A surgical instrument includes a housing having a shaft extending therefrom. The housing includes a nose having a neck and a base that defines a diameter greater than that of the neck. A rotation knob has a distal end defining a first aperture and a proximal end defining a second aperture, the apertures cooperating to define a lumen extending through the rotation knob that is configured to receive the shaft. The first aperture defines a diameter that generally approximates a diameter of the shaft. The rotation knob is transitionable between an at-rest position and a flexed position. In the flexed position, the second aperture is expanded to permit passage of the base of the nose into an interior of the rotation knob. In the at-rest position, the second aperture generally approximates the diameter of the neck to rotatably engage the rotation knob about the nose with the shaft extending therethrough.
|
1. A surgical instrument, comprising:
a housing having a shaft extending distally therefrom and defining a longitudinal axis, the housing including a nose disposed at a distal end thereof, the nose including a neck extending distally from the housing and a base disposed at a distal end of the neck, the base defining a diameter greater than a diameter of the neck; and
a rotation knob having a distal end defining a first aperture and a proximal end defining at least one second aperture, the first and second apertures cooperating to define a lumen extending longitudinally through the rotation knob that is configured to receive the shaft, the rotation knob flexible between an at-rest position and a flexed position, wherein, in the flexed position, the diameter of the second aperture is expanded from a first diameter to a second, larger diameter to permit passage of the base of the nose through the second aperture and into an interior of the rotation knob, and wherein, in the at-rest position, the second aperture defines the first diameter to rotatably engage the proximal end of the rotation knob about the nose with the shaft extending through the lumen of the rotation knob.
11. A surgical instrument, comprising:
a housing having a shaft extending distally therefrom and defining a longitudinal axis, the housing including a nose disposed at a distal end thereof, the nose including a neck extending distally from the housing and a base disposed at a distal end of the neck, the base defining a diameter greater than a diameter of the neck; and
a rotation knob having a distal end defining a first aperture and a plurality of radially-spaced fingers extending proximally from a proximal end of the rotation knob, the fingers each including a radially inwardly-extending tab disposed at a free end thereof, the tabs cooperating to define a second aperture, the first and second apertures cooperating to define a lumen extending longitudinally through the rotation knob that is configured to receive the shaft, the rotation knob flexible between an at-rest position and a flexed position, wherein, in the flexed position, the fingers are flexed radially outwardly to expand a diameter of the second aperture from a first diameter to a second, larger diameter, to permit passage of the base of the nose through the second aperture and into an interior of the rotation knob, and wherein, in the at-rest position, the second aperture defines the first diameter for rotatably engaging the tabs of the fingers of the rotation knob about the nose with the shaft extending through the lumen of the rotation knob.
0. 16. A surgical instrument, comprising:
a housing defining a nose at a distal end thereof;
a shaft defining a proximal end and a distal end, the proximal end of the shaft rotatably coupled to the housing, the shaft extending distally from the nose of the housing;
at least one first engagement feature disposed towards the proximal end of the shaft adjacent the nose of the housing;
an end effector assembly disposed at the distal end of the shaft and operably coupled to the shaft such that rotation of the shaft effects corresponding rotation of the end effector assembly; and
a monolithic rotation knob including a distal portion and a proximal portion, the monolithic rotation knob defining a lumen extending longitudinally therethrough configured to receive the shaft, the distal portion of the monolithic rotation knob including at least one second engagement feature disposed therein, the monolithic rotation knob configured to slide proximally about the shaft from a disengaged position to an engaged position, wherein, upon movement of the monolithic rotation knob from the disengaged position to the engaged position, the monolithic rotation knob is configured to flex from an at-rest position, wherein a portion of the lumen defines a first perimeter, to a flexed position, wherein the portion of the lumen defines a second, larger perimeter, and back to the at-rest position, and wherein, in the engaged position, the proximal portion of the monolithic rotation knob is disposed about the nose of the housing and the at least one second engagement feature is engaged with the at least one first engagement feature to engage the shaft and the monolithic rotation knob with one another such that rotation of the monolithic rotation knob about the nose of the housing rotates the shaft and the end effector assembly relative to the housing.
2. The surgical instrument according to
3. The surgical instrument according to
4. The surgical instrument according to
5. The surgical instrument according to
6. The surgical instrument according to
7. The surgical instrument according to
8. The surgical instrument according to
9. The surgical instrument according to
10. The surgical instrument according to
12. The surgical instrument according to
13. The surgical instrument according to
14. The surgical instrument according to
15. The surgical instrument according to
0. 17. The surgical instrument according to claim 16, wherein the monolithic rotation knob includes a plurality of alternating flanges and recesses disposed on the outer periphery thereof, the alternating flanges and recesses configured to facilitate grasping and rotating the rotation knob.
0. 18. The surgical instrument according to claim 16, wherein the at least one first engagement feature is a cut-out and wherein the at least one second engagement feature is a protrusion.
|
1. Technical Field
The present disclosure relates to surgical instruments and, more particularly, to rotation knobs for surgical instruments having rotatable end effector assemblies.
2. Background of Related Art
As an alternative to open surgical instruments for use in open surgical procedures, many modern surgeons use endoscopic apparatus for remotely accessing tissue through smaller openings or incisions. As a direct result thereof, patients tend to benefit from less scarring, fewer infections, shorter hospital stays, less pain, less restriction of activity, and reduced healing time. A typical endoscopic instrument includes a housing, an end effector assembly, and a shaft interconnecting the housing and the end effector assembly. The housing includes one or more controls that are operable to control the end effector assembly such that the end effector assembly may be inserted through the opening in tissue and into the internal surgical site, while the housing remains externally disposed, allowing the surgeon to manipulate the housing controls to control operation of the end effector assembly within the internal surgical site.
An endoscopic surgical forceps, for example, includes a plier-like end effector assembly which relies on mechanical action between its jaw members to grasp, clamp and constrict vessels or tissue. Energy-based surgical forceps utilize both mechanical clamping action and energy, e.g., electrical energy, ultrasonic energy, light energy, thermal energy, etc., to treat tissue. In some procedures, once the tissue has been treated, the surgeon has to sever the tissue and, as such, many forceps have been designed which incorporate a knife or blade member that effectively severs the tissue after treating the tissue.
The housings of endoscopic surgical forceps typically include a movable handle for opening and closing the jaw members, a trigger for selectively advancing the knife or blade, and an actuator for controlling the supply of energy to the end effector assembly. Further, some handle assemblies incorporate a rotation assembly that is operable to selectively rotate the end effector assembly in order to position the end effector assembly as desired within the internal surgical site.
As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.
In accordance with one aspect of the present disclosure, a surgical instrument is provided. The surgical instrument includes a housing having a shaft extending distally therefrom. The shaft defines a longitudinal axis. The housing includes a nose disposed at a distal end thereof. The nose includes a neck extending distally from the housing and a base disposed at a distal end of the neck. The base defines a diameter that is greater than a diameter of the neck. The surgical instrument further includes a rotation knob having a distal end defining a first aperture and a proximal end defining one or more second apertures. The first aperture defines a diameter that generally approximates a diameter of the shaft. The first and second apertures cooperate to define a lumen extending longitudinally through the rotation knob. The lumen is configured to receive the shaft. The rotation knob is transitionable between an at-rest position and a flexed position. In the flexed position, the diameter of the second aperture is expanded to permit passage of the base of the nose through the second aperture and into an interior of the rotation knob. In the at-rest position, the second aperture defines a diameter that generally approximates the diameter of the neck of the nose to rotatably engage the proximal end of the rotation knob about the nose with the shaft extending through the lumen of the rotation knob.
In one aspect, the rotation knob includes one or more protrusions extending into the interior thereof. The protrusion(s) is configured to engage the shaft, e.g., cut-outs defined within the shaft, to engage the rotation knob and the shaft to one another.
In another aspect, the rotation knob includes a retaining ring configured to bias the rotation knob towards the at-rest position. The retaining ring may include an interruption defined therein that permits expansion of the retaining ring to thereby permit transitioning of the rotation knob between the at-rest and flexed positions.
In still another aspect, the rotation knob includes first and second pairs of proximal support walls. Each pair of proximal support walls cooperates to define one of the second apertures therethrough. In this configuration, the retaining ring may be disposed between the first and second pairs of proximal support walls.
In yet another aspect, the rotation knob includes a plurality of alternating flanges and recesses disposed on the outer periphery thereof. The alternating flanges and recesses are configured to facilitate grasping and rotating the rotation knob.
In still yet another aspect, an outer distal corner of the base of the nose defines an angled surface configured to facilitate transitioning of the rotation knob from the at-rest position to the flexed position to permit passage of the base through the one or more second apertures.
In another aspect, the rotation knob is monolithically formed as a single component.
In yet another aspect, the housing is formed from first and second housing parts. In this configuration, when the rotation knob is engaged about the nose of the housing, the rotation knob helps maintain the engagement of the first and second housing parts to one another.
In accordance with the present disclosure, another aspect of a surgical instrument is provided. The surgical instrument includes a housing having a shaft extending distally therefrom. The shaft defines a longitudinal axis. The housing includes a nose disposed at a distal end thereof. The nose includes a neck extending distally from the housing and a base disposed at a distal end of the neck. The base defines a diameter that is greater than a diameter of the neck. The surgical instrument further includes a rotation knob. The rotation knob has a distal end defining a first aperture and a plurality of radially-spaced fingers extending proximally from a proximal end of the rotation knob. The fingers each including a radially inwardly-extending tab disposed at a free end thereof. The tabs cooperate with one another to define a second aperture. The first aperture defines a diameter that generally approximates a diameter of the shaft. The first and second apertures cooperate to define a lumen extending longitudinally through the rotation knob that is configured to receive the shaft. The rotation knob is transitionable between an at-rest position and a flexed position. In the flexed position, the fingers are flexed radially outwardly to expand a diameter of the second aperture to permit passage of the base of the nose through the second aperture and into an interior of the rotation knob. In the at-rest position, the second aperture defines a diameter that generally approximates the diameter of the neck of the nose to rotatably engage the tabs of the fingers of the rotation knob about the nose, with the shaft extending through the lumen of the rotation knob.
In one aspect, the rotation knob includes one or more protrusions extending into the interior thereof. The protrusion(s) is configured to engage the shaft, e.g., a cut-out defined within the shaft, to engage the rotation knob and the shaft to one another.
In one aspect, the fingers are biased towards the at-rest position.
In another aspect, the rotation knob is monolithically formed as a single component.
In yet another aspect, the housing is formed from first and second housing parts. In this configuration, when the rotation knob is engaged about the nose of the housing, the rotation knob helps maintain the engagement of the first and second housing parts to one another.
In accordance with yet another aspect of the present disclosure, a surgical instrument is provided. The surgical instrument includes a housing and a shaft extending distally from the housing. The shaft defines a longitudinal axis and extends through an aperture defined within a distal surface of the housing. The shaft further includes a bushing disposed about the shaft towards a proximal end thereof. The surgical instrument further includes a rotation knob. The rotation knob includes a proximal end, a distal end, and a lumen extending longitudinally therethrough that is configured to receive the shaft. The rotation knob defines an internal cavity in communication with the lumen that is configured to receive the bushing therein. The rotation knob includes a plurality of radially-spaced fingers extending proximally from a proximal end thereof. The fingers each include a radially outwardly-extending tab disposed at a free end thereof. The tabs cooperating to define an outer peripheral diameter. The rotation knob is transitionable between a first at-rest position and a first flexed position, while the fingers are transitionable between a second at-rest position and a second flexed position. In the first flexed position, the rotation knob is flexed to expand a diameter of the lumen to permit passage of the bushing distally through the lumen and into the internal cavity of the rotation knob. In the first at-rest position, the diameter of the lumen generally approximates a diameter of the shaft to engage the bushing within the internal cavity. In the second flexed position, the fingers are flexed radially-inwardly such that the fingers are permitted to pass through the aperture defined within the distal surface of the housing. In the second at-rest position, the outer peripheral diameter defined by the tabs of the fingers is greater than a diameter of the aperture defined through the distal surface of the housing to rotatably engage the distal surface of the housing within a slot defined between the proximal end of the rotation knob and the tabs of the fingers, with the shaft extending through the lumen of the rotation knob.
In one aspect, the fingers are biased towards the second at-rest position.
In another aspect, the rotation knob is biased towards the first at-rest position.
In still another aspect, the rotation knob includes a plurality of alternating flanges and recesses disposed on the outer periphery thereof. The alternating flanges and recesses are configured to facilitate grasping and rotating the rotation knob.
In yet another aspect, the rotation knob and fingers are monolithically formed as a single component.
Various aspects of the present disclosure are described herein with reference to the drawings wherein like reference numerals identify similar or identical elements:
Forceps 10 defines a longitudinal axis “X-X” and includes a housing 20, a handle assembly 30, a rotating assembly 70, a trigger assembly 80 and an end effector assembly 90. Forceps 10 further includes a shaft 12 having a distal end 14 configured to mechanically engage end effector assembly 90 and a proximal end 16 that mechanically engages housing 20. Forceps 10 also includes cable 2 that connects forceps 10 to a generator (not shown) or other suitable power source, although forceps 10 may alternatively be configured as a battery powered instrument. Cable 2 includes wires (not shown) extending therethrough that have sufficient length to extend through shaft 12 in order to provide energy to at least one of the jaw members 92 and 96 of end effector assembly 90.
With continued reference to
End effector assembly 90 is shown attached at a distal end 14 of shaft 12 and includes a pair of opposing jaw members 92 and 96. More specifically, jaw members 92, 96 are pivotably coupled to shaft 12 via pivot 91. Each jaw member 92, 96 includes an opposed, electrically conductive tissue sealing surface 93, 97, respectively. End effector assembly 90 is configured as a bilateral assembly, i.e., where both jaw member 92 and jaw member 96 are movable about pivot 91 relative to one another and to shaft 12. However, end effector assembly 90 may alternatively be configured as a unilateral assembly, i.e., where one of the jaw members 92, 96 is fixed relative to shaft 12 and the other jaw member 92, 96 is movable about pivot 91 relative to shaft 12 and the fixed jaw member 92, 96. A knife assembly 98 is disposed within shaft 12 and a knife channel 95 is defined within one or both jaw members 92, 96 to permit reciprocation of a knife blade 99 therethrough, e.g., via activation of trigger 82 of trigger assembly 80, to cut tissue grasped between jaw members 92, 96.
Continuing with reference to
With continued reference to
Nose 22 of housing 20 is configured to accept proximal end 104 of rotation knob 100 thereon to permit rotatable coupling of rotation knob 100 and housing 20 to one another. Nose 22 of housing 20 includes a neck 23 extending distally from body portion 21 of housing 20 and a distal base 25 disposed at free end 24 of neck 23. Neck 23 defines a reduced diameter as compared to distal base 25 of nose 22 such that, as will be described below, when proximal end 104 of rotation knob 100 is disposed about neck 23, rotation knob 100 is retained in fixed longitudinal position relative to nose 22 between body portion 21 of housing 20 and distal base 25 of nose 22. The specific features and configuration of rotation knob 100 and other embodiments of rotation knobs configured for use with forceps 10 are described in greater detail below.
Turning now to
With continued reference to
Continuing with reference to
As best shown in
Turning now to
Initially, as shown in
As shown in
Rotation knob 100, in this flexed position, is advanced further proximally until the first and second sets of proximal support walls 130, 140, respectively, of rotation knob 100 are disposed proximally of distal base 25 of nose 22 and are positioned adjacent to neck 23 of nose 22. In this position, as shown in
With continued reference to
In the engaged position, wherein rotation knob 100 is engaged about nose 22, protrusions 102 of rotation knob 100, which extend inwardly into hollow interior 112 of shell 110, are biased into engagement within cut-outs 19 defined within shaft 12 to rotatably fix rotation knob 100 and shaft 12 to one another. Thus, upon rotation of rotation knob 100 relative to housing 20, shaft 12 and end effector assembly 90 are similarly rotated relative to housing 20. Further, the bias of retaining ring 180 to clamp proximal end 104 of rotation knob 100 about neck 23 of nose 22 may be sufficient to retain rotation knob 100 and, thus, end effector assembly 90 in fixed rotational orientation in the absence of manipulation of rotation knob 100. Alternatively, neck 23 of nose 22 may includes a plurality of notches (not explicitly shown) defined therein that correspond to pre-determined intervals of rotation, e.g., 30 degrees, 60 degrees, 90 degrees, etc., of end effector assembly 90. As such, rotation knob 100 may be incrementally rotated and locked in engagement with each successive notch (not shown) under the bias of retaining ring 180 and shell 110 to rotate and fix end effector assembly 90 in various different rotational positions.
Referring again to
Turning now to
Continuing with reference to
Each finger 230 of rotation knob 200 includes an inwardly-extending tab 240 disposed at a free end 244 thereof. Tabs 240 of fingers 230 cooperate to define an aperture 250 through proximal end 204 of rotation knob 200 that, in conjunction with aperture 250 defined through distal wall 220, define lumen 214 extending longitudinally through rotation knob 200. Fingers 230 are formed at least partially from a resiliently flexible material, thus permitting fingers 230 to flex radially outwardly from an at-rest position to a flexed position, wherein the diameter of aperture 250 is expanded to permit passage of proximal end 204 of rotation knob 200 about distal base 25 of nose 22 of housing 20. Fingers 230 are biased towards the at-rest position, wherein the diameter of aperture 250 generally approximates the diameter of shaft 12, thus permitting passage of shaft 12 therethrough while fingers 230 of rotation knob 200 remain in a substantially at-rest, or un-flexed position.
In use, rotation knob 200 is first slid proximally over end effector assembly 90 with end effector assembly 90 passing through lumen 214 defined through shell 210 of rotation knob 200. Upon reaching proximal end 16 of shaft 12, with rotation knob 200 still disposed in the at-rest position, rotation knob 200 is inhibited from being translated further proximally due to the abutment of tabs 240 of fingers 230 of rotation knob 200 and distal base 25 of nose 22 of housing 20. Thus, in order to permit passage of proximal end 204 of rotation knob 200 proximally beyond distal base 25 of nose 22 and into position about neck 23 of nose 22, fingers 230 are flexed radially outwardly from the at-rest position to the flexed position, thereby increasing the diameter of aperture 250 and, thus, the proximal portion of lumen 214 so as to permit passage of distal base 25 of nose 22 therethrough.
Rotation knob 200, in this flexed position, is now permitted to be advanced further proximally such that tabs 240 of fingers 230 are moved proximally over distal base 25 of nose 22 into position adjacent neck 23 of nose 22. In this position, as shown in
In the engaged position, wherein rotation knob 200 is engaged about nose 22, protrusions 260 of rotation knob 200 are engaged within cut-outs 19 defined within shaft 12 to rotatably fix rotation knob 200 and shaft 12 to one another. Thus, upon rotation of rotation knob 200 relative to housing 20, shaft 12 and end effector assembly 90 are similarly rotated relative to housing 20.
In order to disengaged rotation knob 200 from nose 22 of housing 20 and shaft 12, fingers 230 are flexed radially outwardly from the at-rest position back to the flexed position to expand aperture 250 such that tabs 240 of fingers 230 may pass distally over distal base 25 of nose 22 of housing 20 to disengage rotation knob 200 from housing 20. Further, upon outward flexing of fingers 230, protrusions 260 are withdrawn from cut-outs 19 defined within shaft 12 to disengage shaft 12 and rotation knob 200 from one another. Once rotation knob 200 has been disengaged from shaft 12 and nose 22, rotation knob 200 may be slid distally along shaft 12, ultimately passing over end effector assembly 90 to remove rotation knob 200 from forceps 10.
With reference to
Continuing with reference to
A plurality of spaced-apart fingers 340 extends proximally from proximal end 302 of housing 310. Each finger 340 includes an outwardly-extending flange 344 disposed at the free end 342 thereof. As a result of this configuration, a slot 350 is defined between flanges 344 of fingers 340 and proximal end 302 of housing 310. Fingers 340 are formed at least partially from a resiliently flexible material such that fingers 340 may be flexed radially-inwardly from a second at-rest position, wherein fingers 340 cooperate to define a first outer peripheral diameter, to a second flexed position, wherein fingers 340 converge towards one another to define a reduced outer peripheral diameter. Rotation knob 300, including fingers 340, may be monolithically formed as a single component.
In use, rotation knob 300 is first slid over the end effector assembly (not shown) of the surgical instrument 10′ and proximally along shaft 12′. Upon reaching bushing 36′, proximal end 302 of rotation knob 300 is flexed radially-outwardly from its at-rest position (e.g., the first at-rest position) to its flexed position (e.g., the first flexed position) to permit passage of bushing 36′ through lumen 306 and into cavity 312 defined within housing 310. Bushing 36′ is configured to be engaged within housing 310 via friction-fitting (under the resilient bias of housing 310 back to its at-rest position), or other suitable engagement, to engage shaft 12′ and rotation knob 300 to one another such that rotation of rotation knob 300 relative to longitudinal axis “X-X” effects corresponding rotation of shaft 12′ and the end effector assembly (not shown) about longitudinal axis “X-X.” Once bushing 36′ is positioned within cavity 312, housing 310 may be released to return under bias (or otherwise return) back towards the at-rest position to engage bushing 36′ within cavity 312 of housing 310.
With housing 310 disposed about bushing 36′ of shaft 12′, rotation knob 300 may then be engaged to distal end 22′ of housing 20′. In order to engage rotation knob 300 to distal end 22′ of housing 20′, fingers 340 are flexed inwardly from their at-rest position (e.g., the second at-rest position) to their flexed position (e.g., the second flexed position) to define a reduced outer peripheral diameter that is sufficiently small so as to permit passage of fingers 340 through distal opening 26′ formed in distal surface 24′ of housing 310. Upon passing through opening 26′, fingers 340 are permitted to resiliently return back towards their at-rest position, thus engaging distal surface 24′ of housing 20′ within slot 350 defined between flanges 344 of fingers 340 and proximal end 304 of housing 310. In this engaged position, rotation knob 300 is substantially fixed in longitudinally position relative to housing 20′, but is permitted to rotate about longitudinal axis “X-X” relative to housing 20′.
Disengagement of rotation knob 300 from housing 20′ and shaft 12′ is effected in the opposite manner as the engagement described above, namely, fingers 340 are flexed inwardly to the second flexed position wherein fingers 340 define a reduced outer peripheral diameter, thus permitting withdrawal of fingers 340 through distal opening 26′ formed in distal surface 24′ of housing 20′. Fingers 340 are then returned under bias back towards the second at-rest position. Thereafter, housing 310 of rotation knob 300 is flexed outwardly to the first flexed position to permit bushing 36′ to be translated proximally through the expanded proximal portion of lumen 306 to remove bushing 36′ from cavity 312 of rotation knob 300. Once bushing 36′ has been removed from rotation knob 300, housing 310 is permitted to return under bias back towards the first at-rest position. Ultimately, rotation knob 300 is slid distally along shaft 12′ and passed over the end effector assembly (not shown) thereof to remove rotation knob 300 from surgical instrument 10′.
Referring now to
Further, it is envisioned that these various different rotation knobs be interchangeable with one another, thus allowing the user to select a desired rotation knob depending on the surgical procedure to be performed, the surgeon's preference, or other factors. This interchangeability is facilitated in that the rotation knobs described herein are easily and efficiently engaged and disengaged from a surgical instrument, e.g., forceps 10 (
With reference to
Referring to
As shown in
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5993470, | Sep 15 1992 | Universal handle for medical instruments | |
6063050, | Aug 14 1997 | Covidien LP | Ultrasonic dissection and coagulation system |
7842028, | Apr 15 2005 | ENDOBOTICS, LLC | Surgical instrument guide device |
20060079875, | |||
20090105750, | |||
20100193566, | |||
CN201299462, | |||
D249549, | Oct 22 1976 | Aspen Laboratories, Inc. | Electrosurgical handle |
D263020, | Jan 22 1980 | Retractable knife | |
D295893, | Sep 25 1985 | MEDICAL ACTION INDUSTRIES INC | Disposable surgical clamp |
D295894, | Sep 26 1985 | MEDICAL ACTION INDUSTRIES INC | Disposable surgical scissors |
D298353, | May 06 1986 | Sherwood Services AG | Handle for surgical instrument |
D299413, | Jul 17 1985 | The Stanley Works | Folding pocket saw handle |
D343453, | Apr 02 1993 | IMAGYN MEDICAL TECHNOLOGIES, INC | Handle for laparoscopic surgical instrument |
D348930, | Oct 11 1991 | Ethicon, Inc. | Endoscopic stapler |
D349341, | Oct 28 1992 | Microsurge, Inc. | Endoscopic grasper |
D354564, | Jun 25 1993 | Conmed Corporation | Surgical clip applier |
D358887, | Dec 02 1993 | GYRUS ACMI, INC | Combined cutting and coagulating forceps |
D384413, | Oct 07 1994 | United States Surgical Corporation | Endoscopic suturing instrument |
D402028, | Oct 10 1997 | ACIST MEDICAL SYSTEMS, INC | Hand controller for medical system |
D408018, | Mar 12 1996 | McNaughton Incorporated | Switch guard |
D416089, | Apr 08 1996 | Conmed Corporation | Endoscopic linear stapling and dividing surgical instrument |
D424694, | Oct 23 1998 | VALLEYLAB, INC | Forceps |
D425201, | Oct 23 1998 | Covidien AG; TYCO HEALTHCARE GROUP AG | Disposable electrode assembly |
D449886, | Oct 23 1998 | Sherwood Services AG | Forceps with disposable electrode |
D453923, | Nov 16 2000 | Carling Technologies, Inc | Electrical rocker switch guard |
D454951, | Feb 27 2001 | MYELOTEC CO , LTD | Steerable catheter |
D457958, | Apr 06 2001 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealer and divider |
D457959, | Apr 06 2001 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealer |
D465281, | Sep 21 1999 | KARL STORZ GMBH & CO KG | Endoscopic medical instrument |
D466209, | Feb 27 2001 | MYELOTEC CO , LTD | Steerable catheter |
D493888, | Feb 04 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Electrosurgical pencil with pistol grip |
D496997, | May 15 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Vessel sealer and divider |
D499181, | May 15 2003 | Covidien AG; TYCO HEALTHCARE GROUP AG | Handle for a vessel sealer and divider |
D502994, | May 21 2003 | Repeating multi-clip applier | |
D509297, | Oct 17 2003 | Covidien LP | Surgical instrument |
D525361, | Oct 06 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Hemostat style elongated dissecting and dividing instrument |
D531311, | Oct 06 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Pistol grip style elongated dissecting and dividing instrument |
D533274, | Oct 12 2004 | Allegiance Corporation | Handle for surgical suction-irrigation device |
D533942, | Jun 30 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Open vessel sealer with mechanical cutter |
D535027, | Oct 06 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Low profile vessel sealing and cutting mechanism |
D538932, | Jun 30 2005 | Medical Action Industries Inc. | Surgical needle holder |
D541418, | Oct 06 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Lung sealing device |
D541611, | Jan 26 2006 | Robert Bosch GmbH | Cordless screwdriver |
D541938, | Apr 09 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Open vessel sealer with mechanical cutter |
D545432, | Aug 08 2003 | Olympus Corporation | Distal portion of hemostatic forceps for endoscope |
D547154, | Sep 08 2006 | Winsource Industries Limited | Rotary driving tool |
D564662, | Oct 13 2004 | Covidien AG; TYCO HEALTHCARE GROUP AG | Hourglass-shaped knife for electrosurgical forceps |
D567943, | Oct 08 2004 | Sherwood Services AG | Over-ratchet safety for a vessel sealing instrument |
D575395, | Feb 15 2007 | Covidien LP | Hemostat style elongated dissecting and dividing instrument |
D575401, | Jun 12 2007 | Covidien LP | Vessel sealer |
D582038, | Oct 13 2004 | Medtronic, Inc | Transurethral needle ablation device |
D617900, | May 13 2009 | Covidien LP | End effector tip with undercut bottom jaw |
D617901, | May 13 2009 | Covidien LP | End effector chamfered tip |
D617902, | May 13 2009 | Covidien LP | End effector tip with undercut top jaw |
D617903, | May 13 2009 | Covidien LP | End effector pointed tip |
D618798, | May 13 2009 | Covidien LP | Vessel sealing jaw seal plate |
D621503, | Apr 28 2009 | Covidien LP | Pistol grip laparoscopic sealing and dissection device |
D627462, | Sep 09 2009 | Covidien LP | Knife channel of a jaw device |
D628289, | Nov 30 2009 | Covidien LP | Surgical instrument handle |
D628290, | Nov 30 2009 | Covidien LP | Surgical instrument handle |
D630324, | Aug 05 2009 | Covidien LP | Dissecting surgical jaw |
DE10045375, | |||
DE102004026179, | |||
DE102008018406, | |||
DE19506363, | |||
DE19515914, | |||
DE19608716, | |||
DE19738457, | |||
DE19751106, | |||
DE19751108, | |||
DE202007009165, | |||
DE202007009317, | |||
DE202007016233, | |||
DE2415263, | |||
DE2514501, | |||
DE2627679, | |||
DE29616210, | |||
DE3423356, | |||
DE3612646, | |||
DE4303882, | |||
DE4403252, | |||
DE8712328, | |||
EP1159926, | |||
H1745, | |||
H1904, | |||
H2037, | |||
JP10155798, | |||
JP1024051, | |||
JP11070124, | |||
JP11169381, | |||
JP11192238, | |||
JP11244298, | |||
JP1147150, | |||
JP2000102545, | |||
JP2000342599, | |||
JP2000350732, | |||
JP2001128990, | |||
JP2001190564, | |||
JP200129356, | |||
JP20018944, | |||
JP2004517668, | |||
JP2004528869, | |||
JP540112, | |||
JP55106, | |||
JP6121797, | |||
JP61501068, | |||
JP6285078, | |||
JP6343644, | |||
JP6502328, | |||
JP6511401, | |||
JP7265328, | |||
JP8252263, | |||
JP8317934, | |||
JP856955, | |||
JP910223, | |||
JP9122138, | |||
SU401367, | |||
WO36986, | |||
WO115614, | |||
WO154604, | |||
WO2005110264, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 13 2011 | HART, KEIR | Tyco Healthcare Group LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035895 | /0812 | |
Sep 28 2012 | Tyco Healthcare Group LP | Covidien LP | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 036012 | /0482 | |
Jun 24 2015 | Covidien LP | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 21 2017 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 21 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 18 2019 | 4 years fee payment window open |
Apr 18 2020 | 6 months grace period start (w surcharge) |
Oct 18 2020 | patent expiry (for year 4) |
Oct 18 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 18 2023 | 8 years fee payment window open |
Apr 18 2024 | 6 months grace period start (w surcharge) |
Oct 18 2024 | patent expiry (for year 8) |
Oct 18 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 18 2027 | 12 years fee payment window open |
Apr 18 2028 | 6 months grace period start (w surcharge) |
Oct 18 2028 | patent expiry (for year 12) |
Oct 18 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |