162, Apr 24 2000 FUJIFILM Corporation Fluorescent endoscope apparatus
6728599, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6730018, Jul 04 2000 Olympus Corporation Endoscope
6736773, Jan 25 2001 Boston Scientific Scimed, Inc Endoscopic vision system
6743240, Jun 25 2001 Ethicon Endo-Surgery, Inc Flexible surgical device having a rotatable end effector assembly
6749559, May 27 1999 OLYMPUS WINTER & IBE GMBH Endoscope
6749560, Oct 26 1999 GYRUS ACMI, INC Endoscope shaft with slotted tube
6749561, Aug 23 2001 Smith & Nephew, Inc Autofocusing endoscopic system
6753905, Sep 29 1997 Fuji Photo Optical Co., Ltd. Circuit for transmitting a solid-state image pickup device signal to a signal processor
6758806, Jan 12 2001 LEVY, MICHAEL Endoscopic devices and method of use
6758807, Aug 27 2001 FUJI PHOTO OPTICAL CO , LTD Electronic endoscope with power scaling function
6758842, Dec 16 1999 KARL STORZ GMBH & CO KG Medical instrument for removing tissue, bone cement or the like in the human or animal body
6774947, Feb 29 2000 Mutsumi Corporation Ltd. Image pickup apparatus
6778208, Dec 28 2000 PENTAX Corporation Electronic endoscope system
6780151, Oct 26 1999 GYRUS ACMI, INC Flexible ureteropyeloscope
6785410, Aug 09 1999 WAKE FOREST UNIVERSITY HEALTH SCIENCES Image reporting method and system
6785414, Sep 28 2000 MEDIA CYBERNETICS INC System and method for establishing an aggregate degree of brightness for each primary color to create a composite color digital image
6785593, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6796938, Apr 27 2001 FUJIFILM Corporation Image obtaining method and apparatus of an endoscope apparatus
6796939, Aug 26 1999 Olympus Corporation Electronic endoscope
6798533, Dec 23 1998 International Business Machines Corporation Systems and methods for remote viewing of patient images
6800056, Apr 03 2000 Intuitive Surgical Operations, Inc Endoscope with guiding apparatus
6800057, May 29 2001 FUJIFILM Corporation Image obtaining apparatus
6808491, May 21 2001 IS, LLC Methods and apparatus for on-endoscope instruments having end effectors and combinations of on-endoscope and through-endoscope instruments
6824539, Aug 02 2002 KARL STORZ ENDOSCOPY-AMERICA, INC Touchscreen controlling medical equipment from multiple manufacturers
6824548, Jun 25 2001 Ethicon Endo-Surgery, Inc Flexible surgical clip applier
6829003, Jun 02 2000 PENTAX Corporation Sampling pulse generator of electronic endoscope
6830545, May 13 2002 WAYGATE TECHNOLOGIES USA, LP Tube gripper integral with controller for endoscope of borescope
6832990, Nov 25 1996 Boston Scientific Miami Corporation Biopsy instrument having aspiration capabilities
6840932, Sep 21 1999 KARL STORZ SE & CO KG Medical instrument
6842196, Apr 04 2000 Smith & Nephew, Inc Method and system for automatic correction of motion artifacts
6846286, May 22 2001 Hoya Corporation Endoscope system
6847933, Dec 31 1997 Siemens Medical Solutions USA, Inc Ultrasound image and other medical image storage system
6849043, Mar 22 2002 Fuji Photo Optical Co., Ltd. Suction valve for endoscope use
6850794, Sep 23 2000 CICAS IP LLC Endoscopic targeting method and system
6855109, Jul 18 2001 Hoya Corporation Portable endoscope
6858004, Nov 12 1999 PENTAX Corporation Electronic endoscope system including a plurality of video-processors
6858014, Apr 05 2002 Boston Scientific Scimed, Inc Multiple biopsy device
6860849, May 08 2000 Hoya Corporation Flexible tube for an endoscope
6863650, Jul 24 1997 Karl Storz GmbH & Co KG Endoscopic instrument for performing endoscopic procedures or examinations
6863661, May 17 2000 SciMed Life Systems, Inc. Fluid seal for endoscope
6868195, Feb 20 2003 Fujinon Corporation Device for detecting three-dimensional shapes of elongated flexible body
6871086, Feb 15 2001 ROBIN MEDICAL INC. Endoscopic examining apparatus particularly useful in MRI, a probe useful in such apparatus, and a method of making such probe
6873352, Jun 09 1999 Olympus Corporation Image processing unit whose ability to process endoscopic image signal can be expanded, and endoscopic imaging system
6876380, Mar 30 2001 Fujinon Corporation Electronic endoscopic apparatus connectable with electronic endoscope having different number of pixels
6879339, Oct 23 2001 Hoya Corporation Electronic endoscope system with color-balance alteration process
6881188, Sep 03 2001 PENTAX Corporation Electronic endoscope system with liquid supply apparatus
6882785, Sep 27 2001 The Ludlow Company LP High speed electronic remote medical imaging system and method
6887195, Jul 09 1999 DILIGENTIA EINHUNDERTSTE VERMOGENSVERWALTUNGS GMBH Endoscope-type device, especially for emergency intubation
6890294, Aug 02 2001 Olympus Corporation Endoscope apparatus
6892090, Aug 19 2002 Surgical Navigation Technologies, Inc. Method and apparatus for virtual endoscopy
6892112, Sep 07 2001 Intuitive Surgical Operations, Inc Modularity system for computer assisted surgery
6895268, Jun 28 1999 Siemens Aktiengesellschaft Medical workstation, imaging system, and method for mixing two images
6898086, Dec 14 2001 PENTAX Corporation PCB structure for scope unit of electronic endoscope
6899673, Oct 02 2000 Olympus Corporation Endoscope
6899674, Mar 07 2002 INVENDO Medical GmbH Endoscope shaft comprising a movable end portion
6899705, Apr 07 1999 Intuitive Surgical Operations, Inc Friction compensation in a minimally invasive surgical apparatus
6900829, Apr 03 1996 Hoya Corporation Electronic endoscope system for reducing random noise of a video signal
6902527, May 18 1999 Olympus Corporation Endoscope system with charge multiplying imaging device and automatic gain control
6902529, Apr 10 2000 Olympus Corporation Endoscope apparatus
6903761, Jun 24 1999 Fujinon Corporation Electronic endoscope system allowing accurate delay time to be set
6903883, Jun 27 2002 Olympus Corporation Image pickup lens unit and image pickup device
6905057, Sep 29 2003 Cilag GmbH International Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
6905462, Sep 08 1999 Olympus Corporation Endoscope image pickup optical system
6908427, Dec 30 2002 Paré Surgical, Inc. Flexible endoscope capsule
6908429, Mar 01 2002 Richard Wolf GmbH Suction valve for a medical instrument
6911916, Jun 24 1996 Intuitive Surgical Operations, Inc Method and apparatus for accessing medical data over a network
6916286, Aug 09 2001 Smith & Nephew, Inc. Endoscope with imaging probe
6923818, Mar 26 2001 Olympus Corporation Apparatus for ligating living tissues
6928490, May 20 1999 ST LOUIS UNIVERSITY Networking infrastructure for an operating room
6930706, Feb 28 2001 PENTAX Corporation Organ-region-indication system incorporated in electronic endoscope system
6932761, Sep 30 2002 Olympus Corporation Electrically-bent endoscope
6934093, Jun 15 1999 Given Imaging LTD Optical system
6934575, Sep 15 1994 GE Medical Systems Global Technology Company, LLC Position tracking and imaging system for use in medical applications
6943663, Aug 06 1996 Intuitive Surgical Operations, Inc General purpose distributed operating room control system
6943821, Mar 30 2001 Fujinon Corporation Electronic endoscope apparatus to which electronic endoscopes with different numbers of pixels can be connected
6943822, Jun 15 2001 Hoya Corporation Electronic endoscope with color adjustment function
6943946, May 01 2003 Harris Corporation Multiple aperture imaging system
6943959, Jul 04 2003 Olympus Corporation Objective optical system
6943966, Jun 04 2001 Olympus Corporation Optical component and image pick-up device using the same
6944031, Dec 14 2001 PENTAX Corporation PCB structure for scope unit of electronic endoscope
6949068, May 07 2001 Olympus Corporation Endoscope shape detector
6950248, Feb 07 2002 KARL STORZ GMBH & CO Distance holder for lens system
6950691, Apr 10 2001 Olympus Corporation Surgery support system and surgery support method
6954311, Jun 27 2002 Olympus Corporation Image pickup lens unit and image pickup device
6955671, Feb 18 1999 Olympus Corporation Remote surgery support system
6956703, May 30 2003 Olympus Corporation Objective lens for endoscope
6961187, Sep 21 2001 Olympus Corporation Imaging device
6962564, Dec 02 2002 Scott Laboratories, Inc Systems and methods for providing gastrointestinal pain management
6963175, Aug 30 2001 RADIANT RESEARCH DRIVE; Radiant Research Limited Illumination control system
6964662, Apr 09 2002 Hoya Corporation Endoscopic forceps instrument
6967673, Jun 26 2001 PENTAX Corporation Electronic endoscope system with color-balance alteration process
6974466, Dec 06 2000 Cook Medical Technologies LLC Ligating band delivery apparatus
6975968, Feb 08 2001 Olympus Corporation Medical system control apparatus, and method for dealing with trouble with the medical system control apparatus
6976954, Jun 29 2001 Hoya Corporation Endoscope system
6977053, Sep 27 2001 Fujinon Corporation Manufacturing method of front-end component of endoscope
6977670, Sep 28 2001 Hoya Corporation Method and apparatus for selective registration of endoscopes with database
6980227, Oct 01 2001 Hoya Corporation Electronic endoscope with light-amount adjustment apparatus
6980921, Mar 27 2002 NORTHERN DIGITAL INC Magnetic tracking system
6981945, Nov 12 2004 ARTANN LABORATORIES, INC Colonoscope handgrip with force and torque monitor
6982740, Nov 24 1997 Cellect LLC Reduced area imaging devices utilizing selected charge integration periods
6984206, Dec 28 2001 Olympus Corporation Endoscope and endoscope system with optical phase modulation member
6985183, Oct 19 2001 Appro Technology Inc. Method for exploring viewpoint and focal length of camera
6986686, Feb 23 2001 Olympus Corporation Electrical plug for supplying electric power from a power supply to a medical instrument
6994668, Dec 25 2002 Fujinon Corporation Four-group endoscope objective lens
6994704, Jan 31 2000 Mederi RF, LLC; HORIZON CREDIT II LLC Graphical user interface for monitoring and controlling use of medical devices
7001330, May 30 2001 Hoya Corporation Endoscope system including system for obtaining usage condition
7008376, Sep 30 2002 Olympus Corporation Electric bending endoscope
7335159, Aug 26 2004 Boston Scientific Scimed, Inc Endoscope having auto-insufflation and exsufflation
20010039370,
20010049491,
20020017515,
20020028984,
20020055669,
20020080248,
20020087048,
20020087166,
20020095175,
20020128633,
20020193662,
20020193664,
20030032863,
20030065250,
20030069474,
20030069897,
20030149338,
20030181905,
20030216617,
20040049097,
20040054258,
20040073083,
20040073084,
20040073085,
20040143159,
20040147809,
20040167379,
20040204671,
20040220452,
20040249247,
20040257608,
20050192476,
20050197861,
20050200698,
20050203341,
20050203418,
20050205958,
20050207645,
20050209509,
20050225872,
20050226508,
20050228221,
20050228222,
20050228227,
20050228697,
20050231591,
20050234507,
20050243169,
20050247081,
20050250983,
20050251112,
20050251998,
20050253044,
20050256370,
20050256373,
20050256377,
20050256424,
20050264687,
20050267417,
20050271340,
20050272978,
20050273085,
20050288545,
20050288553,
20060015008,
DE19800765,
EP75153,
EP278217,
EP437229,
EP689851,
EP728487,
EP1300883,
JP10113330,
JP10286221,
JP11216113,
JP2001128933,
JP2002007134,
JP2002078675,
JP2002102152,
JP2002177197,
JP2002185873,
JP2002253481,
JP2003075113,
JP3219521,
JP3372273,
JP3482238,
JP5091972,
JP531071,
JP5878635,
JP6105800,
JP6254048,
JP7008441,
RE32421, Sep 20 1979 Olympus Optical Co., Ltd. Data transmission system for an endoscope apparatus
RE33689, Feb 15 1984 Olympus Optical Co., Ltd. Objective lens system for endoscopes
RE34504, Feb 16 1988 Olympus Optical Co., Ltd. Electronic endoscope system provided with a means of imaging frozen pictures having few picture image smears
WO2004016310,
WO2005023082,
WO9313704,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 23 2015Boston Scientific Scimed, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 27 2016M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 02 2020M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
May 24 20194 years fee payment window open
Nov 24 20196 months grace period start (w surcharge)
May 24 2020patent expiry (for year 4)
May 24 20222 years to revive unintentionally abandoned end. (for year 4)
May 24 20238 years fee payment window open
Nov 24 20236 months grace period start (w surcharge)
May 24 2024patent expiry (for year 8)
May 24 20262 years to revive unintentionally abandoned end. (for year 8)
May 24 202712 years fee payment window open
Nov 24 20276 months grace period start (w surcharge)
May 24 2028patent expiry (for year 12)
May 24 20302 years to revive unintentionally abandoned end. (for year 12)