An arbor for quick change and standard hole cutters, wherein each hole cutter includes a central aperture and at least one drive pin aperture. The arbor comprises an arbor body including an end portion engageable within the central aperture, a drive shank opposite the end portion for engaging a power tool, and an aperture for receiving a pilot bit. The arbor further comprises a drive pin plate and/or collar having at least one drive pin receivable in a corresponding drive pin aperture of the hole saw for drivingly engaging the hole saw. The arbor, in at least one embodiment, further comprises a pilot bit mechanism for engaging and releasing a quick change or standard pilot bit.
|
1. An arbor for a hole cutter including an outer surface defining a threaded aperture, and a drive member aperture spaced radially relative to the threaded aperture, the arbor comprising:
an axially-elongated arbor body including a drive shank on one end thereof, a threaded portion on an opposite end thereof relative to the drive shank that is engageable with the threaded aperture on the hole cutter, and an inner axially-extending bearing surface located between the drive shank and the threaded portion, wherein the arbor body defines a first width along the inner axially-extending bearing surface;
an axially-elongated collar including a proximal end and a distal end, a manually engageable surface extending axially between the proximal and distal ends and defining a reduced width in comparison to the proximal and distal ends, and a drive member extending axially from the distal end of the collar, wherein the collar is slidably mounted on the arbor body and movable between (i) an engaged position with the distal end of the collar adjacent to the threaded portion for engaging the drive member with the drive member aperture of a hole cutter threadedly attached to the threaded portion of the arbor body, and (ii) a disengaged position with the distal end of the collar axially spaced relative to the threaded portion of the arbor body, wherein the collar includes an outer axially-extending bearing surface that slidably contacts the inner axially-extending bearing surface of the arbor when moving the collar between the engaged and disengaged positions, and the inner axially-extending bearing surface defines a length that is at least about 1¼ times the first width of the arbor body; and
a retaining member mounted on the collar and movable between (i) a first position holding the collar in the engaged position, and (ii) a second position allowing axial movement of the collar from the engaged position to the disengaged position.
22. An arbor for a hole cutter including an outer surface defining a threaded aperture, and a drive aperture spaced radially relative to the threaded aperture, the arbor comprising:
an axially-elongated arbor body including first means on one end thereof for rotatably driving the arbor body, second means on an opposite end thereof relative to the first means for threadedly engaging the arbor body to the threaded aperture on the hole cutter, and an inner axially-extending bearing surface located between the first and second means, wherein the arbor body defines a first width along the inner axially-extending bearing surface;
third means for manually engaging and slidably moving on the arbor body between (i) an engaged position for engaging and driving the hole saw attached to the arbor body, and (ii) a disengaged position for threadedly detaching the hole saw from, or threadedly attaching the hole saw to the arbor body, wherein the third means includes a proximal end and a distal end, a manually engageable surface extending axially between the proximal and distal ends and defining a reduced width in comparison to the proximal and distal ends, fourth means extending axially from the distal end of the third means for receipt within the drive aperture of the hole saw and for rotatably driving the hole saw with the third means, and an outer axially-extending bearing surface that slidably contacts the inner axially-extending bearing surface of the arbor body when moving the third means between the engaged and disengaged positions, and wherein the inner axially-extending bearing surface defines a length that is at least about 1¼ times the first width of the arbor body; and
fifth means mounted on the third means and movable between (i) a first position for holding the third means in the engaged position, and (ii) a second position allowing axial movement of the third means from the engaged position to the disengaged position.
0. 24. An arbor for a hole cutter including an outer surface defining a threaded aperture, and a drive member aperture spaced radially relative to the threaded aperture, the arbor comprising:
an axially-elongated arbor body including a drive shank on one end thereof, a threaded portion on an opposite end thereof relative to the drive shank that is engageable with the threaded aperture on the hole cutter, and an inner axially-extending bearing surface located between the drive shank and the threaded portion, wherein the arbor body defines a first width along the inner axially-extending bearing surface;
an axially-elongated collar including a proximal end and a distal end, a manually engageable surface extending axially between the proximal and distal ends and defining a reduced width in comparison to a width of the proximal end and a width of the distal end, and a drive member extending axially from the distal end of the collar, wherein the collar is slidably mounted on the arbor body and movable between (i) an engaged position with the distal end of the collar adjacent to the threaded portion for engaging the drive member with the drive member aperture of a hole cutter threadedly attached to the threaded portion of the arbor body, and (ii) a disengaged position with the distal end of the collar axially spaced relative to the threaded portion of the arbor body, wherein the collar includes an outer axially-extending bearing surface that slidably contacts the inner axially-extending bearing surface of the arbor when moving the collar between the engaged and disengaged positions, and the inner axially-extending bearing surface defines a length that is at least about 1-¼ times the first width of the arbor body; and
a retaining member mounted on the collar and movable between (i) a first position holding the collar in the engaged position, and (ii) a second position allowing axial movement of the collar from the engaged position to the disengaged position.
2. An arbor as defined in
3. An arbor as defined in
4. An arbor as defined in
5. An arbor as defined in
6. An arbor as defined in
7. An arbor as defined in
8. An arbor as defined in
9. An arbor as defined in
10. An arbor as defined in
11. An arbor as defined in
12. An arbor as defined in
13. An arbor as defined in
14. An arbor as defined in
15. An arbor as defined in
16. An arbor as defined in
17. An arbor as defined in
18. An arbor as defined in
19. An arbor as defined in
20. An arbor as defined in
21. An arbor as defined in
23. An arbor as defined in
0. 25. An arbor as defined in claim 24, wherein the distal end of the collar defines one width or diameter.
0. 26. An arbor as defined in claim 24, wherein the proximal end of the collar defines one width or diameter.
0. 27. An arbor as defined in claim 24, wherein the proximal end of the collar defines a proximal rim.
0. 28. An arbor as defined in claim 24, wherein the distal end of the collar defines a distal rim.
0. 29. An arbor as defined in claim 27, wherein the manually engageable surface defines a first axial length and the proximal rim defines a second axial length, and the first axial length is about 30% to about 60% greater than the second axial length.
0. 30. An arbor as defined in claim 24, wherein said reduced width is within a range of about 70% to about 95% of at least one of said width of the proximal end and said width of the distal end.
0. 31. An arbor as defined in claim 24, wherein said reduced width is within a range of about 80% to about 90% of at least one of said width of the proximal end and said width of the distal end.
0. 32. An arbor as defined in claim 24, wherein the collar defines a sloped surface between the proximal end and the manually engageable surface.
0. 33. An arbor as defined in claim 24, wherein the collar defines a sloped surface between the distal end and the manually engageable surface.
0. 34. An arbor as defined in claim 24, wherein the inner axially-extending bearing surface is defined by a pair of substantially flat inner axially-extending bearing surfaces located on substantially opposite sides of the arbor body relative to each other and the substantially flat inner axially-extending bearing surfaces define said first width.
|
This application is a reissue of U.S. Pat. No. 8,366,356, which is a continuation-in-part of U.S. patent application Ser. No. 12/043,740, filed Mar. 6, 2008, now U.S. Pat. No. 8,328,474, the contents of which are hereby incorporated by reference in their entirety as part of the present disclosure.
The present invention relates arbors for hole cutters, hole cutters, and related methods, and more particularly, to arbors, hole cutters and related methods facilitating relatively quick attachment and release of a hole cutter and/or pilot bit to and from the arbor.
A typical arbor for a hole saw includes an arbor body with a threaded end portion that engages a corresponding threaded aperture in the end plate of the hole saw to secure the hole saw to the arbor. A pilot drill bit is receivable within the threaded end portion of the arbor body and extends through the center of the hole saw. The arbor further includes a drive pin plate that slidably mounts to the arbor body and has a pair of diametrically opposed drive pins that extend into corresponding drive pin holes formed in the end plate of the hole saw to rotatably drive the hole saw. A lock nut is threadedly mounted on the arbor body to prevent disengagement of the drive pins from the hole saw during use.
To mount the hole saw to the arbor, the end plate of the hole saw is threaded onto the threaded end portion such that the hole saw is secured to the arbor body and the drive pin holes are in alignment with the corresponding drive pins of the drive pin plate. Then the lock nut is tightened until the drive pins are fully received by the drive pin holes to secure the arbor to the hole saw. To mount the pilot bit, the bit is inserted into the center hole and secured by tightening a fastener.
One of the drawbacks associated with this type of arbor is that hole saws will lock up on the threads if the drive pin plate disengages from the hole saw during operation, presenting the end user with a difficult and time consuming task of removing the hole saw from the arbor. In many circumstances, the process of removing a locked up hole saw from the arbor permanently damages the arbor, the hole saw or both, necessitating the unwanted expense associated with replacing equipment prematurely.
Another drawback of this type of arbor is that it can be necessary to hold the hole saw in place to maintain alignment of the drive pin holes with the corresponding drive pins while simultaneously tightening the lock nut to avoid rotation of the hole saw that otherwise would prevent the drive pins from entering the drive pin holes. To address this problem, proprietary arbors have been devised that accept corresponding proprietary hole saws specifically designed to make hole saw mounting an easier task. However, the versatility of these arbors is greatly limited because they can only mount the particular manufacturer's proprietary hole saws and are not able to mount standard hole saws. Accordingly, it would be advantageous for such proprietary arbors to accept standard hole saws because they tend to be readily available in the event a proprietary hole saw needs replacing and is not available, or in the event a proprietary hole saw is not available in a desired size and/or cutting configuration.
Still another drawback of this type of arbor is that the process of inserting and removing pilot drill bits frequently requires the end user to manually engage a set screw. To address this issue, proprietary arbors have been devised that secure corresponding proprietary pilot drill bits having shanks configured for securement without the necessity of tools. However, the versatility of these arbors is greatly limited because they can only secure the particular manufacturer's proprietary pilot drill bits, and are not able to secure standard pilot drill bits which are readily available and easily obtainable in the event a proprietary pilot drill bit needs replacing and is not available, or in the event a proprietary pilot drill bit is not available in a desired size and/or drilling configuration. Further, such proprietary arbor and pilot drill bit systems can fail at fully securing the bits inside the arbor and/or can allow the bits to loosen during use causing off-axis wobble, especially at high rotational speeds. Off-axis wobble can cause undesirable vibration of the pilot drill bit that can reduce the drilling life of the bit and/or create an unacceptable degree of inaccuracy during use.
Accordingly, it is an object of the present invention to overcome one or more of the above-described drawbacks and/or disadvantages of the prior art.
In accordance with a first aspect, the present invention is directed to an arbor that is connectable to a quick change hole cutter, and in some embodiments of the present invention, also is connectable to a standard hole cutter. The hole cutter includes an end portion defining a first aperture, and at least one drive pin recess radially spaced relative to the first aperture. The arbor comprises an arbor body including a stop surface, and a hole cutter connecting portion extending axially from the stop surface and engageable within the first aperture of the hole cutter. A drive pin member defines a second aperture that receives therethrough the arbor body, and is configured to allow relative axial movement, but to prevent relative rotational movement, of the arbor body and drive pin member. The drive pin member further includes a first surface, and at least one drive pin radially spaced relative to the second aperture and extending axially from the first surface. The connecting portion is receivable within the first aperture of the hole cutter to define a first engagement position. The arbor body and/or the hole cutter is movable relative to the other between the first engagement position and a second engagement position to secure the hole cutter to the arbor body. In the second engagement position: (i) the at least one drive pin is substantially aligned with the at least one corresponding drive pin recess of the hole cutter; and (ii) the drive pin member is movable axially relative to the arbor body between a disengaged position axially spaced relative to the hole cutter, and an engaged position wherein the at least one drive pin is received within the corresponding drive pin recess of the hole cutter, and the first surface of the drive pin member contacts the end portion of the hole cutter.
Preferably, in the second engagement position, the end portion of the hole cutter is in contact with the stop surface of the arbor body. In some embodiments of the present invention, the arbor body and/or hole cutter is rotatable relative to the other between the first and second engagement positions. In some such embodiments, the connecting portion of the arbor body defines a first thread, and the first aperture of the hole cutter defines a second thread that is threadedly engageable with the first thread, to fixedly secure the hole cutter to the arbor body in the second engagement position. In some such embodiments, the threads on the connecting portion of the arbor body are configured to both (i) substantially align the at least one drive pin with the corresponding drive pin recess of the hole cutter in the second engagement position, and (ii) place the end portion of the hole cutter in contact with the stop surface of the arbor body in the second engagement position. In some such embodiments, the first and second threads define an axial clearance therebetween allowing the end portion of the hole cutter to substantially contact the stop surface of the arbor body in the both the first engagement position and the second engagement position. In some such embodiments, the arbor body and/or hole cutter is rotatable relative to the other between the first and second engagement positions, and the angular extent between the first and second engagement positions is within the range of about 10° and about 180°.
In some embodiments of the present invention, the first aperture of the quick change hole cutter defines a plurality of angularly extending protrusions, and a plurality of relatively recessed portions formed therebetween; and the connecting portion of the arbor body defines a plurality of angularly extending protrusions, and a plurality of relatively recessed portions formed therebetween. In the first engagement position, the protrusions of the connecting portion are received within the recesses of the first aperture, and the protrusions of the first aperture are received within the recessed portions of the connecting portion. In the second engagement position, the protrusions of the connecting portion are engaged with the protrusions of the first aperture. In some such embodiments, the protrusions of the connecting portion define a first thread, the protrusions of the first aperture define a second thread, and the first and second threads are threadedly engaged with each other in the second engagement position. In some embodiments, at least one of the angularly extending protrusions defines a greater or lesser angular extent than at least one other angular extending protrusion of the respective first aperture and connecting portion, to thereby permit receipt of the connecting portion within the first aperture in only the first engagement position.
Some embodiments of the present invention further comprise a collar coupled to the drive pin member, wherein movement of the collar between a first position and second position substantially simultaneously moves the drive pin member from the engaged to the disengaged position. Preferably, the collar defines an approximate diabolo shape. One advantage of this feature is that it facilitates handling during use by permitting the user to grasp the middle portion of the collar with, for example, an index finger and thumb of one hand, when moving the collar to attach or remove a hole cutter.
In some embodiments of the present invention, an axially elongated bearing surface is defined by the interface between the collar and the arbor body. One advantage if this feature is that it reduces or prevents unwanted play or movement between the collar and drive pin member, and the arbor body.
Some embodiments of the present invention further comprise a biasing member, such as a coil spring, that normally biases the drive pin member in the direction from the disengaged into the engaged position. Preferably, the biasing member automatically drives the drive pin member into the engaged position upon moving the hole cutter into the second engagement position. One advantage of this feature is that it facilitates one-handed attachment of the hole cutter to the arbor, or otherwise facilitates rapid attachment and detachment of the hole cutter to and from the arbor.
In accordance with another aspect of the present invention, the arbor body further defines a pilot bit aperture that is configured to alternatively receive both a quick change pilot bit and a standard pilot bit. In some such embodiments, the arbor further comprises (i) a pilot pin biased radially inwardly toward the pilot bit aperture and engageable with a quick change pilot bit received within the pilot bit aperture, and (ii) a fastener movable into the pilot bit aperture and engageable with a standard pilot bit received within the pilot bit aperture.
In some such embodiments, the arbor body further defines a pilot bit aperture for alternatively receiving both a quick change pilot bit and a standard pilot bit, and the arbor further comprises a pilot bit mechanism defining (i) a first state wherein the pilot bit mechanism engages the quick change pilot bit to prevent movement of the bit relative to the arbor body; (ii) a second state wherein the pilot bit mechanism engages the standard pilot bit to prevent movement of the bit relative to the arbor body; and (iii) a third state wherein the pilot bit mechanism disengages from the respective quick change pilot bit or standard pilot bit and allows movement of the respective bit relative to the arbor body.
In accordance with another aspect, the present invention is directed to an arbor that is connectable to a quick change hole cutter including an end portion defining a first aperture and at least one recess radially spaced relative to the first aperture. The arbor comprises first means for drivingly connecting a power tool to the hole cutter. The first means includes a stop surface, and second means of the arbor extends axially relative to the stop surface for releasably engaging the first aperture of the hole cutter and defining a first engagement position. Third means are provided for receiving therethrough the first means, and for allowing relative axial movement, but preventing relative rotational movement, of the first means and the third means. The third means includes a first surface, and at least one fourth means extending axially from the first surface for receipt within the at least one recess of the hole cutter for rotatably driving the hole cutter. Fifth means are provided for allowing rotational movement of at least one of the first means and the hole cutter relative to the other between the first engagement position and a second engagement position for securing the hole cutter to the first means, and for (i) substantially aligning the at least one fourth means with the at least one corresponding recess of the hole cutter in the second engagement position to, in turn, allow axial movement of the third means relative to the first means in the second engagement position between a disengaged position axially spaced relative to the hole cutter, and an engaged position with the at least one fourth means received within the corresponding recess of the hole cutter, and (ii) placing the first surface of the third means in substantial contact with the stop surface of the hole cutter in the second engagement position.
In accordance with another aspect, the present invention is directed to a quick change hole cutter that is attachable to an arbor. The arbor includes a threaded end portion defining at least one male threaded portion, a stop surface located adjacent to the threaded end portion, and a drive pin member including at least one drive pin thereon and movable axially relative to the arbor between an engaged position with the drive pin engaging the hole cutter, and a disengaged position with the drive pin disengaged from the hole cutter. The quick change hole cutter comprises a blade including a blade body and a cutting edge defined by a plurality of cutting teeth. An end portion of the hole cutter is fixedly secured to the blade body, and defines an approximately central aperture including on a peripheral portion thereof at least one female threaded portion, and at least one drive pin recess radially spaced relative to the central aperture. The female threaded portion cooperates with the male threaded portion of the arbor to define (i) a first engagement position wherein the lead male and female threads engage or substantially engage one another and define a first axial clearance relative to each other, and (ii) a second engagement position angularly spaced relative to the first engagement position. In the second engagement position, the male and female threads engage one another and define a second axial clearance less than the first axial clearance, the end portion is in engagement or substantial engagement with the stop surface of the arbor, and the drive pin recess is aligned with a respective drive pin of the arbor for receiving the drive pin with the drive pin member located in the engaged position.
Preferably, in the second engagement position, the end portion of the hole cutter is in contact with the stop surface of the arbor body. In some embodiments of the present invention, the female threaded portion defines an axial clearance relative to the male threaded portion allowing the end portion of the hole cutter to substantially contact the stop surface of the arbor body in the both the first engagement position and the second engagement position. In some embodiments, the connecting portion of the arbor body defines a plurality of angularly extending protrusions and a plurality of relatively recessed portions formed therebetween; and the central aperture of the quick change hole cutter defines a plurality of angularly extending protrusions, and a plurality of relatively recessed portions formed therebetween. In the first engagement position, the protrusions of the arbor connecting portion are received within the recesses of the central aperture, and the protrusions of the central aperture are received within the recessed portions of the arbor connecting portion. In the second engagement position, the protrusions of the arbor connecting portion are engaged with the protrusions of the central aperture.
In accordance with another aspect, the present invention is directed to a quick change hole cutter that is attachable to an arbor. The arbor includes a threaded end portion defining at least one male threaded portion, a stop surface located adjacent to the threaded end portion, and a drive pin member including at least one drive pin thereon and movable axially relative to the arbor between an engaged position with the drive pin engaging the hole cutter, and a disengaged position with the drive pin disengaged from the hole cutter. The quick change hole cutter comprises first means for cutting a hole, and second means for releasably connecting the first means to the arbor. The second means includes third means for engaging the end portion of the arbor in a first engagement position defining a first axial clearance therebetween, allowing relative rotational movement of the hole cutter and/or arbor relative to the other between the first engagement position and a second engagement position angularly spaced relative to the first engagement position, and defining a second axial clearance therebetween less than the first axial clearance, and for placing the second means in engagement or substantial engagement with the stop surface of the arbor. Fourth means of the hole cutter are aligned with the drive pin of the arbor in the second engagement position for receiving the drive pin with the drive pin member located in the second engaged position.
In accordance with another aspect, the present invention is directed to a method comprising the following steps:
(i) providing an arbor including a connecting portion that is connectable to a quick change hole cutter, wherein the hole cutter includes an end portion defining a first aperture and at least one drive pin recess radially spaced relative to the first aperture, and the arbor includes an axially-elongated arbor body and a drive pin member movable axially, but not rotationally, relative to the arbor body, and including at least one drive pin extending therefrom;
(ii) inserting the connecting portion of the arbor body into the first aperture of the hole cutter to define a first engagement position;
(iii) moving the arbor body and/or hole cutter relative to the other between the first engagement position and a second engagement position and, in turn, securing the hole cutter to the arbor body; and
(iv) upon moving the arbor body and/or hole cutter relative to the other into the second engagement position, (i) substantially aligning the at least one drive pin with the at least one corresponding drive pin recess of the hole cutter in the second engagement position, and then either moving or allowing axial movement of the drive pin member relative to the arbor body between a disengaged position axially spaced relative to the hole cutter, and an engaged position with the at least one drive pin axially received within the corresponding drive pin recess of the hole cutter and, in turn, placing the drive pin member in substantial contact with the end portion of the hole cutter.
In some embodiments of the present invention, the method further comprises the steps of:
(i) providing a quick change hole cutter including a first aperture defining along a periphery thereof a plurality of angularly extending protrusions and a plurality of recesses formed therebetween;
(ii) providing an arbor having a connecting portion defining a plurality of angularly extending protrusions and a plurality of recesses formed therebetween;
(iii) inserting at least one of the protrusions of the connecting portion and the protrusions of the first aperture into the recesses of the other in the first engagement position; and
(iv) rotating at least one of the hole cutter and arbor body relative to the other from the first engagement position to the second engagement position and, in turn, engaging at least one of the protrusions of the connecting portion and of the first aperture with the other.
Some embodiments of the present invention further comprise the steps of normally biasing the drive pin member in the direction from the disengaged position toward the engaged position, and upon moving the hole cutter from the first engagement position into the second engagement position, automatically biasing the drive pin member into the engaged position to, in turn, drive the drive pin(s) into the corresponding drive pin recess(es) and attach the hole cutter to the arbor.
In accordance with another aspect, the present invention is direct to an arbor for a hole cutter including an outer surface defining a threaded aperture, and a drive member aperture spaced radially relative to the threaded aperture. The arbor comprises an axially-elongated arbor body including a drive shank on one end thereof, a threaded portion on an opposite end thereof relative to the drive shank that is engageable with the threaded aperture on the hole cutter, and an inner axially-extending bearing surface located between the drive shank and the threaded portion. The arbor body defines a first width, such as a diameter, along the inner axially-extending bearing surface. The arbor further comprises an axially-elongated collar including a proximal end and a distal end, a manually engageable surface extending axially between the proximal and distal ends and defining a reduced width in comparison to the proximal and distal ends, and a drive member, such as a plurality of angularly spaced drive pins, extending axially from the distal end of the collar. The collar is slidably mounted on the arbor body and movable between (i) an engaged position with the distal end of the collar adjacent to the threaded portion for engaging the drive member with the drive member aperture of a hole cutter threadedly attached to the threaded portion of the arbor body, and (ii) a disengaged position with the distal end of the collar axially spaced relative to the threaded portion of the arbor body. The collar includes an outer axially-extending bearing surface that slidably contacts the inner axially-extending bearing surface of the arbor when moving the collar between the engaged and disengaged positions, and the inner axially-extending bearing surface defines a length that is at least about 1¼ times the first width, such as the diameter, of the arbor body. The arbor further comprises a retaining member mounted on the collar and movable between (i) a first position holding the collar in the engaged position, and (ii) a second position allowing axial movement of the collar from the engaged position to the disengaged position.
In some embodiments of the present invention, the axially-extending bearing surface defines a length that is at least about 1½ times the first width, such as the diameter, of the arbor body.
In some embodiments of the present invention, the arbor body defines a pair of inner axially-extending bearing surfaces angularly spaced relative to each, and a pair of inner curvilinear axially-extending bearing surfaces angularly spaced relative to each other between inner axially-extending bearing surfaces. The collar defines a pair of outer axially-extending bearing surfaces angularly spaced relative to each other, and a pair of outer curvilinear axially-extending bearing surfaces angularly spaced relative to each other between outer axially-extending bearing surfaces. The pair of inner axially-extending bearing surfaces slidably engage the pair of outer axially-extending bearing surfaces, and the pair of inner curvilinear axially-extending bearing surfaces slidably engage the pair of outer curvilinear axially-extending bearing surfaces, when moving the collar between the engaged and disengaged positions. Preferably, the pair of inner axially-extending bearing surfaces are substantially flat, and the pair of outer axially-extending bearing surfaces are substantially flat.
In some such embodiments, each curvilinear axially-ex- tending bearing surface is defined by a diameter of the collar or arbor body, respectively. In some embodiments of the present invention, the outer axially-extending bearing surfaces are shorter than the inner axially-extending bearing surfaces. In some such embodiments, the collar defines a pair of axially-extending recessed surfaces located on substantially opposite sides of the collar relative to each other, and each recessed surface extends between a respective inner axially-extending bearing surface and the proximal end of the collar. In some such embodiments, the collar further defines a pair of first stop surfaces. Each first stop surface is formed between an axially-extending recessed surface and respective inner axially-extending bearing surface. The arbor body defines a pair of second stop surfaces, each second stop surface is formed at a proximal end of a respective inner axially-extending bearing surface, and first and second stop surfaces engage each other in the disengaged position to prevent further proximal axial movement of the collar. In some such embodiments, the second stop surfaces are defined by respective lips formed on the arbor body, and the lips and recessed surfaces form bearing surfaces that slidably contact each other when moving the collar between the engaged and disengaged positions.
One advantage of some currently preferred embodiments of the present invention is that the collar defines axially-elongated bearing surfaces that are at least about 1¼ times as long as the diameter of the arbor body to thereby provide extensive bearing surfaces and, in turn, substantially prevent any rocking or wobble of the hole cutter on the arbor body. Yet another advantage is that the collar defines an axially-extending manually engageable surface to facilitate manually engagement and movement of the collar between the disengaged and engaged positions in a single, one-handed motion.
Another advantage of some currently preferred embodiments of the present invention is that they enable a hole cutter to be relatively quickly engaged with, and disengaged from, the arbor. Yet another advantage of some currently preferred embodiments of the present invention is that they enable one arbor to accept both quick change and standard hole cutters.
Other objects, advantages and features of the present invention and/or of the currently preferred embodiments thereof will become more readily apparent in view of the following detailed description of the currently preferred embodiments and accompanying drawings.
In
In a standard hole cutter or saw, on the other hand, the central aperture in the end plate or cap of the hole cutter defines a continuous or substantially continuous thread extending about the circumference of the aperture. Such standard hole cutters conform to the ASME B94.54-1999 standard, and in accordance with such ASME standard, define a standard thread form depending on the outside diameter of the hole saw as follows: For hole saws having outside diameters between 9/16 inch and 1 3/16 inches, the standard thread form is a ½-20 UNF-2B thread, and for hole saws having outside diameters between 1¼ inches and 6 inches, the standard thread form is a ⅝-18 UNF-2B thread. Accordingly, the term “standard” hole cutter is used herein to mean a hole cutter that has such a threaded aperture; whereas the term “quick change” hole cutter is used herein to mean a hole cutter that does not include a such a conventional threaded aperture, but rather includes a connecting aperture defining one or more features to facilitate a quick change attachment of the hole cutter to the arbor, such as the plural raised engagement portions and plural recessed portions located therebetween and described further below.
As shown best in
As shown typically in
As shown in
Preferably, the arbor 10 is adapted to receive and mount both quick change hole cutters and standard hole cutters. However, the invention and aspects thereof may be embodied in arbors adapted to mount only quick change hole cutters. In a standard hole cutter (not shown), the threaded aperture in the end plate of the hole cutter (defining, for example, either a ½-20 UNF-2B thread or a ⅝-18 UNF-2B thread, depending on the outer diameter of the hole saw) threadedly engages the end portion 22 of the arbor body 20 to secure the arbor body thereto. In the quick change hole cutter 12, on the other hand, and as shown typically in
As shown in
In the illustrated embodiment, the male threads of the arbor body protrusions 23 and the female threads of the hole cutter protrusions 17 are configured (or “clocked”) so that when the hole cutter and/or arbor body is rotated from the first engagement position to the second engagement position, the drive pins 36 of the arbor and drive pin apertures 18 of the hole cutter are substantially aligned in the second engagement position to, in turn, allow the drive pins to be axially received within the drive pin apertures and thereby further secure the hole cutter to the arbor. In addition, the male and female threads of the protrusions 23 and 17, respectively, are preferably configured so that when the hole cutter 12 and/or the arbor body 20 are rotated into the second engagement position, the end plate 14 is in contact with, or substantially in contact with the shoulder 28 of the arbor body to, in turn, allow the shoulder to engage and further support the hole cutter during use. In the illustrated embodiments of the present invention, there is sufficient axial clearance between the male and female threads of the protrusions 23 and 17, respectively, to allow the end plate 14 of the hole cutter to contact or substantially contact the shoulder 28 of the arbor body in the first engagement position, and to allow the end plate 14 of the hole cutter to remain in contact or substantial contact with the shoulder 28 during rotation between the first and second engagement positions, so that in the second engagement position, the end plate 14 is in contact with, or in substantial contact with the shoulder 28 of the arbor body. During rotation between the first and second engagement positions, the threads tend to drive the hole cutter 12 axially inwardly toward the shoulder 28 (or vice versa) and thus substantially eliminate or eliminate the axial clearance between threads in the second engagement position.
As indicated above, one advantage of the currently preferred embodiments of the present invention is that the threaded end portion 22 of the arbor is threadedly engageable with either quick change hole cutters or standard hole cutters. The combination of threaded protrusions 23 on the end portion 22 of the arbor body 20 forms an interrupted, but continuous thread pattern for engaging the female threads on a standard hole cutter as defined above (e.g., either a ½-20 UNF-2B thread or a ⅝-18 UNF-2B thread, depending on the outer diameter of the hole saw). Thus, in order to attach a standard hole cutter to the arbor body, the threaded aperture in the standard hole cutter cap is fitted over the threaded end portion 22 of the arbor body, and at least one of the hole cutter and arbor body is rotated relative to the other to engage the threads. Then, the hole cutter and/or arbor is rotated relative to the other to further engage the threads and, in turn, axially move the end cap of the hole cutter into engagement with the shoulder 28 of the arbor body (
In the currently preferred embodiments of the present invention, the relative rotation of the hole cutter 12 and/or arbor 10 between the first and second engagement positions is within the range of about 10 degrees and about 180 degrees, is preferably within the range of about 30 degrees and about 120 degrees, and is most preferably within the range of about 40 degrees and about 100 degrees. In the illustrated embodiment, the relative rotation between the first and second engagement positions is about 45 degrees. However, as may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, these angular ranges and angles are only exemplary, and numerous other angles and/or angular ranges equally may be employed.
As shown typically in
TABLE 1
Different Features
Standard Thread Forms
Custom Thread Forms
Root (“R”)
0.25 P
0.25 P + a
Crest (“C”)
0.125 P
0.125 P − a
Axial Clearance
Not Specified, But
a
Negligible or
Approximately Zero
The minimum clearance “a” for each custom thread form is preferably determined in accordance with the following formula: a=((1/pitch)/360))*D, where D equals the degree of rotation between the first and second engagement positions. For example, as indicated in the table below, if the hole cutter includes two threaded protrusions 17 (or “lobes”), it will rotate 90° between the first and second engagement positions; if the hole cutter includes 3 lobes, it will rotate 60° between the first and second engagement positions; if the hole cutter includes 4 lobes, it will rotate 45° between the first and second engagement positions, etc. The minimum axial clearance “a” is set to time the threads so that in the second engagement position the drive pins are aligned or substantially aligned with the respective drive pin recesses in the hole cutter to allow the drive pins to be moved into the engaged position. The following table lists exemplary minimum approximate clearances “a” for the ⅝-18 and ½-20 custom thread forms:
TABLE 2
Minimum
Minimum
Angular Rotation
Approximate
Approximate
Number of Lobes
Between First
Clearance “a” for
Clearance “a” for
(or curvilinear
And Second
⅝-18 Custom
½-20 Custom
threaded
Engagement
Thread Form
Thread Form
protrusions)
Positions
(inches)
(inches)
2 lobe
90°
0.014
0.012
(square/rectangle)
3 lobe (triangle)
60°
0.009
0.008
4 lobe (cross)
45°
0.007
0.006
5 lobe (pent)
36°
0.006
0.005
6 lobe (hex)
30°
0.005
0.004
As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, these minimum clearances are only exemplary, and numerous other clearances equally may be employed. Preferably, the minimum clearance “a” is approximately as defined above; however, if desired, the clearance may be greater than the minimum as defined above. In some embodiments of the present invention, the clearance is within the range of about 1 to about 1½a. If, for example, the clearance is greater than the respective minimum clearance “a”, the drive pins will be allowed to move into the drive pins recesses when the hole cutter is located in the second engagement position. If, on the other hand, the clearance is too small such that the hole cutter cannot move into the second engagement position and thus cannot move the drive pin recesses into alignment with the drive pins, the hole cutter cannot be properly attached to the arbor.
As shown best in
As shown in
As also shown in
The pilot bit mechanism 40 further comprises a shear pin or ball 46 that is disposed at least partially within a ball receiving aperture 39 defined in the drive pin plate 30. The ball 46 is movable between a first position, wherein the ball 46 outwardly protrudes from the ball receiving aperture 39 when the pilot bit mechanism 40 is in the quick change pilot bit or standard pilot bit states, as shown in
As also shown in
The interaction between the shear pin 41, shear plate 44, ball 46, drive pin plate 30 and pilot bit (quick change bit 64 or standard bit 66) define the three states of the pilot bit mechanism. Other components of the arbor 10 may also play a role in defining the states the pilot bit mechanism; however, attention will be focused on the above-mentioned components. Referring to
If a quick change pilot bit 64 is inserted into the pilot bit aperture 29, and with the drive pin plate 30 in its second or disengaged position (
If a standard pilot bit 66 is inserted into the pilot bit aperture 29, and with the drive pin plate 30 in its second position (
As shown in
As shown best in
In one embodiment of the invention, the axial length of the collar 50 is between about 1/22 inch to about 1⅜ inches, and in an exemplary embodiment, the axial length of the collar 50 is about 1⅕ inches. Additionally, in one embodiment of the invention, the axial length of the upper portion of the collar is between about ⅙ inch to about ½ inch, the axial length of the middle portion of the collar is between about ¼ inch to about ¾ inch, and the axial length of the lower portion of the collar is between about ⅙ inch to about ½ inch. In an exemplary embodiment, the axial length of the upper portion is about ⅓ inch, the axial length of the middle portion is about ⅖ inch, and the axial length of the lower portion is about ⅕ inch.
It should be noted that in the illustrated embodiment, the outer surfaces 67, 68, 69 of the respective upper, middle and lower portions 57, 58, 59 are substantially planar and substantially parallel to the central longitudinal axis of the arbor body 20. Further, it should be noted that the upper and lower portions of the collar 50 do not directly abut the middle portion; rather, intermediate portions 71, 73 reside between the upper portion 57 and the middle portion 58 and the lower portion 59 and the middle portion 58 respectively. The intermediate portions 71, 73 define surfaces 75, 77 that slope towards the central longitudinal axis of the arbor body—i.e., the surfaces 75, 77 slope in a direction from the upper and lower portions of the collar 57,59 toward the middle portion 58 of the collar. However, as may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, the upper, middle and lower portions 57, 58, 59 of the collar 50 can take on any of numerous different configurations that are currently known or that later become known; for example, the middle portion could include a plurality of axially spaced ribs, or any of the upper, middle and lower portions could take on an arcuate, curvilinear or sloped configuration. Additionally, the upper and lower portions could directly abut the middle portion without the inclusion of the intermediate portions, or the intermediate portions could take on any of numerous different configurations that are currently known or that later become known; for example, the intermediate portions could take on an arcuate or curvilinear configuration. Further, as may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, the collar 50 and drive pin plate 30 can be integrated into a single component that can take on a diabolo configuration as defined above, or can take on any of numerous different configurations that are currently known or that later become known; for example, the single collar/drive pin plate component could take on a cylindrical shape having the same laterally extending diameter throughout.
As shown best in
Having thus described the arbor 10 and its components, attention will now be drawn to a method of attaching and removing hole cutters and pilot drill bits to and from the arbor, respectively. With the drive shank 24 of the arbor 10 inserted and engaged by the chuck of a driving tool, such as a drill (not shown) or, prior to insertion and engagement with the tool, the end user aligns the hole cutter aperture 16 with the end portion 22 of the arbor. If a quick change hole cutter is used, the hole cutter recesses 19 are aligned with the arbor body protrusions 23 as shown, for example, in
If a standard hole cutter (not shown) is used, the end user aligns the hole cutter aperture with the end portion 22 of the arbor body 20 fitting the hole cutter thereupon, such that the hole cutter aperture threadedly engages the threads on the arbor protrusions 23. Like the quick change hole cutter, the standard hole cutter is then rotated to threadedly attach the hole cutter to the end portion of the arbor and receive the drive pins into the corresponding drive pin apertures of the hole cutter. Depending on the threads, the standard hole cutter may not engage or may not fully engage the shoulder or stop surface of the arbor when attached to the arbor; however, since the drive pins drive the hole cutter it is not always necessary that the hole cutter cap engage the stop surface of the arbor.
To attach a quick change pilot bit 64, the drive pin plate 30 is moved from the first position engaging the hole cutter 12 to the second position disengaged from the hole cutter 12 by at least one of: (i) grasping and physically moving the drive pin plate 30, and (ii) pressing downward on the drive pin plate 30 through engagement with the hole cutter 12 during the step of fitting the hole cutter onto the end portion of the arbor body (
Once the quick change pilot bit 64 is substantially fully inserted into the pilot bit aperture 29, and the pilot pin 41 is in alignment with the quick change feature 65 of the pilot bit 64, the biasing member 43 returns the pilot pin 41 to the first position such that the pilot pin 41 engages the respective quick change feature 65 of the bit 64 and prevents movement of the quick change pilot bit 64 relative to the arbor body. With the pilot pin 41 engaging the quick change pilot bit 64, the biasing member 47 returns the ball 46 to the first position. In the first position, a portion of the ball 46 is received by the shear plate aperture 45 and engages the shear plate 44, while a portion of the ball remains in the shear pin aperture 31 of the arbor body 20. To fully secure the pilot bit 64, the drive pin plate 30 is then moved from the second position to the first position engaging the hole cutter by at least one of: (i) releasing the drive pin plate 30, and (ii) during the step of rotating the hole cutter, allowing the drive pin plate 30 to move when the drive pin apertures 18 align with the corresponding drive pins 36. As the drive pin plate 30 moves, the shear plate 44 substantially simultaneously moves from the second position to the first position. In the first position, the shear plate 44 locks the pilot pin 41 into engagement with the quick change pilot bit 64, and thereby prevents the pilot bit from moving out of the first position as shown, for example, in
To attach a standard pilot bit 65, as with a quick change pilot bit, the drive pin plate 30 is moved from the first position engaging the hole cutter to the second position disengaged from the hole cutter by at least one of: (i) grasping and physically moving the drive pin plate 30, and (ii) pressing downward on the drive pin plate 30 through engagement with the hole cutter 12 during the step of fitting the hole cutter onto the end portion of the arbor body (
Once the standard pilot bit 66 is substantially fully inserted into the pilot bit aperture 29, the drive pin plate 30 is then moved from the second position to the first position engaging the hole cutter by at least one of: (i) releasing the drive pin plate 30, and (ii) during the step of rotating the hole cutter, causing the drive pin plate 30 to move when the drive pin apertures 18 align with the corresponding drive pins 36. As the drive pin plate 30 moves, the shear plate 44 remains in the second position due to engagement with the pilot pin 41, which in turn, causes the ball 46 to partially extend outwardly from the ball receiving aperture 47 and into engagement with the shear plate 44 to further maintain the shear plate 44 in the second position. In one embodiment (not shown), the shear plate 44 visually protrudes from behind the drive pin plate 30 to alert the user to use the fastener 48 to engage the standard pilot pit 66, which occurs when the drive pin plate 30 is in the first position and the shear plate 44 in the second position. To fully secure the standard pilot bit 66 in the arbor 10, the user moves the fastener 48 from the first position to the second position, thereby engaging the pilot bit 66 and preventing movement thereof relative to the arbor body.
If desired, a user may employ the fastener 48 to secure a quick change pilot bit 64 in addition to the securement provided by the pilot bit mechanism 40. As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, the order in which the respective hole cutter and pilot bit are mounted is inconsequential; rather, the hole cutter may be mounted before the pilot bit, after the pilot bit, or at about the same time as the pilot bit. Additionally, if desired, the arbor can be used with the hole cutter only (no pilot bit) or with the pilot bit only (no hole cutter).
In
In
In operation, the adapter 70 is attached to the hole saw by threadedly attaching the boss 80 to the hole saw. The assembled adapter and hole saw are attached to the arbor by inserting the threaded protrusions 23, 123 of the arbor end portion 22, 122 into the recesses 76 of the adapter to define the first engagement position. Then, at least one of the adapter/hole cutter assembly and arbor is rotated relative to the other to rotatably move from the first engagement position to the second engagement position. In the second engagement position, the protrusions 74 of the adapter threadedly engage the protrusions 23, 123 of the arbor to secure the adapter/hole cutter assembly to the arbor. When the adapter/hole cutter assembly and arbor are in the second engagement position, the drive pins are moved axially into the curvilinear recesses 78 to further prevent any relative rotational movement of the adapter and arbor during use and to rotatably drive the hole cutter. If desired, the axial depth of the adapter may be set so that the inner surface of the adapter engages the drive pin plate in the second engagement position. Also if desired, the threads on the threaded protrusions may define an axial clearance as described above in order to facilitate maintaining contact between the adapter and arbor shoulder 28, 128 in the first and second engagement positions.
In
Referring to
Although not shown in the drawings, the drive pin plate 230 can define a spool-like or diabolo configuration as described above, with the same or approximately the same dimensions. Further, the drive pin plate can be elongated axially (with or without defining a spool-like diabolo shape) to define an axially elongated bearing surface between the drive pin plate 230 and the arbor body 220 to reduce or prevent unwanted movement or play between the drive pin plate and arbor body.
In operation, with the drive pin plate 230 in the first engaged position (see
Referring now to
As shown in
In the illustrated embodiment, best shown in
In the illustrated embodiment, each curvilinear axially-extending bearing surface 385, 385′, 389, 389′ is defined by a diameter of the collar 350 or arbor body 320, respectively. Also in the illustrated embodiment, the outer axially-extending bearing surfaces 363, 363′ are shorter than the inner axially-extending bearing surfaces 327, 327′. The collar 350 defines a pair of axially-extending recessed surfaces 391, 391′ located on substantially opposite sides of the collar relative to each other, and each recessed surface 391, 391′ extends between a respective axially-extending bearing surface 363, 363′ and the proximal end 399 of the collar. The collar 350 further defines a pair of first stop surfaces 393, 393′. Each first stop surface 393, 393′ is formed between an axially-extending recessed surface 391, 391′ and a respective outer axially-extending bearing surface 363, 363′. Additionally, the arbor body 320 defines a pair of second stop surfaces 395, 395′. Each second stop surface 395, 395′ is formed at a proximal end of a respective inner axially-extending bearing surface 327, 327′. The first and second stop surfaces are configured to engage each other when the collar 350 is in the disengaged position to prevent further proximal axial movement of the collar 350. The second stop surfaces 395, 395′ are defined by respective lips 396, 396′ formed on the arbor body 320, and the lips 396, 396′ and recessed surfaces 391, 391′ form bearing surfaces that slidably contact each other when moving the collar 350 between the engaged and disengaged positions.
As shown in
As shown in
Drawing attention to
As may be recognized by those of ordinary skill in the pertinent art based on the teachings herein, numerous changes and modifications may be made to the above-described and other embodiments of the present invention without departing from the scope of the invention as defined in the appended claims. For example, the components of the arbor may take on any of numerous different configurations, or may be formed of any of numerous different materials, that are currently known, or that later become known; any of a variety of the disclosed components may be eliminated, or additional components or features may be added; and the arbors may be used with any of numerous different types of tools that are currently known, or that later become known. For example, the retaining members may can be of any of numerous different types that are currently known or that later become known, such as, for example, cylindrical or tapered drive pins, that engage corresponding apertures on a hole cutter, or drive dogs defining flats that engage corresponding apertures or recesses on the hole cutter. Similarly, the drive pin apertures or recesses can take any of numerous different configurations for receiving or otherwise engaging any of numerous different types of drive members. The drive pin member or plate can likewise can take any of numerous different configurations, including, for example, a plate form or a circular or other shaped collar or housing that is movable relative to the arbor body and includes one or more drive pins. The threads on the arbor connecting portion and/or on the central aperture of the hole cutter can take the form of the standard or timed threads (or combinations thereof) as described above, or can take the form of any of numerous different thread configurations that are currently known, or that later become known. Alternatively, the connecting portion and/or central aperture of the hole cutter may define a structure other than threads for engaging the hole cutter to the arbor upon moving the arbor and/or hole cutter relative to the other between the first and second engagement positions. Furthermore, as may be recognized by those or ordinary skill in the pertinent art based on the teachings herein, the retaining member can be of any of numerous types of retaining members that are currently known or that later become known to secure or otherwise return the axial position of the drive pin plate and/or collar relative to the arbor body during use and/or to prevent the drive pin plate and/or collar from slipping out of engagement with the hole cutter; additionally, more than one retaining member could be employed. Accordingly, this detailed description of the currently-preferred embodiments is to be taken in an illustrative, as opposed to a limiting sense.
Novak, Joseph Thomas, Pangerc, James E.
Patent | Priority | Assignee | Title |
11701717, | May 08 2020 | Hole cutter having plug ejection and method thereof | |
11872642, | Nov 12 2021 | Dynamicaly configurable arbor assembly apparatus | |
11998996, | Mar 19 2021 | Black & Decker Inc. | Hole cutting accessory for power tool |
D802391, | May 23 2016 | CUZ-D MANUFACTURING, INC , DBA CUZDEY R&D | Arbor for a circular saw |
D817736, | Feb 21 2017 | Tool mount | |
D871877, | Apr 24 2018 | HOLE DYNAMICS, LLC | Hole saw arbor |
D880266, | Sep 29 2017 | MINUTEMAN INTERNATIONAL, INC | Power brush/broom driver hub assembly |
D899213, | Oct 19 2018 | Robert Bosch GmbH | Attachment for power tool |
D903454, | Jan 24 2019 | Hole saw arbor | |
D926008, | Apr 24 2018 | HOLE DYNAMICS, LLC | Hole saw arbor |
D952713, | Dec 16 2020 | Cutting tool | |
D955453, | Oct 01 2020 | Shukla Medical | Drill bit |
D976293, | Oct 13 2021 | Drill bit | |
D982407, | Oct 31 2019 | DINO PAOLI S.R.L.; DINO PAOLI S R L | Impact tool component |
D983850, | Oct 13 2021 | Drill bit | |
D987696, | Oct 14 2021 | Epstein Industrial Supply. Inc.; EPSTEIN INDUSTRIAL SUPPLY, INC | Drill bit |
ER3253, | |||
ER6453, |
Patent | Priority | Assignee | Title |
3784316, | |||
4036560, | Nov 03 1975 | CAPEWELL MANUFACTURING COMPANY, A CORP OF DE | Heavy duty hole saw and arbor assembly |
4148593, | Jan 27 1978 | CAPEWELL MANUFACTURING COMPANY, A CORP OF DE | Hole saw assembly |
4303357, | May 19 1980 | ADAMS, WALTER C ; ADAMS, MARILYN J | Quick-change hole saw mandrel |
4490080, | Feb 18 1983 | Precision Industries, Inc. | Hole cutting tool |
4651600, | Mar 13 1985 | Interchangeable cutting die or tool head arrangement | |
4968189, | Oct 20 1989 | Hole saw driver-extruder and hole enlarger | |
5035548, | Oct 31 1990 | Hole saw driver and extruder | |
5076741, | Nov 13 1990 | Plug ejecting holesaw | |
5108235, | May 14 1991 | TEXTRON IPMP L P | Hole saw arbor |
5154552, | Dec 31 1991 | American Saw & Mfg. Company | Quick-release arbor for hole saws |
5226762, | Aug 06 1992 | Sealed hole-saw arbor | |
5246317, | Dec 31 1991 | American Saw & Mfg. Company | Quick-release arbor for hole saws |
5352071, | Jun 07 1993 | TEXTRON IPMP L P | Hole saw arbor with retaining mechanism |
5658102, | Sep 12 1995 | The L. S. Starrett Company | Hole saw arbor method and apparatus |
5813802, | Nov 30 1995 | House B.M. Co., Ltd. | Drilling tool assembly and its center drill and cup shape drill |
5868532, | Mar 24 1997 | American Saw & Mfg. Company | Arbor for engaging a saw |
6120221, | Dec 19 1996 | Kapman AB | Holesaw |
6341925, | Mar 02 2000 | Plug ejecting hole saw with twist-locking interchangeable saw cups | |
6623220, | Sep 01 2000 | Credo Technology Corporation | Quick change mandrel assembly for use with a hole saw and a pilot drill bit |
6641338, | Mar 02 2000 | Plug ejecting hole saw with interchangeable saw cups having different size attachment bores | |
6705807, | Nov 24 1999 | Black & Decker Inc. | Hole saw and connection method |
7001119, | Oct 23 2003 | WENMAN VENTURES INC | Arbor apparatus for rotary tools |
7073992, | Jun 24 2003 | Black & Decker Inc | Arbor for hole cutter and related method of use |
7104738, | Jun 27 2003 | Jore Corporation | Hole saw arbor |
7219753, | Nov 30 2002 | Hilti Aktiengesellschaft | Tool holder for annular core bit |
7488146, | Nov 16 2006 | Black & Decker Inc | Large holesaw mandrel assembly |
20020122703, | |||
20020131835, | |||
20050025591, | |||
20050025592, | |||
20070036620, | |||
20070071565, | |||
20070160434, | |||
20070160435, | |||
20070212179, | |||
20080019785, | |||
EP589108, | |||
GB2295110, | |||
JP2002096222, | |||
JP2004181622, | |||
JP2004216508, | |||
JP2006198699, | |||
JP2007521146, | |||
JP2008522844, | |||
JP54113589, | |||
JP57201114, | |||
JP691417, | |||
JP7241840, | |||
JP9117814, | |||
WO3024677, | |||
WO2004011179, | |||
WO2005120754, | |||
WO2008064409, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 05 2015 | Irwin Industrial Tool Company | (assignment on the face of the patent) | / | |||
Dec 03 2018 | Irwin Industrial Tool Company | Black & Decker Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 048581 | /0170 |
Date | Maintenance Fee Events |
Jul 30 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 23 2024 | REM: Maintenance Fee Reminder Mailed. |
Date | Maintenance Schedule |
Aug 16 2019 | 4 years fee payment window open |
Feb 16 2020 | 6 months grace period start (w surcharge) |
Aug 16 2020 | patent expiry (for year 4) |
Aug 16 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 16 2023 | 8 years fee payment window open |
Feb 16 2024 | 6 months grace period start (w surcharge) |
Aug 16 2024 | patent expiry (for year 8) |
Aug 16 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 16 2027 | 12 years fee payment window open |
Feb 16 2028 | 6 months grace period start (w surcharge) |
Aug 16 2028 | patent expiry (for year 12) |
Aug 16 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |