Vehicle-mounted auxiliary lighting systems adapted to provide primary or auxiliary vehicle lighting using light emitting diodes (LEDs) are disclosed.
|
0. 20. A lighting system comprising:
a) at least one linear light module configured to produce light;
b) at least one linear housing, comprising at least one housing length and configured to house the at least one linear light module, wherein the at least one linear housing comprises an elongated body portion formed to include at least one elongated channel;
c) at least one end cap coupled to the elongated body portion of the at least one linear housing;
d) at least one mounting assembly configured to permit mounting of the at least one linear housing to at least one mountable surface, wherein the at least one mounting assembly includes a support bar positioned to contact an inner surface of the channel, an attachment member positioned to contact an outer surface of the channel, and a fastener coupled between the support bar and the attachment member, the attachment member and fastener configured to be movable along at least a portion of the length of the elongated body portion of the at least one linear housing, the fastener configured to provide a release position to allow movement of the attachment member relative to the at least one linear housing and a secure position fixing a location of the attachment member relative to the at least one linear housing, and at least a portion of the attachment member being substantially rotatably fixed relative to the support bar about a longitudinal axis of the support bar when the fastener is in both the release and secure positions.
0. 23. A lighting system comprising:
a) at least one linear light module configured to produce light;
b) at least one linear housing, comprising at least one housing length and configured to house the at least one linear light module, wherein the at least one linear housing comprises an elongated body portion formed to include at least one elongated channel;
c) a first end cap coupled to a first end of the elongated body portion and a second end cap coupled to a second end of the elongated body portion of the at least one linear housing;
d) a lens coupled to the at least one linear housing; and
e) at least one mounting assembly configured to permit mounting of the at least one linear housing to at least one mountable surface, wherein the at least one mounting assembly includes a fastener, a portion of which is positioned within the channel, and an attachment member coupled to the fastener and positioned to contact an outer surface exterior to the channel, the attachment member and fastener configured to be movable laterally along the length of the elongated body portion of the at least one linear housing, the fastener configured to provide a release position to allow movement of the attachment member relative to the at least one linear housing and a secure position fixing a location of the attachment member relative to the at least one linear housing, and at least a portion of the attachment member being substantially rotatably fixed relative to the fastener about an axis extending along the at least one linear housing within the channel when the fastener is in both the release and secure positions.
1. A lighting system comprising:
a) at least one linear light module structured and arranged to produce light;
b) at least one linear housing, comprising at least one housing length, structured and arranged to house said at least one linear light module;
c) at least one mounting assembly structured and arranged to assist mounting of said at least one linear housing to at least one mountable surface;
d) wherein said at least one mounting assembly comprises
i) at least one elongated support bar structured and arranged to support said at least one linear housing substantially continuously along said at least one housing length, ii) wherein said at least one elongated support bar comprises at least one longitudinal axis and at least one bar length,
iii) moveably coupled with said at least one elongated support bar, at least one attacher structured and arranged to assist fixed attachment of said at least one elongated support bar to the at least one mountable surface,
iv) wherein said at least one attacher comprises at least one axial translator structured and arranged to assist axial translation of said at least one attacher along at least one translational axis oriented substantially parallel to said at least one longitudinal axis of said at least one elongated support bar;
e) wherein said at least one linear housing comprises at least one internal bar-receiving channel structured and arranged to receive therein substantially an entire such bar length of said at least one elongated support bar; and
f) wherein said at least one linear housing is structured and arranged to be rotatable about said at least one longitudinal axis when engaged within said at least one internal bar-receiving channel.
2. The lighting system according to
a) at least one extruded member having open ends and at least one internal hollow cavity structured and arranged to house said at least one linear light module;
b) at least one end cap structured and arranged to cap said open ends;
c) at least one front protective cover structured and arranged to protectively cover at least one front portion of said at least one internal hollow cavity;
d) wherein said at least one front protective cover comprises at least one substantially transparent composition structured and arranged transparently pass the light produced by said at least one linear light module therethrough.
3. The lighting system according to
4. The lighting system according to
a) situate between each said at least one end cap and each said at least one open end, at least one end seal structured and arranged to seal said at least one end cap to a respective said at least one open end; and
b) situate between said at least one front protective cover, said at least one end cap, and said at least one extruded member, at least one front seal structured and arranged to seal said at least one front protective cover to said at least one end cap and said at least one extruded member;
c) wherein said at least one end seal and said at least one front seal assist in blocking the intrusion of environmental infiltrates to within said at least one internal hollow cavity.
5. The lighting system according to
a) at least one electrically-driven light emitting diode structured and arranged to generate light;
b) at least one focusing lens structured and arranged to focus the generated light into at least one beam pattern; and
c) at least one lens positioner structured and arranged to position said at least one focusing lens relative to said at least one light source;
d) wherein said at least one focusing lens produces such at least one beam pattern by total internal reflection.
6. The lighting system according to
7. The lighting system according to
8. The lighting system according to
a) at least one heat-dissipation assembly structured and arranged to dissipate heat generated by said at least one electrically-driven light emitting diode during production of the light;
b) wherein said at least one heat-dissipation assembly comprises
i) at least one circuit board structured and arranged to provide circuit-board support of said at least one electrically-driven light emitting diode,
ii) at least one thermally-conductive plate structured and arranged to absorb and dissipate the heat, and
iii) at least one positioner structured and arranged to position said at least one circuit board adjacent said at least one thermally-conductive plate;
c) wherein said at least one circuit board comprises at least one aperture structured and arranged to pass at least one portion of said at least one electrically driven light emitting diode therethrough;
d) wherein said at least one electrically-driven light emitting diode is mounted to said at least one circuit board such that such at least one portion of said at least one electrically-driven light emitting diode passes through said at least one aperture passage to comprise a position of thermal contact with said at least one thermally-conductive plate.
9. The lighting system according to
a) said at least one thermally-conductive plate comprises at least one heat-absorption surface and at least one heat-dissipating surface;
b) said at least one electrically-driven light emitting diode comprises at least one position of thermal contact with said at least one heat-absorption surface; and
c) said at least one heat-dissipating surface comprises at least one position of thermal contact with said at least one extruded member;
d) whereby the heat generated by said at least one electrically-driven light emitting diode during production of the light is dissipated by a transfer of heat energy to said at least one extruded member.
10. The lighting system according to
a) at least one external heat-rejection region structured and arranged to assist rejection of the heat from said at least one extruded member to a surrounding environment;
b) wherein said at least one external heat-rejection region comprises a plurality of fins structured and arranged to provide increased surface area in thermal communication with the surrounding environment.
11. The lighting system according to
a) at least one first positional retainer structured and arranged to positionally retain said at least one linear housing in at least one fixed rotational position relative to said at least one elongated support bar;
b) wherein said at least one first positional retainer comprises at least one adjustable biaser structured and arranged to adjust ably bias at least one outer surface of said at least one elongated support bar toward at least one position of contact with at least one inner surface of said at least one internal bar receiving channel;
c) wherein said at least one first positional retainer assists in maintaining such at least one fixed rotational position substantially by at least one frictional interaction between such at least one outer surface of said at least one elongated support bar and such at least one inner surface of said at least one internal bar-receiving channel.
12. The lighting system according to
a) at least one threaded tensioner structured and arranged to tension said at least one attacher to at least one position of contact with said at least one linear housing and such at least one outer surface of said at least one elongated support bar to the at least one position of contact with such at least one inner surface of said at least one internal bar receiving channel;
b) wherein said at least one elongated support bar comprises at least one elongated slot structured and arranged to allow translational movement of said at least one threaded tensioner substantially parallel with said at least one longitudinal axis; and
c) wherein said at least one threaded tensioner is structured and arranged to pass through said at least one elongated slot during such coupling of said at least one attacher with said at least one elongated support bar.
13. The lighting system according to
a) at least one second positional retainer structured and arranged to retain said at least one linear housing in at least one fixed rotational position relative to said at least one elongated support bar;
b) wherein said at least one second positional retainer comprises at least one threaded end lock structured and arranged to positionally lock said at least one end cap in at least one fixed rotational position relative to said at least one elongated support bar.
14. The lighting system according to
15. The lighting system according to
16. The lighting system according to
17. The lighting system according to
18. The lighting system according to
19. The lighting system according to
0. 21. The lighting system of claim 20, wherein the at least one mounting assembly includes at least a first attachment member and a second attachment member, the first and second attachment members being independently positionable laterally along the length of the elongated body portion.
0. 22. The lighting system of claim 20, wherein the at least one mounting assembly further includes at least one fastener coupled between the support bar and the attachment member to permit adjustment of the attachment member with respect to the elongated body portion.
|
The present application is related to and claims priority from prior provisional application Ser. No. 60/983,120, filed Oct. 26, 2007, entitled “AUXILIARY LIGHTING SYSTEMS”, and is related to and claims priority from prior provisional application Ser. No. 61/060,767, filed Jun. 11, 2008, entitled “AUXILIARY LIGHTING SYSTEMS”, the contents of both of which are incorporated herein by this reference and are not admitted to be prior art with respect to the present invention by the mention in this cross-reference section.
This invention relates to providing auxiliary lighting systems. More particularly, this invention relates to vehicle-mounted auxiliary lighting systems adapted to provide primary or auxiliary vehicle lighting.
Effective external lighting is important to the safe operation of vehicles in low light environments. In general, effective external vehicle lighting systems should exhibit a maximum output of useful illumination at a level of current draw within the capacity of the vehicle's electrical system, a physical size appropriate to the physical structures of the vehicle, and in-service durability consistent with the operational dynamics of the vehicle to which the system is equipped. In addition, such systems should operate consistently and on-demand with minimal care maintenance. Improving the effectiveness of such external vehicle lighting systems would be of great benefit not only within the fields of vehicular design and production, but also within fields dependent on safe and efficient vehicle operation.
A primary object and feature of the present invention is to provide a system addressing the above-mentioned issues.
It is a further object and feature of the present invention to provide such a system generating relatively high levels of usable illumination at a relatively low amperage draw. It is another object and feature of the present invention to provide such a system having a high degree of in-service durability, even within applications developing high dynamic forces. It is a further object and feature of the present invention to provide such a system comprising a relatively compact and weather-resistant housing. It is another object and feature of the present invention to provide such a system having such a compact housing that may be supplied in essentially any modular length.
It is another object and feature of the present invention to provide such a system utilizing an array of light-emitting diodes (LEDs). It is a further object and feature of the present invention to provide such a system comprising an efficient heat-rejecting arrangement adapted to reject heat developed by the light-emitting diodes during operation.
It is a further object and feature of the present invention to provide such a system comprising a mounting assembly that is both readily adjustable and highly stable during use. A further primary object and feature of the present invention is to provide such a system that is efficient, inexpensive, and handy. Other objects and features of this invention will become apparent with reference to the following descriptions.
In accordance with a preferred embodiment hereof, this invention provides a lighting system comprising: at least one linear light module structured and arranged to produce light; at least one linear housing, comprising at least one housing length, structured and arranged to house such at least one linear light module; at least one mounting assembly structured and arranged to assist mounting of such at least one linear housing to at least one mountable surface; wherein such at least one mounting assembly comprises at least one elongated support bar structured and arranged to support such at least one linear housing substantially continuously along such at least one housing length, wherein such at least one elongated support bar comprises at least one longitudinal axis and at least one bar length, moveably coupled with such at least one elongated support bar, at least one attacher structured and arranged to assist fixed attachment of such at least one elongated support bar to the at least one mountable surface, wherein such at least one attacher comprises at least one axial translator structured and arranged to assist axial translation of such at least one attacher along at least one translational axis oriented substantially parallel to such at least one longitudinal axis of such at least one elongated support bar; wherein such at least one linear housing comprises at least one internal bar-receiving channel structured and arranged to receive therein substantially an entire such bar length of such at least one elongated support bar; and wherein such at least one linear housing is structured and arranged to be rotatable about such at least one longitudinal axis when engaged within such at least one internal bar-receiving channel.
Moreover, it provides such a lighting system wherein such at least one linear housing comprises: at least one extruded member having open ends and at least one internal hollow cavity structured and arranged to house such at least one linear light module; at least one end cap structured and arranged to cap such open ends; at least one front protective cover structured and arranged to protectively cover at least one front portion of such at least one internal hollow cavity; wherein such at least one front protective cover comprises at least one substantially transparent composition structured and arranged transparently pass the light produced by such at least one linear light module therethrough. Additionally, it provides such a lighting system further comprising at least one environmental infiltrate blocker structured and arranged to block the passage of environmental infiltrates into such at least one internal hollow cavity through mated engagements of such at least one extruded member.
Also, it provides such a lighting system further comprising: situate between each such at least one end cap and each such at least one open end, at least one end seal structured and arranged to seal such at least one end cap to a respective such at least one open end; and situate between such at least one front protective cover, such at least one end cap, and such at least one extruded member, at least one front seal structured and arranged to seal such at least one front protective cover to such at least one end cap and such at least one extruded member; wherein such at least one end seal and such at least one front seal assist in blocking the intrusion of environmental infiltrates to within such at least one internal hollow cavity. In addition, it provides such a lighting system wherein such at least one linear light module comprises: at least one electrically-driven light emitting diode structured and arranged to generate light; at least one focusing lens structured and arranged to focus the generated light into at least one beam pattern; and at least one lens positioner structured and arranged to position such at least one focusing lens relative to such at least one light source; wherein such at least one focusing lens produces such at least one beam pattern by total internal reflection.
And, it provides such a lighting system wherein such at least one focusing lens produces such at least one beam pattern by total internal reflection and refraction. Further, it provides such a lighting system further comprising at least one unifying frame structured and arranged to unify at least four of such at least one focusing lens into a single modular lens element. Even further, it provides such a lighting system wherein such at least one linear light module further comprises: at least one heat-dissipation assembly structured and arranged to dissipate heat generated by such at least one electrically-driven light emitting diode during production of the light; wherein such at least one heat-dissipation assembly comprises at least one circuit board structured and arranged to provide circuit-board support of such at least one electrically-driven light emitting diode, at least one thermally-conductive plate structured and arranged to absorb and dissipate the heat, and at least one positioner structured and arranged to position such at least one circuit board adjacent such at least one thermally-conductive plate; wherein such at least one circuit board comprises at least one aperture structured and arranged to pass at least one portion of such at least one electrically-driven light emitting diode therethrough; wherein such at least one electrically-driven light emitting diode is mounted to such at least one circuit board such that such at least one portion of such at least one electrically-driven light emitting diode passes through such at least one aperture passage to comprise a position of thermal contact with such at least one thermally-conductive plate.
Moreover, it provides such a lighting system wherein: such at least one thermally-conductive plate comprises at least one heat-absorption surface and at least one heat-dissipating surface; such at least one electrically-driven light emitting diode comprises at least one position of thermal contact with such at least one heat-absorption surface; and such at least one heat-dissipating surface comprises at least one position of thermal contact with such at least one extruded member; whereby the heat generated by such at least one electrically-driven light emitting diode during production of the light is dissipated by a transfer of heat energy to such at least one extruded member. Additionally, it provides such a lighting system wherein such at least one extruded member comprises: at least one external heat-rejection region structured and arranged to assist rejection of the heat from such at least one extruded member to a surrounding environment; wherein such at least one external heat-rejection region comprises a plurality of fins structured and arranged to provide increased surface area in thermal communication with the surrounding environment.
Also, it provides such a lighting system wherein such at least one mounting assembly further comprises: at least one first positional retainer structured and arranged to positionally retain such at least one linear housing in at least one fixed rotational position relative to such at least one elongated support bar; wherein such at least one first positional retainer comprises at least one adjustable biaser structured and arranged to adjustably bias at least one outer surface of such at least one elongated support bar toward at least one position of contact with at least one inner surface of such at least one internal bar-receiving channel; wherein such at least one first positional retainer assists in maintaining such at least one fixed rotational position substantially by at least one frictional interaction between such at least one outer surface of such at least one elongated support bar and such at least one inner surface of such at least one internal bar-receiving channel.
In addition, it provides such a lighting system wherein such at least one adjustable biaser comprises: at least one threaded tensioner structured and arranged to tension such at least one attacher to at least one position of contact with such at least one linear housing and such at least one outer surface of such at least one elongated support bar to the at least one position of contact with such at least one inner surface of such at least one internal bar-receiving channel; wherein such at least one elongated support bar comprises at least one elongated slot structured and arranged to allow translational movement of such at least one threaded tensioner substantially parallel with such at least one longitudinal axis; and wherein such at least one threaded tensioner is structured and arranged to pass through such at least one elongated slot during such coupling of such at least one attacher with such at least one elongated support bar.
In addition, it provides such a lighting system wherein such at least one mounting assembly further comprises: at least one second positional retainer structured and arranged to retain such at least one linear housing in at least one fixed rotational position relative to such at least one elongated support bar; wherein such at least one second positional retainer comprises at least one threaded end lock structured and arranged to positionally lock such at least one end cap in at least one fixed rotational position relative to such at least one elongated support bar. Further, it provides such a lighting system wherein such at least one end lock comprises at least one threaded coupler structured and arranged to frictionally couple such at least one end cap to such at least one elongated support bar. Even further, it provides such a lighting system further comprising at least one conformer structured and arranged to conform such at least one attacher to at least one geometric profile of the at least one mountable surface.
Moreover, it provides such a lighting system wherein such at least one conformer is structured and arranged to be attachable to at least one generally radiused profile of the at least one mountable surface. Additionally, it provides such a lighting system wherein such at least one conformer is structured and arranged to be attachable to a generally planar of the at least one mountable surface. Also, it provides such a lighting system wherein such at least one conformer comprises at least one dampener structured and arranged to dampen transmission of mechanical forces through such at least one attacher. In addition, it provides such a lighting system wherein each such at least one attacher is independently adjustable along the at least one longitudinal axis of such at least one elongated support bar.
In accordance with another preferred embodiment hereof, this invention provides a lighting system comprising: a plurality of discrete light sources each one structured and arranged to generate light; a plurality of focusing lenses, each one structured and arranged to focus the light generated by each discrete light source into at least one beam pattern; at least one lens positioner structured and arranged to position such plurality of focusing lenses relative to such plurality of discrete light sources; wherein each discrete light source of such plurality of discrete light sources comprises a light-emitting diode; and wherein such each focusing lens of such plurality of focusing lenses produces such at least one beam pattern substantially by total internal reflection. And, it provides such a lighting system wherein such at least one lens positioner comprises: at least one beam-pattern adjuster structured and arranged to assist user-selectable adjustment to such at least one beam pattern; wherein such user-selectable adjustment is achieved by at least one positional adjustment of such plurality of focusing lenses relative to such plurality of discrete light sources.
In accordance with another preferred embodiment hereof, this invention provides a lighting system comprising: at least one light source structured and arranged to generate light; at least one focusing lens structured and arranged to focus the generated light into at least one beam pattern; at least one beam-pattern adjuster structured and arranged to assist user selectable adjustment to such at least one beam pattern; wherein such user selectable adjustment to such at least one beam pattern is achieved by at least one positional adjustment of such at least one focusing lens relative to such at least one light source; wherein such at least one beam adjuster is structured and arranged to adjust such at least one beam between at least one flood pattern and at least one focused beam pattern; wherein such at least one focusing lens produces at least one light beam substantially by total internal reflection. In addition, it provides each and every novel feature, element, combination, step and/or method disclosed or suggested by this patent application.
Light bar assembly 102 preferably comprises an elongated outer housing assembly 103 having a relatively compact linear profile, as shown. The preferred outer dimensions of light bar assembly 102 comprises a top-to-bottom height A of about three inches and a front-to-back depth B of about four inches, allowing the assembly to be mounted inside spaces of a vehicle that standard or traditional lights would not fit. This preferred physical format assist in adapting the system to a wide range of vehicle platforms.
Preferably, outer housing assembly 103 utilizes a modular design allowing the development of variable embodiment lengths, preferably comprising a minimum length C of about four inches, preferably extending incrementally upward to lengths C limited only by the physical size and electrical capacity of the vehicle to which the system is mounted. Preferred system lengths include 4, 6, 8, 12, 16, 22, 32, 42 and 52-inch lengths.
Preferably, light bar assembly 102 comprises an internal light-generating component identified herein as linear light module 106. Linear light module 106 preferably comprises many compact light-generating elements, preferably organized in an elongated geometric assembly, as shown, rather than utilizing a single large light-generating element as found in conventional vehicle lamps.
The preferred light-producing elements of linear light module 106 preferably comprise electrically driven light emitting diodes (hereinafter referred to as LEDs 104). LEDs 104 are most preferred for their compact size, in-service durability, low power consumption, instantaneous response, and relatively high light output. In the frontal views of
Outer housing assembly 103 preferably functions as a rigid weather-tight enclosure to protectively support the internal components of light bar assembly 102. Preferably, outer housing assembly 103 comprises central housing section 105, end caps 107, and mounting assembly 108, as shown.
Mounting assembly 108 preferably assists in the mounting of outer housing assembly 103 to a mountable surface of an underlying vehicle (e.g., rollover bars, light bars, bumper bars, a cab surface, etc.). Preferably, mounting assembly 108 (at least embodying herein at least one mounting assembly structured and arranged to assist mounting of such at least one linear housing to at least one mountable surface) includes two or more attachment legs 110 used to firmly attach outer housing assembly 103 to vehicle 101 (at least embodying herein at least one attacher). Preferably, attachment legs 110 are spaced at regular intervals along the length of outer housing assembly 103, as shown. Preferably, each attachment leg 110 extends outwardly from mounting assembly 108, as shown, to elevate outer housing assembly 103 away from the underlying vehicle 101. Preferably, to facilitate the mounting of outer housing assembly 103 to a wide range of vehicle configurations, each attachment leg 110 is positionally adjustable along the length of outer housing assembly 103, as further described below (at least embodying herein, moveably coupled with such at least one elongated support bar, at least one attacher structured and arranged to assist fixed attachment of such at least one elongated support bar to the at least one mountable surface).
Central housing section 105 preferably comprises an elongated, channel-shaped member having opposing open end portions 112 each capped respective by end caps 107, as shown. Central housing section 105 preferably comprises an aluminum extrusion cut to a length selected to coincide with the preferred modular-based dimension scheme of auxiliary lighting system 100. Most preferably, the system's modular length unit is based on a two-inch module. Upon reading the teachings of this specification, those of ordinary skill in the art will now understand that, under appropriate circumstances, considering such issues as intended use, system of measurement, component selection, etc., other modular arrangements, such as utilizing alternate modular dimensional unit (metric units), etc., may suffice.
Preferably, each end cap 107 is firmly joined to its respective end portion 112 using semi-permanent fasteners, more preferably mechanical fasteners, most preferably a plurality of threaded fasteners 109, as shown. Preferably, to block the intrusion of water, dust, and other environmental infiltrates into outer housing assembly 103, at least one side gasket 113 (see
Prominently visible in the frontal views of light bar assembly 102 is front protective cover 114, as shown, occupying substantially the entire frontal region of outer housing assembly 103. Preferably, front protective cover 114 comprises a substantially transparent composition enabling the outward passage of light produced by the underlying linear light module 106. Preferably, front protective cover 114 is retained within outer housing assembly 103 by engagement with central housing section 105 and both end cap 107, as further described below.
Heat generated by LEDs 104 during operation is rejected to the surrounding environment primarily through an heat-dissipating fins 116 located on the rear portion of central housing section 105, as best shown in the rear views of
Electrical power to energize light bar assembly 102 is preferably routed to linear light module 106 by means of at least one electrical supply cord 111, preferably routed through feed-through aperture 121 within one of the two end caps 107, as shown. Preferably, electrical supply cord 111 is electrically coupled to both linear light module 106 and at least one electrical power source (for example, the onboard electrical system of vehicle 101). Preferably, electrical supply cord 111 comprises at least one electrical conductor (when a grounded vehicle chassis is utilized to complete the circuit), more outer sheath. Upon reading the teachings of this specification, those of ordinary skill in the art will now understand that, under appropriate circumstances, considering such issues as intended use, etc., other electrical supply arrangements, such as the inclusion of ground wires, onboard battery power supplies, onboard switching devises, control circuiting for focusing/positioning servos, etc., may suffice. Preferably, electrical supply cord 111 comprises an annular sealing grommet 120 structured and arranged form a substantially fluid-resistant seal between electrical supply cord 111 and feed-through aperture 121. Preferably, annular sealing grommet 120 is disposed about electrical supply cord 111 and may be preferably molded integrally with the outer sheath, as shown. Annular sealing grommet 120 preferably comprises a generally resilient material capable of forming a compression seal with feed-through aperture 121. Upon reading the teachings of this specification, those of ordinary skill in the art will now understand that, under appropriate circumstances, considering such issues as intended use, cost, etc., other sealing arrangements, such as utilizing detachable connectors, waterproof sealants, etc., may suffice.
Central housing section 105 is preferably constructed from a rigid material having good thermal conduction characteristics, preferably comprising a heat-transfer coefficient in the range of between about 75 and 235 W m−1 K−1 W/m K. In addition, the preferred material of central housing section 105 must be capable of sustaining a continuous operational temperature of at least 85 degrees Centigrade without degradation. Preferred materials include metallic compositions, most preferably an extrusion-formed aluminum alloy. Upon reading the teachings of this specification, those of ordinary skill in the art will now understand that, under appropriate circumstances, considering such issues as intended use, material cost, etc., other arrangements, such as the use of composite structures, engineered plastics, alternate metals, etc., may suffice.
The preferred cross-sectional profile of central housing section 105 comprises a continuous internal hollow cavity 136 structured and arranged to house and securely position linear light module 106. A preferred sectional profile of central housing section 105 is illustrated in
End caps 107 are preferably constructed from a substantially rigid material, preferably a solid metal, most preferably die-cast aluminum. Each end cap 107 comprises an internal channel 127 adapted to receive and retain an end portion front protective cover 114 and projecting alignment tabs 138 to assist in properly aligning end caps 107 with its respective side gasket 113 and open-end portion 112 of central housing section 105. In addition, each end cap 107 preferably comprises an arrangement of apertures to accommodate the passage of threaded fasteners 109 to central housing section 105, threaded end locks 124 to elongated support bar 126, and, if applicable, electrical supply cord 111 to linear light module 106.
Mounting assembly 108 preferably includes elongated support bar 126, two or more attachment legs 110, and threaded fasteners 148. Elongated support bar 126 preferably comprises a longitudinal axis 128 and length D substantially matching length C of outer housing assembly 103, as shown. Elongated support bar 126 preferably comprises a substantially uniform circular section, preferably comprising an outer diameter of about ¾ inch. Preferably, elongated support bar 126 is engaged within central housing section 105 by placement within a hollow cylindrical bar-receiving channel 130. Bar-receiving channel 130 preferably extends through the full longitudinal length of central housing section 105, as shown, thus allowing substantially the entire bar length D of elongated support bar 126 to be received therein. When engaged within bar-receiving channel 130, elongated support bar 126 functions to continuously support light bar assembly 102 along substantially the full length C of outer housing assembly 103. Preferably, elongated support bar 126 is retained within bar-receiving channel 130 by the end caps 107 mounted to each end of central housing section 105, as shown. A continuous slot opening 135, preferably oriented toward the bottom portion of central housing section 105, extends along preferably the full length of bar-receiving channel 130 to allow for continuous access to elongated support bar 126 during engagement. This preferred physical feature allows attachment legs 110 to be moved to various positions along light bar assembly 102, even after attachment legs 110 are coupled to elongated support bar 126, as described below.
Preferably, threaded fasteners 148 are used to mount attachment legs 110 to both elongated support bar 126 and the underlying vehicle 101. In a preferred assembly, each threaded fastener 148 is passed through a slotted hole 146 of elongated support bar 126, passing through continuous slot opening 135 and aperture 150 of attachment leg 110 to engage support structure 119 of the underlying vehicle 101 (see also
It is important to note that the preferred use of slotted holes 146 within elongated support bar 126 provides to each attachment leg 110 a degree of translational movement along elongated support bar 126 in a preferred orientation generally parallel with longitudinal axis 128 (at least embodying herein wherein such at least one elongated support bar comprises at least one elongated slot structured and arranged to allow translational movement of such at least one threaded tensioner substantially parallel with such at least one longitudinal axis; and at the least embodying herein wherein such at least one attacher comprises at least one axial translator structured and arranged to assist axial translation of such at least one attacher along at least one translational axis oriented substantially parallel to such at least one longitudinal axis of such at least one elongated support bar). The preferred use of multiple slotted holes 146 within the length of elongated support bar 126 provides mounting assembly 108 with a wide range of adjustability. Thus, each attachment leg 110 is preferably coupled to outer housing assembly 103 such that it may slide along the lower portion of outer housing assembly 103 to match the spacing of substantially any mounting hole that may exist or be formed within the underlying vehicle 101.
Elongated support bar 126 is preferably formed from a substantially rigid material, preferably a metallic material, preferably a metallic material matching the composition of central housing section 105, most preferably an aluminum alloy. Preferably, the inner diameter of bar-receiving channel 130 is sized to allow substantially free rotation of outer housing assembly 103 about elongated support bar 126. Thus, the above-described arrangements allow light bar assembly 102 to be pivoted about longitudinal axis 128 to a user-selected orientation most beneficial to the lighting requirements of the underlying vehicle 101. A selected rotational position of light bar assembly 102 is preferably maintained by engaging either of two retainer assemblies identified herein as first positional retainer 132 and second positional retainer 134.
Preferably, first positional retainer 132 functions to bias outer surface 140 of elongated support bar 126 toward a position of contact with inner surface 142 of bar-receiving channel 130. Preferably, both elongated support bar 126 and its outer surface 140 are fixed relative to the underlying vehicle 101 by attachment legs 110, thus, the frictional interaction between the outer surface 140 of elongated support bar 126 against inner surface 142 maintains light bar assembly 102 in a selected fixed rotational position. The preferred apparatus arrangements of first positional retainer 132 are further described in the sectional view of
Second positional retainer 134 is also structured and arranged to assist in retaining light bar assembly 102 in a fixed rotational position relative to elongated support bar 126. Preferably, second positional retainer 134 comprises a set of threaded end locks 124 preferably adapted to be threadably engaged within a respective end of elongated support bar 126, after passage through its respective end cap 107, as shown. In preferred operation, threaded end locks 124 are tightened against a respective end cap 107 to form a frictional hold between the cap and elongated support bar 126. This preferred arrangement functions to hold elongated support bar 126 in the fixed rotational position relative to the fixed elongated support bar 126. Preferably, each threaded end lock 124 comprises a threaded coupler, preferably a threaded bolt, most preferably a cap bolt comprising a hex socket, as shown. It is noted that one or both of the above-described retainers may be used independently, or more preferably, in combination. Upon reading the teachings of this specification, those of ordinary skill in the art will now understand that, under appropriate circumstances, considering such issues as intended use, cost, advances in technology, etc., other retaining arrangements, such as remotely controllable motorized pivot mechanisms, fixed (non-adjustable) mountings, pin/socket-based retainers, manual cranks, screws, etc., may suffice.
Linear light module 106 preferably comprises a multipart assembly consisting of a specially constructed composite printed circuit board (CPCB 154), a plurality of focusing lenses 156, and a plurality of lens positioners 158 adapted to position the plurality of focusing lenses 156 in an operable position adjacent CPCB 154, as shown.
The front surface of CPCB 154 preferably comprises a plurality of discrete light sources in the form of LEDs 104, as shown. Each LEDs 104 preferably comprises an individual emitter package mounted to CPCB 154 using a unique heat-rejecting mounting arrangement, as shown in
Each LED 104 preferably comprises a low-voltage direct-current (DC) operated emitter. Preferred emitters include the EDISON KLC8 LED, alternately preferably 3-watt LED packages produced under the Luxeon trademark by Philips Lumileds Lighting Company of San Jose, Calif. The outer encapsulating package of LED 104 preferably comprises a clear cover or lens element, which is generally hemispherical in shape and from which light from LED 104 is directed.
CPCB 154 preferably comprises interface circuiting adapted to supply suitable electrical current to each of the plurality of mounted LEDs 104. The preferred implementation of such interface circuiting is dependent on several design factors including the number of LEDs 104 within linear light module 106, operational specifications of the selected LED devices, and manufactures recommendations for the application and use of such LED devices. Thus, engineering and design of preferred embodiments CPCB 154 may include the integration of electronic components/devices to control current and or voltage supplied to the LEDs 104, as selected and applied by one of ordinary skill in the art.
Another highly preferred aspect of CPCB 154 is the efficient heat dissipation and transfer feature provided by the novel composite structure of CPCB 154. CPCB 154 preferably comprises a multi-layer assembly designed to control the level of thermal heat generated by LEDs 104 during operation. It is known that excessive heat can reduce both the efficiency and lifespan of an LED. CPCB 154 is preferably designed to maintain LEDs 104 within the component's maximum rated temperature during operation. Thermal control by CPCB 154 is preferably accomplished by shunting thermal energy generated by the LEDs from CPCB 154 to the ambient environment by way of the heat-dissipating fins 116 of outer housing assembly 103. Further explanation, including a preferred configuration of CPCB 154, is presented in
The plurality of focusing lenses 156 preferably comprise groupings of four individual lens units 160 unified into a unitary lens module 162 by a central supportive frame 164, as shown (at least embodying herein at least one unifying frame structured and arranged to unify at least four of such at least one focusing lens into a single modular lens element). This preferred arrangement is best illustrated in
Lens positioner 158 preferably functions to support unitary lens module 162 in an operable position adjacent to the PCB-mount LEDs 104. Preferably, each lens positioner 158 comprises four cup-like receivers 166, each one adapted to receive a lens unit 160 of its respective unitary lens module 162. In the preferred embodiment depicted in
Preferably, each unitary lens module 162 is coupled to a single respective lens positioner 158 using a single mechanical fastener 170, as shown. This preferred modular arrangement allows for the installation, removal, and replacement of individual unitary lens modules 162 within a bank of unitary lens modules 162. This preferred feature enables development of custom lens combinations, for example, mixed beam patterns comprising combinations of flood beam patterns and spot beam patterns within a single light bar assembly 102. Preferably, mechanical fasteners 170 further function to couple both unitary lens modules 162 and lens positioners 158 to the underlying CPCB 154.
Preferably, the transparent front protective cover 114 is sealed to outer housing assembly 103 using front peripheral gasket 172, as shown. Preferably, front peripheral gasket 172 is preferably engaged between front protective cover 114, cover receiving slots 174 of central housing section 105, and end caps 107 (see
It is noted that, due to the substantially complete sealing of light bar assembly 102, moisture contained in the air trapped within the internal hollow cavity 136 during assembly sometimes formed a thin film on the inner surface of the transparent front protective cover 114. Applicant determined that a preferred placement of a desiccant within the cavity effectively eliminated this occurrence, even in cold atmospheric temperatures. Preferred desiccant materials include silica gel.
Preferably, fastener 186 comprises nut 188 engaged on attaching screw 190, as shown. Attaching screw 190 is preferably coupled to linear light module 106 by engagement within aperture 194 of linear light module 106, as shown. It is preferable for first channel 178 to extend beyond the second channel 182 so as to accommodate a greater range of lengths of attaching screw 190, which may extend through nut 188, as shown. Preferably, the first channel 178 is sufficiently deep and wide to accommodate attaching screw 190. Preferably, second channel 192 is sufficiently wide and tall to accommodate nut 188.
Preferably, the back face 196 of CPCB 154 is held in direct contact with first internal surface 180 by attaching screw 190 and nut 188. CPCB 154 preferably comprises an aperture 194 every 2 inches along its length, enabling the use of multiple attaching screws 190 to development continuous and even pressure contact between CPCB 154 and first internal surface 180. This preferred arrangement enables an efficient transfer of thermal energy between CPCB 154 and central housing section 105 further enhanced by the preferred physical construction of CPCB 154, as described in
PCB 200 is preferably composed of FR4 glass epoxy supporting copper circuit traces to which the leads of LEDs 104 are electrically coupled. In addition, both PCB 200 and bonding layer 202 comprise a plurality of aperture openings 206, each one located concurrently with a LED 104, as shown. Preferably, each aperture opening is of sufficient size to allow LED 104 to pass through PCB 200 and bonding layer 202 to a position of contact with heat absorptive surface 205 of thermal transfer plate 204, as shown (at least embodying herein wherein such at least one electrically-driven light emitting diode is mounted to such at least one circuit board such that such at least one portion of such at least one electrically-driven light emitting diode passes through such at least one aperture passage to comprise a position of thermal contact with such at least one thermally-conductive plate). Each LED 104 is thermally coupled to thermal heat absorptive surface 205, preferably using thermally conductive paste 208, as shown.
Thermal transfer plate 204 is preferably constructed from a material having good thermal conduction characteristics, preferably comprising a heat-transfer coefficient in the range of between about 75 and 235 W m−1 K−1 W/m K. In addition, the preferred material of thermal transfer plate 204 must be capable of sustaining a continuous operational temperature of at least 85 degrees Centigrade without degradation. Preferred materials include metallic compositions, most preferably an aluminum plate. Back face 196 of thermal transfer plate 204 is preferably held in thermal contact with first internal surface 180, as previously described. Thus, a preferred thermal pathway between each LED 104 and the heat-rejecting/heat-dissipating fins 116 of outer housing assembly 103 is provided (at least embodying herein at least one heat-dissipation assembly structured and arranged to dissipate heat generated by such at least one electrically-driven light emitting diode during production of the light; and at least embodying herein, wherein such at least one electrically-driven light emitting diode comprises at least one position of thermal contact with such at least one heat-absorption surface; and such at least one heat-dissipating surface comprises at least one position of thermal contact with such at least one extruded member). Upon reading the teachings of this specification, those of ordinary skill in the art will now understand that, under appropriate circumstances, considering such issues as cost, advances in technology, etc., other heat-rejection arrangements, such as the use of cooling fans, fluid cooling, bonding the PCB directly to the housing, etc., may suffice.
Referring again to the sectional views of
In a preferred assembly, the combination of threaded fastener 148 and nut 152 together function as a tensioner to tension attachment leg 110 to a position of contact with the underside of central housing section 105 and outer surface 140 of elongated support bar 126 to a position of frictional contact with inner surface 142 of the internal bar-receiving channel 130. The above-described structures and arrangements substantially comprise first positional retainer 132 (at least embodying herein at least one threaded tensioner structured and arranged to tension such at least one attacher to at least one position of contact with such at least one linear housing and such at least one outer surface of such at least one elongated support bar to the at least one position of contact with such at least one inner surface of such at least one internal bar-receiving channel).
Each attachment leg 110 preferably comprises surface-conforming structures 210 to provide a means for generally conforming the attachment legs 110 to the underlying geometric profile of support structure 119. The geometric profile may be curved, as in the depicted cylindrical mounting bar, or may be generally planar. The principal preferred conformation of attachment leg 110 is designed to engage a curved surface, as shown. If attachment leg 110 is to be mounted to a planar (or other geometric profile) an accessory insert 212 comprising the appropriate interfacing shape is placed between attachment legs 110 and support structure 119, as illustrated in
Referring now to
In the depicted preferred embodiment of lens unit 160, refractive member 216 and TIR surface 220 comprise a substantially concomitant focal point 226, as shown. Focal point 226 is preferably located on optical axis 218 within an internal recess 228 of input end 222, as shown. Internal recess 228 is structured and arranged to enable the output of LED 104 to be located at focal point 226, as shown. TIR surface 220 is configured generally in accordance with the well-known principals of TIR optics. Total internal reflection (TIR) occurs when a light ray traveling in a transparent material encounters an interface with another transparent, but less optically dense material. Lens unit 160 is preferably fabricated from a clear material such as glass or more preferably an optically-clear plastic.
Upon reading the teachings of this specification, those of ordinary skill in the art will now understand that, under appropriate circumstances, considering such issues as intended use, etc., other lens designs and focusing arrangements, such as lenses producing flood patterns, lenses producing spot patterns, lenses using Fresnel features, lenses omitting the refractive element, etc., may suffice.
Preferably, each receiver 166 of lens positioners 158 preferably comprises a generally frustoconical inner profile substantially matching the outer profile of TIR surface 220. Aperture 168 of receiver 166 (see
Preferably, beam-pattern adjuster 252 comprises a linear back plate 254, as shown, to which lens positioners 158 and unitary lens module 162 are mounted, as shown. Preferably, back plate 254 is movably mounted within continuous internal hollow cavity 136 and is separate from thermal transfer plate 204, as shown. One or more positional adjusters 256 are coupled to back plate 254 and extend to a position of user access, as shown. Preferably, user manipulation of positional adjuster 256 results in forward or backward translational movement of back plate 254, lens positioners 158, and unitary lens module 162 relative to LEDs 104. Applicant has determined that, using the depicted arrangement, movement of about 1 and ½ mm is sufficient to change the beam pattern between flood beam pattern A and spot beam pattern B. Upon reading the teachings of this specification, those of ordinary skill in the art will now understand that, under appropriate circumstances, considering such issues as intended use, cost, component selection, etc., other arrangements, such as utilizing motorized adjusters, independently adjusting several but not all lenses, etc., may suffice.
Although applicant has described applicant's preferred embodiments of this invention, it will be understood that the broadest scope of this invention includes modifications such as diverse shapes, sizes, and materials. Such scope is limited only by the below claims as read in connection with the above specification. Further, many other advantages of applicant's invention will be apparent to those skilled in the art from the above descriptions and the below claims.
Georgitsis, Anthony C., Irwin, Nicholas B., Biro, Joseph
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2740883, | |||
4101957, | Sep 10 1976 | Zoom operating light | |
4151584, | Mar 14 1977 | Strand Lighting Limited | Light-collecting reflector |
4392187, | Mar 02 1981 | VARI-LITE, INC , A CORP OF DE | Computer controlled lighting system having automatically variable position, color, intensity and beam divergence |
4500947, | Nov 10 1982 | Perko, Inc. | Tri spherical lens assembly |
4528618, | Jun 11 1982 | Picture-screen work-station lamp | |
4530040, | Mar 08 1984 | RAY-O-VAC CORPORATION, A DE CORP | Optical focusing system |
4583153, | Jan 24 1984 | Tsuyama Mfg. Co., Ltd. | Lamp |
4698730, | Aug 01 1986 | Stanley Electric Co., Ltd. | Light-emitting diode |
4745531, | May 31 1985 | Cameleon | Lighting device with all parameters adjustable simultaneously, in particular for use as a stage light |
4803605, | Aug 04 1987 | RAYOVAC CORPORATION, 601 RAYOVAC DR , MADISON, WI 53711, A WI CORP | Flashlight with a backup system |
4814950, | Dec 23 1986 | Ichikoh Industries Limited | Automotive headlight of projector type |
4941070, | Aug 13 1986 | Canon Kabushiki Kaisha | Flash device for a camera |
4959757, | May 09 1988 | ICHIKOH INDUSTRIES, LTD | Automotive lamp assembly |
4962450, | Jan 19 1987 | NAUCHNO-PROIZVODSTVENNOE OBIEDINENIE PO AVTOELEKTRONIKE I AVTOTRAKTORNOMU ELEKTROOBORUDOVANIJU, USSR, MOSCOW | Light signalling device |
5057978, | Nov 20 1989 | MODULAR INTERNATIONAL, INC | Showcase lighting fixture |
5060120, | Apr 19 1990 | Koito Manufacturing Co., Ltd. | Variable distribution type automotive headlamp |
5072346, | Nov 02 1988 | Light beam amplifier | |
5103381, | Jan 09 1991 | Lamp reflector system | |
5249109, | Aug 09 1991 | J BAXTER BRINKMANN INTERNATIONAL CORPORATION | Outdoor variable focus light fixture |
5268977, | Jul 06 1992 | Fiber optic zoom-and-dim pin-spot luminaire | |
5282121, | Apr 30 1991 | Vari-Lite, Inc. | High intensity lighting projectors |
5526248, | Jan 11 1994 | Ichikoh Industries, Ltd. | Projector type headlight with color-suppression structure |
5577493, | Apr 16 1992 | Innolux Corporation | Auxiliary lens to modify the output flux distribution of a TIR lens |
5593225, | Jun 15 1995 | DISPLAY SUPPLY & LIGHTING, INC | Wall washer light with internal swivel connector and support arm |
5630661, | Feb 06 1996 | Metal arc flashlight | |
5673990, | Jan 17 1995 | Robert Bosch GmbH | Headlight |
5711590, | Dec 29 1994 | Honda Giken Kogyo Kabushiki Kaisha; Stanley Electric Co., Ltd. | Headlight having variable light distribution |
5808775, | Mar 13 1996 | Minolta Co., Ltd. | Laser beam scanning optical apparatus |
5897196, | Mar 29 1996 | OSRAM SYLVANIA Inc | Motor vehicle headlamp |
5899559, | Feb 28 1997 | Hella KG Hueck & Co. | Headlamp for vehicles |
5904417, | Aug 04 1997 | Buhl Electric, Inc. | Light fixture with elliptical reflector and mechanical shutter dimmer |
5934795, | Jun 19 1996 | Radiant Imaging, Inc. | Lens design for outdoor sign |
5954428, | Sep 26 1996 | Hella KG Hueck & Co. | Vehicle headlight |
5986779, | Aug 18 1995 | Matsushita Electric Industrial Co., Ltd. | Multiple focus lens, an optical head apparatus and an optical information recording-reproducing apparatus |
6007210, | Sep 12 1995 | Denso Corporation | Discharge lamp device having a light distribution compound lens |
6123440, | Dec 05 1997 | Valeo Vision | Automobile headlight and optical unit with hyperbolic reflector and plano-convex or toric convergent lens |
6166371, | Apr 30 1999 | Beckman Coulter | Diffuse reflective light curtain system |
6220736, | Jul 10 1997 | Robert Bosch GmbH | Headlight for a vehicle |
6227685, | Oct 11 1996 | Electronic wide angle lighting device | |
6231209, | Feb 19 1997 | Siteco Beleuchtungstechnik GmbH | Light fixture with a linear lighting field, suitable for forming lighting trunking |
6252338, | May 21 1998 | General Electric Company | Reflector lamp having a reflecting section with faceted surfaces |
6280071, | Nov 20 1998 | Kotto Manufacturing Co., Ltd. | Vehicular headlamp with integrated aiming bracket |
6354721, | Feb 08 1999 | Automotive Lighting Italia S p A | Headlamp for motor vehicles |
6406171, | Jan 21 1999 | Koito Manufacturing Co., Ltd. | Vehicle indicator lamp |
6536899, | Jul 14 1999 | ACRI TEC GMBH; *ACRI TEC GMBH | Multifocal lens exhibiting diffractive and refractive powers |
6547423, | Dec 22 2000 | SIGNIFY HOLDING B V | LED collimation optics with improved performance and reduced size |
6575609, | Dec 25 2000 | Stanley Electric Co., Ltd. | Vehicle headlight |
6575610, | Jan 06 2000 | Koito Manufacturing Co., Ltd. | Vehicle indicator lamp |
6603243, | Mar 06 2000 | TELEDYNE LIGHTING AND DISPLAY PRODUCTS, INC | LED light source with field-of-view-controlling optics |
6652117, | May 04 2001 | Light casing | |
6710325, | Dec 20 2001 | Dynapar Corporation | Light curtain mounting system wherein housing and mounting bracket include curved surfaces |
6741406, | Jun 06 2000 | Sharp Kabushiki Kaisha | Objective lens, optical pickup-device equipped with same and assembling method of same |
6796690, | Mar 14 2002 | The Boeing Company | LED light source |
6827467, | Feb 18 2002 | Canon Kabushiki Kaisha | Illuminating apparatus |
6866401, | Dec 21 2001 | General Electric Company | Zoomable spot module |
6932490, | Aug 11 2000 | VIATEK CONSUMER PRODUCTS GROUP, INC | LED flashlight |
6966682, | Jun 11 2003 | Federal Signal Corporation | Light bar mounting arrangement |
6986593, | Oct 06 2003 | SIGNIFY HOLDING B V | Method and apparatus for light collection, distribution and zoom |
7114832, | Oct 06 2003 | SIGNIFY HOLDING B V | Method for shifting energy between beams when focusing or defocusing |
7226185, | Dec 23 2004 | 3M Innovative Properties Company | Illumination system with alignment mechanism and method |
7258459, | Nov 07 2005 | Eiko Electric Products Corp. | Adjustable illuminating lamp for aquarium |
7281820, | Jan 10 2006 | BAYCO PRODUCTS, INC | Lighting module assembly and method for a compact lighting device |
7600887, | Jun 14 2006 | LucaLight, LLC | Edge mount shelf light assembly |
7775679, | Aug 18 2004 | ADVANCED ILLUMINATION, INC | High intensity light source for a machine vision system and method of making same |
8192063, | Sep 29 2006 | JPMORGAN CHASE BANK, N A | Rear deck warning light bar |
826205, | |||
8277077, | Oct 26 2007 | VISION MOTOR SPORTS INC | Auxiliary lighting systems |
20020145884, | |||
20030007359, | |||
20030090906, | |||
20040017685, | |||
20100014286, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 31 2013 | VISION MOTOR SPORTS, INC. | (assignment on the face of the patent) | / | |||
May 03 2016 | GEORGITSIS, ANTHONY | VISION MOTOR SPORTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 038772 | /0144 | |
May 03 2016 | IRWIN, NICHOLAS | VISION MOTOR SPORTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 038772 | /0144 | |
May 04 2016 | BIRO, JOSEPH | VISION MOTOR SPORTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 038772 | /0144 |
Date | Maintenance Fee Events |
Oct 19 2018 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Nov 30 2022 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Nov 29 2019 | 4 years fee payment window open |
May 29 2020 | 6 months grace period start (w surcharge) |
Nov 29 2020 | patent expiry (for year 4) |
Nov 29 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 29 2023 | 8 years fee payment window open |
May 29 2024 | 6 months grace period start (w surcharge) |
Nov 29 2024 | patent expiry (for year 8) |
Nov 29 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 29 2027 | 12 years fee payment window open |
May 29 2028 | 6 months grace period start (w surcharge) |
Nov 29 2028 | patent expiry (for year 12) |
Nov 29 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |