A split serial-parallel hybrid dual-power drive system, comprised of two or more than two separation drive systems allowing independent operation to respectively drive the load, or all loads driven individually are incorporated in a common frame to drive land, surface, underwater transportation means or aircraft, industrial machines and equipment or any other load drive by rotational kinetic energy.

Patent
   RE46017
Priority
Oct 29 2004
Filed
Apr 05 2013
Issued
May 31 2016
Expiry
Oct 29 2024

TERM.DISCL.
Assg.orig
Entity
Small
1
59
EXPIRED
0. 6. A split serial-parallel hybrid dual-power drive system employing rotational kinetic energy;
the split serial-parallel hybrid dual-power drive system comprising two or more drive systems incorporated in a common frame that is driven by the kinetic energy of at least one drive system;
the dual-power drive system including a first drive system and a second drive system;
the first drive system including an active power source (100), the active power source (100) configured to drive a second transmission unit (129), the second transmission unit (129) configured to drive a first dynamo-electrical unit (101) functioning as a generator and to drive a second clutch (112) and a transmission unit (109) for driving the load of the first drive system (1001), and manually or by control and operation of the second clutch (112) controlled by a drive control unit (104) to control the active rotational power source (100) to output transmission status of the rotational kinetic energy to the load (120a, 120a1, and 120a2) of the first drive system (1001);
the second drive system including a second dynamo-electrical unit (103, 103b, and 103c) functioning as a motor to serve as a rotational power source for the second drive system;
by control and operation of a control system configured by a drive control unit (104), a central control unit (105), and a control interface (107) or manually, the split serial-parallel hybrid dual-power drive system is capable of performing following one or more functional operations, including:
when the second clutch (112) is disengaged, the active rotational kinetic energy source drives the first dynamo-electrical unit (101) of the first drive system (1001) through the second transmission unit (129) to operate as a generator for outputting electric power, and through the control and operation of the drive control unit (104) to drive the second dynamo-electrical unit of the second drive system (1002) to operate as a motor for driving the load (120b, 120b1, and 120b2) of the second drive system (1002) to function as a series hybrid power train;
when the second clutch (112) is engaged, through the control and operation of the second transmission unit (129), the second clutch (112), and the transmission unit (109), the active rotational power source is configured to drive a load of the first drive system (1001).
0. 5. A split serial-parallel hybrid dual-power drive system employing rotational kinetic energy;
the split serial-parallel hybrid dual-power drive system comprising two or more drive systems incorporated in a common frame that is driven by the kinetic energy of at least one drive system;
the dual-power drive system including a first drive system and a second drive system;
the first drive system including an active power source, a first dynamo-electrical unit functioning as a generator, and a second dynamo-electrical unit functioning as a motor, driven by a drive control unit (104) to control the active rotational power source (100) to output transmission status of the rotational kinetic energy;
the second drive system including a third dynamo-electrical unit functioning as a motor to serve as a rotational power source for the second drive system;
by means of the control and operation of a control system or manually, the active rotational power source and the first dynamo-electrical unit of the separation serial-parallel hybrid drive system are coupled, and the first dynamo-electrical unit and the second dynamo-electrical unit are separated; and
either the active rotational kinetic energy source drives the first dynamo-electrical unit to output electric power to further drive the second dynamo-electrical unit to operate as a motor to function as a series hybrid power train;
or the active rotational power source is coupled to at least one of the first and the second dynamo-electrical units, and a rechargeable device to function as a parallel hybrid power train;
the split serial-parallel hybrid dual-power drive system comprised of the active rotational power source, the first and second dynamo-electrical units, second clutch, drive control unit, central control unit, rechargeable device, auxiliary rechargeable device, and load as follows:
the active rotational power source (100), comprising at least one of an internal combustion engine and an external combustion engine is a rotational kinetic energy power source; a rotary part of the active rotational source directly coupled to the first dynamo-electrical unit (101);
the first dynamo-electrical unit (101) is configured to be switched to operate as a generator or a motor; when the second dynamo-electrical unit (103a) is connected to the first drive system (1001), the rotary part of the first dynamo-electrical unit (101) is coupled to the second dynamo-electrical unit (103) through the second clutch (112);
the second dynamo-electrical unit (103) is configured to be switched to operate as a generator or a motor to become the rotational power source for the second drive system (1002); the output terminal of the rotary part of the second dynamo-electrical unit (103) directly outputs the rotational kinetic energy to drive the second load or outputs the rotational kinetic energy to drive the second load;
the second clutch (112) transmits or interrupts the rotational kinetic energy and is coupled between the second dynamo-electrical unit (103) and the first dynamo-electrical unit (101);
a fourth clutch (132) transmits or interrupts the rotational kinetic energy and is coupled between the rotary part of the active rotational power source (100) and the rotary part of the second dynamo-electrical unit (103) of the second drive system (1002) to control whether the rotational kinetic energy between the first and the second drive systems (1001, 1002) is to be transmitted or interrupted;
the drive control unit (104) includes a circuit configured to provide at least one of the following functions:
for the system to operate as a series hybrid power system;
when the first dynamo-electrical unit (101) in the first drive system (1001) operates as a generator, the drive control unit (104) controls the power outputted to drive the second dynamo-electrical unit (103) of the second drive system (1002), and/or recharge the main rechargeable device (106);
the drive control unit controls the power form the main rechargeable device (106) to drive the first and the second dynamo-electrical units (101, 103) each operating as a motor;
when subject to the drive control unit (104), the first dynamo-electrical unit (101) in the first drive system (1001) and the second dynamo-electrical unit (103) in the second drive system (1002), or any part of those dynamo-electrical units therein is inversely driven to operate as a generator to control the recharging power outputted to the main rechargeable device (106), or power is supplied to other loads, for at least one dynamo-electrical unit to produce a braking function by regenerated power;
the central control unit (105) is subject to a control interface (107) to control the operation of the split serial-parallel hybrid dual-power drive system, for optimal fuel consumption and pollution control, the optimal brake specific fuel consumption applicable to the system either operating as series or parallel hybrid power train by operating the engine in a range of rpm that consumes less fuel yet outputs power more efficiently; the central control unit (105) operates the drive control unit (104) to control the operation of the first dynamo-electrical unit (101) in the first drive system (1001), the second dynamo-electrical unit (103) in the second drive system (1002), and the main rechargeable device (106), and operates the drive control unit to control feedback monitoring and interaction between the units in the system;
the control interface (107) is configured to receive inputs manually or by control signals to control the operation of the serial-parallel dual-power system;
the auxiliary rechargeable device (110) is controlled by a startup switch (111) to drive a startup motor (121) adapted to drive an engine serving as the active rotational power source (100) thus to supply power to an auxiliary load (130);
the auxiliary load (130) is selectively driven by the generated power from the first dynamo-electrical unit (101) or the second dynamo-electrical unit (103) operating as a generator, or by the power from the main rechargeable device (106) or the auxiliary rechargeable device (110) to output the rotational kinetic energy with the engine as the active rotational power source, the split serial-parallel hybrid dual-power drive system providing at least one of the following functions:
the rotational kinetic energy from the engine power drives a first load (120a) of the first drive system (1001) and/or a second load (120b) of the second drive system (1002);
when the system is operating as a series hybrid power train, the engine is controlled to run from lower rpm up to higher rpm, or at a preset rpm to drive the first dynamo-electrical unit (101) in the first drive system (1001) to operate as a generator;
in case of a light load, the power generated by the first dynamo-electrical unit (101) in the first drive system (1001) drives the second dynamo-electrical unit (103) in the second drive system (1002) while recharging the main rechargeable device (106) at the same time; and
in case of a heavy load,
either the power generated by the first dynamo-electrical unit (101) in the first drive system (1001) and that from the main rechargeable device (106) jointly drive the second dynamo-electrical unit (103) of the second drive system (1002) for outputting the rotational kinetic energy to drive the second load (120b) to control the engine to run in a predetermined rpm range that yields high energy efficiency for fuel and pollution reduction; the predetermined rpm range being set to achieve the optimal brake specific fuel consumption wherein the engine runs at lower fuel consumption but relatively higher output power when the system is operating as a series or parallel hybrid power train; the power generated by the first dynamo-electrical unit (101) driven by the engine recharges the main rechargeable device (106);
or the power from the main rechargeable device (106) and that from the first dynamo-electrical unit (101) jointly drive the second dynamo-electrical unit (103) to operate as a motor to drive the second load (120b) for controlling the engine to run in the predetermined rpm range that yields high energy efficiency;
when the system operates as a parallel hybrid power train, the power from the main rechargeable device (106) drives the first dynamo-electrical unit (101) in the first drive system (1001) and/or the second dynamo-electrical unit (103) in the second drive system (1002) to operate as a motor to jointly drive the second load (120b) with the engine; in case of a light load, while driving the second load (120b), the rotational kinetic energy from the engine also drives the first dynamo-electrical unit (101), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein to recharge the main rechargeable device (106) or supply power to any other power driven load (130); in case of a heavy load, the power from the main rechargeable device (106) drives the first dynamo-electrical unit (101) in the first drive system (1001) and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein for jointly driving the load with the rotational kinetic energy outputted from the engine;
through the manipulation of the drive control unit (104), the power from the main rechargeable device (106) drives at least one of the first dynamo-electrical unit (101) in the first drive system (1001) and the second dynamo-electrical unit (103) in the second drive system (1002) to operate as a motor for respectively driving the second load (120b);
the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein is driven by the engine to operate as a generator to recharge the main rechargeable device (106) or supply power to the auxiliary load (130);
the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein is inversely driven by the second load (120b) to operate as a generator for power regeneration to recharge the main rechargeable device (106) or supply power to the auxiliary load (130);
the mechanical damping of the engine provides mechanical braking, and the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103a) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein operates as a generator to recharge the main rechargeable device (106) or supply power to the auxiliary load (130);
the main rechargeable device (106) drives the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein operates as a motor to start UP the engine; wherein:
in the first drive system (1001), a power generation unit (2000) performs mutual transmission with the output shaft of the active rotational power source (100) of the power generation unit (2000), is coupled to the first dynamo-electrical unit (101) directly; and the output shaft of the active rotational power source (100) is coupled to the second clutch (112) to drive the first load (120a) to constitute jointly with the power generation unit (2000) the first drive system (1001);
in the second drive system (1002), the second dynamo-electrical unit (103) serving as the power source for the second drive system (1002) drives the second load (120b);
whereby, through the aforementioned system operation, the outputted rotational kinetic energy serves to drive any type of load driven by rotational kinetic energy.
1. A split serial-parallel hybrid dual-power drive system, more particularly a drive system configured to drive a load by employing rotational kinetic energy;
the split serial-parallel hybrid dual-power drive system comprising two or more drive systems each configured to independently drive the load incorporated in a common frame that is driven by the kinetic energy of at least one drive system;
the dual-power drive system including a first drive system and a second drive system;
the first drive system including an active power source, a first dynamo-electrical unit functioning as a generator, a second dynamo-electrical unit functioning as a motor, and a first clutch driven by a drive control unit (104) to control the active rotational power source (100) to output transmission status of the rotational kinetic energy;
the second drive system including a third dynamo-electrical unit functioning as a motor to serve as a rotational power source for the second drive system;
a fourth clutch configured to control mutual transmission or and cut-off of the rotational kinetic energy between the first and second drive systems;
by means of the control and operation of a control system or manually, either;
the active rotational power source and the first dynamo-electrical unit of the separation serial-parallel hybrid drive system are coupled through the first clutch, and the first dynamo-electrical unit and the second dynamo-electrical unit are separated; and the active rotational kinetic energy source drives the first dynamo-electrical unit to output electric power to further drive the second dynamo-electrical unit to operate as a motor to provide functions related to function as a series hybrid power train;
or through the control and operation of the first clutch, the rotational kinetic energy from the active rotational power source outputs rotational kinetic energy to drive either or both of a first load of the first drive system and a second load of the second drive system, where the second load is driven through the fourth clutch;
or the active rotational power source is coupled to at least one of the first and the second dynamo-electrical units, and a rechargeable device to provide functions related to function as a parallel hybrid power train;
the split serial-parallel hybrid dual-power drive system essentially comprised of the active rotational power source, first clutch, the first and second dynamo-electrical units, second clutch, fourth clutch, drive control unit, central control unit, rechargeable device, auxiliary rechargeable device, and load as follows:
the active rotational power source (100), comprising at least one of an internal combustion engine and an external combustion engine, is a rotational kinetic energy power source; a rotary part of the active rotational source selectively either directly coupled to the first dynamo-electrical unit (101) or indirectly coupled to the rotary part of the first dynamo-electrical unit (101) through a first transmission unit (109 109a), a second transmission unit (129), or and the first clutch (102);
the first dynamo-electrical unit (101) is configured to be switched to operate as a generator or a motor; when the second dynamo-electrical unit (103) is connected to the first drive system (1001), the rotary part of the first dynamo-electrical unit (101) is coupled to the second dynamo-electrical unit (103) through the second clutch (112);
the second dynamo-electrical unit (103) is configured to be switched to operate as a generator or a motor to become the rotational power source for the second drive system (1002); the output terminal of the rotary part of the second dynamo-electrical unit (103) directly outputs the rotational kinetic energy to drive the second load or outputs the rotational kinetic energy to drive the second load through the third clutch (122);
the input terminal of the second dynamo-electrical unit (103) in the second drive system is coupled to a fourth clutch (132);
the first clutch (102) is a transmission device that transmits or interrupts the rotational kinetic energy and is configured to be coupled to between the rotary part of the active rotational power source (100) and the first dynamo-electrical unit (101) as required controlled by the drive control unit;
the second clutch (112) transmits or interrupts the rotational kinetic energy and is coupled between the second dynamo-electrical unit (103) and the first dynamo-electrical unit (101);
the third clutch (122) transmits or interrupts the rotational kinetic energy and is coupled between the input terminal of the second load (120 120b) of the first second drive system and the rotary part of the second dynamo-electrical unit (103 103a) of the first second drive system;, as required controlled by the drive control unit;
the fourth clutch (132) transmits or interrupts the rotational kinetic energy and is coupled between the rotary part of the active rotational power source (100) and the rotary part of the second dynamo-electrical unit (103) of the second drive system (1002) to control whether the rotational kinetic energy between the first and the second drive systems (1001, 1002) is to be transmitted or interrupted;
the drive control unit (104) includes a circuit configured to provide any or all at least one of the following functions:
for the system to operate as a series hybrid power system;
when the first dynamo-electrical unit (101) in the first drive system (1001) operates as a generator, the drive control unit (104) controls the power outputted to drive the second dynamo-electrical unit (103) of the second drive system (1002), and/or recharge the main rechargeable device (106);
the drive control unit controls the power form the main rechargeable device (106) to drive the first and the second dynamo-electrical units (101, 103) each operating as a motor;
when subject to the drive control unit (104), the first dynamo-electrical unit (101) in the first drive system (1001) and the second dynamo-electrical unit (103) in the second drive system (1002), or any part of those dynamo-electrical units therein is inversely driven to operate as a generator to control the recharging power outputted to the main rechargeable device (106) or power supplied to other load for the dynamo-electrical unit to operate for breaking produce a braking function by regenerated power;
the central control unit (105) is subject to a control interface (107) to control the operation of the split serial-parallel hybrid dual-power drive system, particularly to the for optimal fuel consumption of and pollution control, i.e., the optimal brake specific fuel consumption generally applicable to the system either operating as series or parallel hybrid power train by having operating the engine to operate in a range of rpm that consumes less fuel yet outputs higher power efficiency more efficiently; the central control unit (105) by having operating the drive control unit (104) to control the operation of relative functions among the first dynamo-electrical unit (101) in the first drive system (1001), the second dynamo-electrical unit (103) in the second drive system (1002), and the main rechargeable device (106), and controls the operates the drive control unit to control feedback monitor monitoring and interaction among various between the units in the system;
the control interface (107) is configured to receive inputs manually or by control signals to control the operation of the separation serial-parallel dual-power system;
the auxiliary rechargeable device (110) is controlled by a startup switch (111) to drive a startup motor (121) adapted to drive an engine serving as the active rotational power source (100) thus to supply power to an auxiliary load (130);
the auxiliary load (130) is selectively driven by the generated power from the first dynamo-electrical unit (101) or the second dynamo-electrical unit (103) operating as a generator, or by the power from the main rechargeable device (106) or the auxiliary rechargeable device (110) to output the rotational kinetic energy with the engine as the active rotational power source, the split serial-parallel hybrid dual-power drive system provides any or all providing at least one of the following functions:
the rotational kinetic energy from the engine power drives a first load (120 120a) of the first drive system (1001) and/or a second load (120 120b) of the second drive system (1002);
when the system is operating as a series hybrid power train, the engine is controlled to run from lower rpm up to higher rpm, or at a preset rpm to drive the first dynamo-electrical unit (101) in the first drive system (1001) to operate as a generator;
in case of a light load, the power generated by the first dynamo-electrical unit (101) in the first drive system (1001) drives the second dynamo-electrical unit (103) in the second drive system (1002) while recharging the main rechargeable device (106) at the same time; and
in case of a heavy load,
either the power generated by the first dynamo-electrical unit (101) in the first drive system (1001) and that from the main rechargeable device (106) jointly drive the second dynamo-electrical unit (103) of the second drive system (1002) for outputting the rotational kinetic energy to drive the second load (120 120b) to control the engine to run at a fixed in a predetermined rpm range that yields higher energy efficiency for fuel and pollution reduction;, where the fixed rpm is defined to generally refer to the predetermined rpm range is set to achieve the optimal brake specific fuel consumption, wherein the engine runs at lower fuel consumption but relatively paying higher output power when the system is operating as a series or parallel hybrid power train; the power generated by the first dynamo-electrical unit (101) driven by the engine recharges the main rechargeable device (106);
or the power from the main rechargeable device (106) and that from the first dynamo-electrical unit (101) jointly drive the second dynamo-electrical unit (103) to operate as a motor to drive the second load (120 120b) for controlling the engine to run at a fixed in the predetermined rpm range that yields higher energy efficiency; the fixed rpm is defined to generally refer to the rpm range to achieve the optimal brake specific fuel consumption wherein the engine runs at lower fuel consumption but relatively paying higher output power when the system is operating as a series or parallel hybrid power train;
when the system operates as a parallel hybrid power train, the power from the main rechargeable device (106) drives the first dynamo-electrical unit (101) in the first drive system (1001) and/or the second dynamo-electrical unit (103) in the second drive system (1002) to operate as a motor to jointly drive the second load (120 120b) with the engine; in case of a light load, while driving the second load (120 120b), the rotational kinetic energy from the engine also drives the first dynamo-electrical unit (101), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein to recharge the main rechargeable device (106) or supply power to any other power driven load (130); in case of a heavy load, the power from the main rechargeable device (106) drives the first dynamo-electrical unit (101) in the first drive system (1001) and the second dynamo-electrical unit (103) in the second drive system (1002), or any part of the second dynamo-electrical unit (103) therein, for jointly driving the load with those the rotational kinetic energy outputted from the engine;
through the manipulation of the drive control unit (104), the power from the main rechargeable device (106) drives at least one of the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein operates to operate as a generator for driving motor through controlling the fourth clutch (132) to perform engagement and disengagement to drive at least one of the second first load (120 120a) in the first drive system (1001) and the second load (120b) in the second drive system (1002);
the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein is driven by the engine to operate as a generator to recharge the main rechargeable device (106) or supply power to the auxiliary load (130);
the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein is inversely driven by the second load (120 120b) to operate as a generator for power regeneration to recharge the main rechargeable device (106) or supply power to the auxiliary load (130);
the mechanical damping of the engine provides mechanical braking function, and the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein operates as a generator to recharge the main rechargeable device (106) or supply power to the auxiliary load (130);
the main rechargeable device (106) drives the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103) in the second drive system (1002) or any part of the second dynamo-electrical unit (103) therein operates as a motor to start up the engine;
the fourth clutch (132) is controlled to close up for transmitting the rotational function between the active rotational power source (100) and the second drive system (1002) and to interrupt the transmission of rotational kinetic energy when disengaged; wherein:
in the first drive system (1001), a power generation unit (2000) performs mutual transmission with the output shaft of the active rotational power source (100) through the second transmission unit (129); the power generation unit (2000), apart from provided with the second transmission unit (129) for the mutual transmission with the output shaft of the active rotational power source (100), through the first clutch (102) of the power generation unit (2000), is coupled to the first dynamo-electrical unit (101) directly or through the first transmission unit (109); and the output shaft of the active rotational power source (100) is coupled to the first clutch (112) and the first a third transmission unit (109 109b) to drive the first load (120 120a) to constitute jointly with the power generation unit (2000) the first drive system (1001);
in the second drive system (1002), the second dynamo-electrical unit (103) serving as the power source for the second drive system (1002) drives the second load (120 120b);
furthermore, as required controlled by the drive control unit, the active rotational power source (100) is coupled to through the first clutch (102) coupled to the rotary part of the first dynamo-electrical unit (101) driven by of the first drive system (1001), the active rotational power source is coupled to the input terminal of the fourth clutch (132);, and the output terminal of the fourth clutch (132) is coupled to the rotary part of the second dynamo-electrical unit (103) serving as the power source for the second drive system (1002), or and the input terminal of the second load (120 120b) driven by the second drive system (1002) for the control of the transmission status of the rotational kinetic energy between the first drive system (1001) and the second drive system (1002),
whereby, through the aforementioned system operation, the outputted rotational kinetic energy serves to drive any type of load driven by rotational kinetic energy.
2. A split serial-parallel hybrid dual-power drive system as claimed in claim 1, wherein,
in the second drive system (1002), two or more than two second dynamo-electrical units (103 103b and 103c) serving as the power source for the second drive system (1002) respectively drive the first loads (120) second load (120b1) and a third load (120b2).
3. A split serial-parallel hybrid dual-power drive system as claimed in claim 1, including the transmission status of the rotational kinetic energy between the first drive system (1001) and the second drive system (1002) is controlled by closing up or disengaging the fourth clutch (132).
4. A split serial-parallel hybrid dual-power drive system as claimed in claim 1, furthermore, wherein the active rotational power source (100) is coupled to the second clutch (112) coupled to in the first drive system (1001), and the active rotational power source is coupled to the fourth clutch (132); meanwhile the output terminal of the fourth clutch (132) is being coupled to the second drive system (1002) to respectively drive two rotay parts of both two second dynamo-electrical units (103 103b and 103c) serving as the power source for the second drive system (1002) for the control of the driving status of the active rotational power source (100) toward the first drive system (1001) and the second drive system (1002).
0. 7. A split serial-parallel hybrid dual-power drive system as claimed in claim 6, wherein, a first clutch (102) and/or a first transmission unit (109a) is further installed in the first drive system (1001) between the second transmission unit (129) driven by the active power source(100) and the first dynamo-electrical unit (101) to selectively transmit or interrupt the rotational kinetic energy of the active power source(100) for driving the first dynamo-electrical unit (101).
0. 8. A split serial-parallel hybrid dual-power drive system as claimed in claim 6, wherein,
a transmission unit (109e, 109f, 109f1, and 109f2) and/or a third clutch (122) is further installed in the second drive system (1002) between the second dynamo-electrical unit (103, 103a, and 103b) and load (120b, 120b1, and 120b2).
0. 9. A split serial-parallel hybrid dual-power drive system as claimed in claim 6, further comprising a main rechargeable device (106).
0. 10. A split serial-parallel hybrid dual-power drive system as claimed in claim 6, further comprising a fourth clutch (132) installed between the second transmission unit (129) of the first drive system (1001) and the input end of the transmission unit (109e) of the second drive system (1002) to control the rotational kinetic energy of the active power source(100) for driving the load (120a, 120a1, and 120a2) of the first drive system (1001) and/or the load (120b, 120b1, and 120b2) of the second drive system (1002).
0. 11. A spilt serial-parallel hybrid dual-power drive system as claimed in claim 6, comprising the active rotational power source, first clutch, the first and second dynamo-electrical units, second clutch, third clutch, fourth clutch, transmission unit, drive control unit, central control unit, rechargeable device, auxiliary rechargeable device, and load as follows:
the active rotational power source (100): comprising at least one of an internal combustion engine and an external combustion engine, is a rotational kinetic energy power source; a rotary part of the active rotational source selectively either directly coupled to the first dynamo-electrical unit (101) or indirectly coupled to the rotary part of the first dynamo-electrical unit (101) through a second transmission unit (129), and/or the first clutch (102), and/or a first transmission unit (109);
the first dynamo-electrical unit (101) and the second dynamo-electrical unit (103, 103b, 103c) are configured to be switched to operate as a generator or a motor, and each constituted by AC or DC, brush or brushless, synchronous or asynchronous rotational electrical machines;
the first clutch (102), second clutch (112), third clutch (122) and fourth clutch (132): are configured by the clutch devices with the functions to transmit or interrupt the rotational kinetic energy by means of the operation and control of the drive control unit (104) or manually, relates to a transmission operating by manual, mechanical force, eccentric force, air pressure, or hydraulic flow force, or electro-magnetism controlled clutch, or single way clutch, or coupler with torque controllable, or any other transmission device that transmits or interrupt the mechanical rotational kinetic energy, or the function of the clutch may be replaced with the idling function or the torque coupling function with torque controllable provided by the transmission device (109);
the transmission unit (129, 129a) is comprise of an automatic, semi-automatic or manual multiple-speed or continuously variable transmission device or one at a fixed speed ratio, or a differential gear set, or a rotational gear set, a fluid torque coupler, or a belt continuously variable transmission (CVT) or any other transmission of the prior art that is provided with idling and inverse gear functions;
the transmission unit (109, 109b, 109e, 109f, 109f1, 109f2) comprises an automatic, semi-automatic or manual multiple-speed or continuously variable transmission device or one at a fixed speed ratio, or a differential gear set, or a rotational gear set, a fluid torque coupler, or a belt continuously variable transmission (CVT) or any other transmission of the prior art that is provided with idling and inverse gear functions;
the central control unit (105) is subject to a control interface (107) to control the operation of the split serial-parallel hybrid dual-power drive system, particularly to the optimal fuel consumption of pollution control, the optimal brake specific fuel consumption applicable to the system either operating as series or parallel hybrid power train by operating the engine in a range of rpm that consumes less fuel yet outputs higher power more efficiently; the central control unit (105) by controlling the drive control unit (104) to control the operation of relative functions among the first dynamo-electrical unit (101) in the first drive system (1001), the first dynamo-electrical unit (101) in the first drive system (1001) and/or the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002), and the main rechargeable device (106), and controls feedback monitoring and interaction between the units in the system;
the control interface (107) is configured to receive inputs manually or by control signals to control the operation of the separation serial-parallel dual-power system;
the auxiliary rechargeable device (110) is controlled by a startup switch (111) to drive a startup motor (121) adapted to drive an engine serving as the active rotational power source (100) thus to supply power to an auxiliary load (130);
the auxiliary load (130) is selectively driven by the generated power from the first dynamo-electrical unit (101) or the first dynamo-electrical unit (101) in the first drive system (1001) and/or the second dynamo-electrical unit (103, 103b, 103c) operating as a generator, or by the power from the main rechargeable device (106) or the auxiliary rechargeable device (110);
the drive control unit (104) includes a circuit configured to provide at least one of the following functions:
for the system to operate as a series hybrid power system;
when the first dynamo-electrical unit (101) in the first drive system (1001) operates as a generator, the drive control unit (104) controls the power outputted to drive the second dynamo-electrical unit (103, 103b, 103c) of the second drive system (1002), and/or recharge the main rechargeable device (106);
controls the power from the main rechargeable device (106) to drive all or part of the dynamo-electrical units including the first dynamo-electrical unit (101), in the first drive system (1001) and the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002) to operate as a motor;
when subject to the drive control unit (104), all or part of the dynamo-electrical units including the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002) are inversely driven to operate as a generator to control the recharging power outputted to the main rechargeable device (106) or power supplied to other load for the dynamo-electrical unit to operate for breaking function by regenerated power.
0. 12. A spilt serial-parallel hybrid dual-power drive system as claimed in claim 6, wherein
with the engine as the active rotational power source, the split serial-parallel hybrid dual-power drive system provides at least one of the following functions:
through the driving by the rotational kinetic energy from the engine power and the operation and control clutches between the first clutch (102), second clutch (112), third clutch (122) and the load to drive a first load (120a, 120a1, 120a2) of the first drive system (1001) and/or a second load (120b, 120b1, 120b2) of the second drive system (1002);
through the driving by the rotational kinetic energy from the engine power and the operation and control clutches between the first clutch (102), second clutch (112), third clutch (122) and the transmission unit (129b) of the second drive system (1002) and the load to perform engagement or disengagement, so as to drive at least one of the first load (120a, 120a1, 120a2) in the first drive system (1001) and the second load (120b, 120b1, 120b2) in the second drive system (1002);
when the system is operating as a series hybrid power train, the engine is controlled to run from lower rpm up to higher rpm, or at a preset rpm to drive the first dynamo-electrical unit (101) in the first drive system (1001) to operate as a generator; in case of a light load, the power generated by the first dynamo-electrical unit (101) in the first drive system (1001) drives the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002), or recharging the main rechargeable device (106) at the same time; and in case of a heavy load, while driving the load by the active rotational power source (100) constituted by the engine, the power generated by the first dynamo-electrical unit (101) in the first drive system (1001) and that from the main rechargeable device (106) jointly drive the second dynamo-electrical unit (103, 103b, 103c) of the second drive system (1002) at the same time for outputting the rotational kinetic energy to drive the second load (120b, 120b1, 120b2); in case of a light or heavy load aforementioned, it is through the control of the central control unit (105) and the drive control unit (104) to manipulate and control the engine to run in a predetermined rpm range that yields higher energy efficiency for fuel and pollution reduction; the predetermined rpm range achieving the optimal brake specific fuel consumption wherein the engine runs at lower fuel consumption but relatively higher output power when the system is operating as a series or parallel hybrid power train;
when the system operates as a parallel hybrid power train, the power from the main rechargeable device (106) drives all or part of the dynamo-electrical units including the first dynamo-electrical unit (101) in the first drive system (1001) and the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002) to operate as a motor to jointly drive at least one of the loads (120a, 120a1, 120a2) in the first drive system (1001) and/or the loads (120b, 120b1, 120b2) in the second drive system (1002) with the engine; in case of a light load, while driving the at least one of the loads (120a, 120a1, 120a2) in the first drive system (1001) and/or the loads (120b, 120b1, 120b2) in the second drive system (1002), the rotational kinetic energy from the engine also drives all or part of the dynamo-electrical units including the first dynamo-electrical unit (101), and the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002) to operate as a generator to recharge the main rechargeable device (106) or supply power to any other power driven load (130); in case of a heavy load, the power from the main rechargeable device (106) drives all or part of the dynamo-electrical units including the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002) to operate as a motor for jointly driving the load with those rotational kinetic energy outputted from the engine;
the power from the main rechargeable device (106) drives all or part of the dynamo-electrical units including the first dynamo-electrical unit (101), and the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002) to operate as a motor, through controlling the fourth clutch (132);
all or part of the dynamo-electrical units including the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002) is driven by the engine to operate as a generator to recharge the main rechargeable device (106) or supply power to the auxiliary load (130);
all or part of the dynamo-electrical units including the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002) is inversely driven by at least one of the loads (120a, 120a1, 120a2) in the first drive system (1001) and/or the loads (120b, 120b1, 120b2) in the second drive system (1002) to operate as a generator for power regeneration to recharge the main rechargeable device (106) or supply power to the auxiliary load (130);
the mechanical damping of the engine provides braking function, and all or part of the dynamo-electrical units including the first dynamo-electrical unit (101) in the first drive system (1001), and the second dynamo-electrical unit (103, 103b, 103c) in the second drive system (1002) operates as a generator to recharge the main rechargeable device (106) or supply power to the auxiliary load (130);
the main rechargeable device (106) drives the first dynamo-electrical unit (101) in the first drive system (1001) to operate as a motor to start up the engine, and the second clutch 112 is separated;
in the first drive system (1001), the rotary part outputs the rotational kinetic energy from the active rotational power source (100) to drive the first dynamo-electrical unit (101) and the rotary part of the first dynamo-electrical unit (101) is coupled to the input terminal of the second clutch (112), and/or a transmission unit (109) to drive the first load (120a, 120a1, 120a2);
in the second drive system (1002), the second dynamo-electrical unit (103, 103b, 103c) serving as the power source for the second drive system (1002) drives the load (120b, 120b1, 120b2);
as controlled by the drive control unit, the active rotational power source (100) connected with the transmission unit (129) is coupled to the input terminal of the fourth clutch (132); and the output terminal of the fourth clutch (132) is coupled to the rotary part of the second dynamo-electrical unit (103, 103b, 103c) serving as the power source for the second drive system (1002), or the input terminal of the second load (120b, 120b1, 120b2) driven by the second drive system (1002) for the control of the transmission status of the rotational kinetic energy between the first drive system (1001) and the second drive system (1002), i.e. to transmit the rotational function between the active rotational power source (100) and the second drive system (1002) when engaged and to interrupt the transmission of rotational kinetic energy when disengaged;
whereby, through the aforementioned system operation, the outputted rotational kinetic energy can serve to drive any type of load driven by rotational kinetic energy.
0. 13. A split serial-parallel hybrid dual-power drive system as claimed in claim 6, serves to drive two loads through a third clutch (122) and then through a transmission unit (109).
0. 14. A split serial-parallel hybrid dual-power drive system as claimed in claim 6, wherein two or more second dynamo-electrical units (103) serve to individually drive the respectively adapted load through the respectively adapted transmission unit and/or third clutch 122.

This is a division of U.S. application Ser. No. 10/975,525, filed Oct. 29, 2004, now U.S. Pat. No. 7,377,876 the entire disclosure of which is incorporated herein by reference.

(a) Field of the Invention

The present invention is related to a split serial-parallel hybrid dual-power drive system, and more particularly to one used to drive land, maritime, underwater or aerospace transportation means, or industrial machines and equipment or any other load driven by rotational kinetic energy.

The split serial-parallel hybrid dual-power drive system is comprised of two or more than two separation drive systems allowing independent operation to respectively drive the load, or all loads driven individually are incorporated in a common frame.

In the separation drive system of the dual-power drive system, the first drive system and a second drive system are provided. The first drive system is equipped with an active power source, a first electrical unit essentially functioning as a generator, and an optional second electrical unit essentially functioning as a motor, and a clutch set to control the transmission status of the rotational kinetic energy; and the second drive system is adapted with another second dynamo-electric unit essentially functioning as a motor to serve as the rotational power source for the second drive system.

An optional clutch set is provided to control the transmission or cut-off of the rotational kinetic energy between two independent drive systems.

By means of the regulation of a control system or by manual operation, the status of transmission between the active rotational power source and the first dynamo-electric unit of the separation serial-parallel hybrid drive system indicates a coupled status; and the active rotational kinetic energy source drives the first dynamo-electric unit to output electric power to further drive the second dynamo-electric unit to operate as a motor to provide functions related to a series hybrid power train; or alternatively, through the control and operation of the clutch, the rotational kinetic energy from the active rotational power source outputs rotational kinetic energy to drive either or both of the loads of the first drive system and the second drive system; or the active rotational power source is incorporated to both of the first and the second dynamo-electric units, and an optional rechargeable device to provide functions related to a parallel hybrid power train. Accordingly, the present invention relates to an innovative dual-power drive system by providing more operation functions.

(b) Description of the Prior Art

Traditional transportation means on land, maritime or airborne is usually related to a single acting power train. To meet energy saving and pollution control criteria significant efforts have been devoted to the development of dual-power drive system in recent years. Among these efforts, the development of a power train combining the rotational kinetic energy outputted from engine and that from electricity driven motor has made quite an impressive progress. The hybrid dual-power system of the prior art includes:

The primary purpose of the present invention is to provide to split serial-parallel hybrid dual-power drive system comprised of two or more than two separation drive units to drive their respective loads, or all loads are incorporated into a common frame. An optional clutch is adapted to control transmission or cut-off of the rotational kinetic energy between independent drive units. The system of the present invention executes specific serial hybrid power train or parallel hybrid power train functions by manual control or by a control system.

FIG. 1 is a system block diagram of the present invention.

FIG. 2 is a block diagram of the first preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 3 is a block diagram of the second preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 4 is a block diagram of the third preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 5 is a block diagram of the fourth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 6 is a block diagram of the fifth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 7 is a block diagram of the sixth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 8 is a block diagram of the seventh preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 9 is a block diagram of the eighth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 10 is a block diagram of the ninth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 11 is a block diagram of the tenth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 12 is a block diagram of the eleventh preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 13 is a block diagram of the twelfth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 14 is a block diagram of the thirteenth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 15 is a block diagram of the fourteenth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 16 is a block diagram of the fifteenth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 17 is a block diagram of the sixteenth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 18 is a block diagram of the seventeenth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 19 is a block diagram of the eighteenth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 20 is a block diagram of the nineteenth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 21 is a block diagram of the twentieth preferred embodiment of a split serial-parallel hybrid dual-power drive system.

FIG. 22 is a block diagram of the twenty-first preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 16 replaced by a differential gear set.

FIG. 23 is a block diagram of the twenty-second preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 17 replaced by a differential gear set.

FIG. 24 is a block diagram of the twenty-third preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 18 replaced by a differential gear set.

FIG. 25 is a block diagram of the twenty-fourth preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 19 replaced by a differential gear set.

FIG. 26 is a block diagram of the twenty-fifth preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 20 replaced by a differential gear set.

FIG. 27 is a block diagram of the twenty-sixth preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 21 replaced by a differential gear set.

FIG. 28 is a block diagram of the twenty-seventh preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 16 replaced by a dual-power motor.

FIG. 29 is a block diagram of the twenty-eighth preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 17 replaced by a dual-power motor.

FIG. 30 is a block diagram of the twenty-ninth preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 18 replaced by a dual-power motor.

FIG. 31 is a block diagram of the thirtieth preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 19 replaced by a dual-power motor.

FIG. 32 is a block diagram of the thirty-first preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 20 replaced by a dual-power motor.

FIG. 33 is a block diagram of the thirty-second preferred embodiment of a split serial-parallel hybrid dual-power drive system with a planet gear set illustrated in FIG. 21 replaced by a dual-power motor.

FIG. 34 is the first block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 35 is the second block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 36 is the third block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 37 is the fourth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 38 is the fifth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 39 is the sixth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 40 is the seventh block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 41 is the eighty block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 42 is the ninth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 43 is the tenth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 44 is the eleventh block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 45 is the twelfth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 46 is the thirteenth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 47 is the fourteenth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 48 is the fifteenth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 49 is the sixteenth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 50 is the seventeenth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

FIG. 51 is the eighteenth block diagram showing that a pilot drive unit is provided to the output terminal of the active rotational power source of the present invention.

The present invention related to a split serial-parallel hybrid dual-power drive system for the operation of a separation serial hybrid power train or a parallel hybrid power train includes an active rotational power source which frequently implemented by an internal combustion engine; a first drive system comprised of a first dynamo-electric unit essentially functioning as a generator, an optional second dynamo-electric unit, and a clutch; a second drive system comprised of a second dynamo-electric unit essentially functioning as a motor; and a clutch to control the transmission status of the rotational kinetic energy between the first and the second drive systems. When the system is controlled to operate in the mode of a serial hybrid power train, the rotational kinetic energy from the engine drives the first dynamo-electric unit in the first drive system to operate as a generator and the clutch between the first and the second dynamo-electric units is disengaged. The power output from the first dynamo-electric unit drives the second dynamo-electric units of the first or the second drive system to operate as a motor for providing rotational kinetic energy to drive the load.

Under normal loading, the rotational kinetic energy output from the engine drives only the first drive system through the transmission, or drives only the second drive system through the control by the clutch, or drives the loads of the first and the second drive systems at the same time through the control by the clutch.

Depending on the operation requirement, an optional rechargeable energy storage device may be or may not be installed as part of the split serial-parallel hybrid dual-power drive system. If the rechargeable device is provided, the primary operation functions of the system includes that the power from the rechargeable device drives the first dynamo-electric unit in the first drive system to operate as a motor, or drives the second dynamo-electric unit in the second drive system to operate as a motor for providing the rotational kinetic energy to drive the load.

Under light loading, the rotational kinetic energy from the engine directly drive the load, the first dynamo-electric unit in the first drive system with any or all of the second dynamo-electric unit of the first or the second drive system commonly operates as a generator to output power to recharge the rechargeable device or to the other load that consumes electrical power.

Under normal loading, the rotational kinetic energy from the engine drives only the load of first drive system, or drives only the load of second drive system or drives the loads of the first and the second drive systems at the same time.

Under heavy loading, the power from the rechargeable device drives the first dynamo-electric unit in the first drive system with any or all of the second dynamo-electric unit of the first or the second drive system operates as a motor to jointly drive the load with the power from the engine to provide the operation of the parallel hybrid power train.

The basic system of the present invention includes the active rotational power source, frequently implemented by an internal combustion engine used to produce rotational kinetic energy to directly drive the load or, via the optional controllable clutch, or a transmission unit of multi-speed or continuously variable transmission function, or inverse shift function, or idling function or torque conversion function; while the rotational kinetic energy from the active rotational power source drives the first dynamo-electric unit to operate as a generator to complete the configuration of the first drive system.

Power generated by the first dynamo-electric unit drives the second dynamo-electric unit adapted to the first or the second drive system to operate as a motor for driving the load or providing power to other load that consumes electrical power.

The second dynamo-electric unit of the first drive system is an optionally adapted item which assisting drive the load of first drive system, the necessity of second dynamo-electrical unit installation depends on system requirement.

The second drive system is comprised by second dynamo-electric unit as the power source to drive the load directly or through an optional transmission unit. An optional transmission or a clutch may be installed between the second drive system and the active rotational power source to control the transmit or disengagement of rotational kinetic between the second drive system and the active rotational power sources. An optional transmission unit or clutch may be installed at between a rotational part of the second dynamo-electric unit of the second drive system or a rotational mechanism driven by the second drive system, and a rotational part of the first or the second dynamo-electric unit in the first drive system or the rotational mechanism driven by the first drive system to control whether operation of coupled transmission of the rotational kinetic energy or separation operation without coupled transmission between the first and the second drive systems is required.

Under light loading, the operation of the split serial-parallel hybrid dual-power drive system could be controlled to perform serial or parallel hybrid power transmission. In the parallel transmission mode, the power from the active rotational power source may transmit to the load of first drive system for driving, or disengage from the load of first drive system.

Under the operation of serial hybrid power transmission, the active rotational power source may be regulated to coupled transmission or disengaged from the load driven by the first drive system by demand. In the status of disengaged from coupled transmission, the clutch disposed between the first and the second drive systems is disengaged while the engine as the active rotational power source provides the function of outputting the rotational kinetic energy subject to the control by manual or through a control system to drive the first dynamo-electric unit to operate as a generator, thus to further drive the second dynamo-electric unit in the first or the second drive system to operate as a motor to drive the load.

Under normal or a heavy loading, the system could be configured to parallel hybrid power transmission mode, the rotational kinetic energy from the engine to drive either or both loads of the first and the second drive systems. If an optional rechargeable device is installed, it could be incorporated to provide electrical energy to the first dynamo-electrical unit of the first drive system or to the second dynamo-electric unit in the first or the second drive system functioning as a motor with the power of engine to jointly drive the load during start-up or acceleration or other heavy loading situation; or directly drive the load under light loading or urban driving mode.

If an engine is implemented as the active rotational power source, the split serial-parallel hybrid dual-power drive system of the present invention essentially provides the following functions:

The rotational kinetic energy from the engine transmit through the transmission unit to drive the load of the first drive system, or to drive the load of second drive system, or the loads of both systems; and

When the system operates under serial hybrid power transmission mode, the rotational kinetic energy from the engine drives the load of the first drive system comprised of the transmission unit, the optional clutch, and the transmission unit with functions of multi-speed or continuously variable transmission, inverse, or idling shift, or torque conversion. With the rotational kinetic energy from the engine, the first dynamo-electric unit in the first drive system operates as a generator to drive the second dynamo-electric unit in the first or the second drive system to operate as a motor to drive the loads of first or second drive system or other loads demanding electrical power.

Under light loading, the split serial-parallel hybrid dual-power drive system could be manipulated to provide serial or parallel hybrid power transmission. Under parallel hybrid power transmission mode, the active rotational power source and the load of the first drive system may coupled in transmission state for load driving, or disengaged from the load of first drive system, splitting from the driving power of engine.

When the system operating in serial transmission mode, the clutch between the first and the second drive systems is disengaged, and the active rotational power source may coupled with or disengaged from the load of the first drive system. Meanwhile, the engine serving as the active rotational power source subject to the control by manual or by a control system drives the first dynamo-electric unit to operate as a generator drive the second dynamo-electric unit in the first or the second drive system to operate as a motor for driving the load.

When the system operating in the parallel power transmission mode, rotational kinetic energy from the engine drive the load directly or simultaneously drive the first dynamo-electric unit in the first drive system which operate as a generator to drive the second dynamo-electric units of the first or the second drive system to function as a motor for respectively load driving, or the power generated from the first dynamo-electric unit to drive any other electrical powered load.

If an optional rechargeable device is adapted with the system, the operating functions of the parallel hybrid power transmission include:

Power supplied from the rechargeable device drives the first dynamo-electric unit in the first drive system and any or all the second dynamo-electric unit in the first or the second drive system; or drives any dynamo-electric unit to operate as a motor for driving the load; or the first or the second dynamo-electric unit operates as a motor to output the rotational power jointly drive the load with power from the engine; or

Power supplied form the rechargeable device drives the first dynamo-electric unit in the first drive system and any or all of the second dynamo-electric unit in the first or the second drive system to operate as the motor for driving the load;

Kinetics from the engine drive the first dynamo-electric unit in the first drive system and any or all of the second dynamo-electric unit in the first or the second drive system to operate as a generator to recharge the rechargeable device or supply power to other electrical loading;

The load inversely drives the dynamo-electric unit in the first drive system and any or all the second dynamo-electric unit in the first or the second drive system to operate as a generator of power regeneration to recharge the rechargeable device or supply power to other electrical loading;

The mechanical damp of the engine functions as a brake drives, or together with the rechargeable device when provided, the dynamo-electric unit in the first drive system and any or all the second dynamo-electric unit in the first or the second drive system to operate as a generator of power regeneration to recharge the rechargeable device or supply power to other load that consumes power; and

The rechargeable device drives the dynamo-electric unit in the first drive system and any or all of the second dynamo-electric unit in the first or the second drive system to operate as an engine starting motor or to drive other mechanical loading.

Pressurized mixture of air and the fuel, or natural gas or other gases whether in the form of liquid fuel such as gasoline, diesel oil or other fuels including hydrogen currently in development fed to the internal combustion engine is given a brake specific fuel consumption depending on the load torque and rpm. For higher operating efficiency, whether the separation serial-parallel dual-power system operating in the serial or parallel hybrid power transmission mode, fuel saving and pollution reduction could be accomplished by setting the engine operation in optimal rpm range and operating conditions of higher energy efficiency. Both of the rpm range and optimal operation conditions to be set for the engine are maintained by the system operating under serial or parallel hybrid power transmission mode, the engine drives the first dynamo-electric unit to operate as a generator, and drives the second dynamo-electric unit to operate as a motor so to control the engine running within an rpm range of lower fuel consumption with a higher power output to operating inside the optimal brake specific fuel consumption region. When the optional rechargeable device is adapted to the system, the engine drives the first dynamo-electric unit in the first drive system to operate as a generator to recharge the rechargeable device, or the power from the rechargeable device and that from the first dynamo-electric unit in the first drive system jointly drive the second dynamo-electric unit in the first or the second drive system to operate as a motor to drive the load. The engine is controlled to run within specific range of rpm and operating conditions with higher energy efficiency. That is, when the system operates as a serial or parallel hybrid power transmission modes under light loading, the rotational kinetic energy from the engine drive the first dynamo-electric unit in the first drive system and any or all of the second dynamo-electric unit in the first or the second drive system to operate as a generator for charging the rechargeable device or supply power to other electrical loading.

By providing all or any part of those functions described above, the present invention refined the drawback of lower efficiency and higher pollution of the engine running at lower power output and lower rpm.

FIG. 1 shows a system block diagram of the present invention in a systematic configuration of the active rotational power source, the first and the second dynamo-electric units, an operational clutch and an optional transmission unit.

The split serial-parallel hybrid dual-power drive system illustrated in FIG. 1 is essentially comprised of sub units or device such as active rotational power source, dynamo-electrical units, transmission unit, transmission speed regulating unit, clutch, drive control unit, central control unit, rechargeable device, or auxiliary rechargeable device, or power driven load, each element of present system described above with its specific function as follows: