An inverter configured for use within a vehicle to power consumer electronic devices and other types of devices requiring single-phase, AC energy. The inverter may include a network interface or other type of the connection to a vehicle data bus or other message exchange system in order to communicate with an electronic control unit (ECU) or other feature included within the vehicle to monitor and control energy consumption by one or more vehicle subsystems.
|
19. A method of controlling operation of an inverter included within a vehicle to invert dc energy to AC energy of the type suitable for powering a consumer electronic device, the method comprising:
receiving an engine running message over a vehicle bus connected to the inverter, the engine running message indicating an engine of the vehicle to running in a manner specified within a load shedding strategy to support providing the dc energy required by the inverter to power the consumer electronic device; and
preventing the inverter from output of the AC energy in the absence of the engine running message.
8. A vehicle inverter configured to invert a first dc voltage provided from a vehicle battery into a single-phase AC voltage suitable for powering a consumer electronic device comprising:
a housing comprising:
a dc/DC converter operable to convert the first dc voltage to a second dc voltage in response to dc/DC control signals, the second dc voltage being greater than the first dc voltage;
a dc/AC inverter operable to invert the second dc voltage to the single-phase AC voltage in response to dc/AC control signals;
a dc/DC at least one controller configured to output the dc/DC control signals and the dc/AC control signals;
a dc/AC controller configured to output the dc/AC control signals;
a network interface configured to interface messages between a network bus included within the vehicle and the at least one of the dc/DC controller and the dc/AC controller; and
wherein the dc/DC at least one controller outputs the dc/DC control signals only after receipt of an authorization message through the network interface.
5. A vehicle inverter configured to invert a first dc voltage provided from a vehicle battery into a single-phase AC voltage suitable for powering a consumer electronic device comprising:
a housing comprising:
a dc/DC converter operable to convert the first dc voltage to a second dc voltage in response to dc/DC control signals, the second dc voltage being greater than the first dc voltage;
a dc/AC inverter operable to invert the second dc voltage to the single-phase AC voltage in response to dc/AC control signals;
a dc/DC at least one controller configured to output the dc/DC control signals and the dc/AC control signals;
a dc/AC controller configured to output the dc/AC control signals;
a network interface configured to interface messages between a network bus included within the vehicle and the at least one of the dc/DC controller and the dc/AC controller; and
wherein the dc/DC at least one controller is configured to regulate a voltage level of the second dc voltage according to a level specified within a message received over the network bus.
7. A vehicle inverter configured to invert a first dc voltage provided from a vehicle battery into a single-phase AC voltage suitable for powering a consumer electronic device comprising:
a housing comprising:
a dc/DC converter operable to convert the first dc voltage to a second dc voltage in response to dc/DC control signals, the second dc voltage being greater than the first dc voltage;
a dc/AC inverter operable to invert the second dc voltage to the single-phase AC voltage in response to dc/AC control signals;
a dc/DC at least one controller configured to output the dc/DC control signals and the dc/AC control signals;
a dc/AC controller configured to output the dc/AC control signals;
a network interface configured to interface messages between a network bus included within the vehicle and the at least one of the dc/DC controller and the dc/AC controller; and
wherein the dc/AC at least one controller is configured to regulate a frequency and voltage level of the single-phase AC voltage according to parameters specified within a message received over the network bus.
4. A vehicle inverter configured to invert a first dc voltage provided from a vehicle battery into a single-phase AC voltage suitable for powering a consumer electronic device comprising:
a housing comprising:
a dc/DC converter operable to convert the first dc voltage to a second dc voltage in response to dc/DC control signals, the second dc voltage being greater than the first dc voltage;
a dc/AC inverter operable to invert the second dc voltage to the single-phase AC voltage in response to dc/AC control signals;
a dc/DC at least one controller configured to output the dc/DC control signals and the dc/AC control signals;
a dc/AC controller configured to output the dc/AC control signals;
a network interface configured to interface messages between a network bus included within the vehicle and the at least one of the dc/DC controller and the dc/AC controller; and
wherein the dc/DC controller and the dc/AC at least one controller are each is configured to output the control signals in response to an ignition message received over the network bus indicating a position of a vehicle ignition to have changed from an ‘off’ position to an ‘on’ position.
1. A vehicle inverter configured to invert a first dc voltage provided from a vehicle battery into a single-phase AC voltage suitable for powering a consumer electronic device comprising:
a housing comprising:
a dc/DC converter operable to convert the first dc voltage to a second dc voltage in response to dc/DC control signals, the second dc voltage being greater than the first dc voltage;
a dc/AC inverter operable to invert the second dc voltage to the single-phase AC voltage in response to dc/AC control signals;
a dc/DC at least one controller configured to output the dc/DC control signals and the dc/AC control signals;
a dc/AC controller configured to output the dc/AC control signals;
a network interface configured to interface messages between a network bus included within the vehicle and the at least one of the dc/DC controller and the dc/AC controller; and
wherein the dc/DC controller and the dc/AC at least one controller are is configured to shutdown the vehicle inverter in response to an ignition message received over the network bus indicating a position of a vehicle ignition to have changed from an ‘on’ position to an ‘off’ position or indicating the vehicle ignition being in the ‘on’ position and an engine being stopped in accordance with a stop/start strategy.
14. A system for using energy supplied by a dc battery included within a vehicle to power a removably connected device requiring a single-phase AC voltage, the system comprising:
an electronic control unit (ECU) configured to implement a load shedding strategy to regulate energy consumption of a plurality of subsystems included within the vehicle, the load shedding strategy requiring the ECU to selectively authorize each of the subsystems to consume energy from the dc battery depending on an amount of energy available from the dc battery, the ECU transmitting an authorization message to each of the plurality of subsystems authorized to consume energy from the dc battery;
a vehicle bus configured to enable the transmission of the authorization messages between the ECU and the subsystems; and
an inverter configured to invert energy consumed from the dc battery into the single-phase AC voltage needed to power the removably connected device, the inverter including a network interface to the vehicle bus, the inverter becoming operational to generate the single-phase AC voltage upon receipt of one of the authorization messages transmitted from the ECU over the vehicle bus.
2. The inverter of
6. The inverter of
9. The inverter of
10. The inverter of
11. The inverter of
12. The inverter of
13. The inverter of
15. The system of
16. The system of
17. The system of
18. The system of
|
1. Field of the Invention
The present invention relates to inverters of the type suitable for inverting DC energy into single-phase AC energy, such as but not limited to the type suitable for inverting DC energy provided by a vehicle battery into single-phase AC energy suitable for powering a consumer electronic device.
2. Background Art
A vehicle electrical system typically relies upon an energy source to supply energy for powering a plurality of vehicle subsystems during normal vehicle operations. The amount of energy available from the energy source can vary during vehicle operation depending on the number of subsystems requesting energy and the ability of the energy source to maintain its energy output. Some vehicles employ an electronic control unit (ECU) to manage energy levels so that more critical subsystems are supplied energy before less critical subsystems, to insure limp-home capabilities, and to otherwise manage/regulate energy consumption.
The consumption of energy by the vehicle subsystems can be monitored by the ECU and tracked over time such that the ECU has an understanding of the amounts of energy required by the vehicle subsystems in order to operate under various operating conditions. The ECU can use this information and/or other strategies to selectively authorize one or more of the vehicle subsystem to consume energy (or otherwise regulate energy consumption) from the energy source. This may include the ECU exchanging messages and other data through a vehicle bus or other vehicle-based medium with the vehicle subsystems, or an associated controller, in order to selectively enable or disable (or limit) the vehicle subsystems.
The present invention is pointed out with particularity in the appended claims. However, other features of the present invention will become more apparent and the present invention will be best understood by referring to the following detailed description in conjunction with the accompany drawings in which:
The ECU 20 may be configured to execute any type of load control strategy, such as but not limited to a load shedding strategy of the type that controls energy consumption based on energy available from the energy source 12 and the functionality of vehicle subsystem 14, 16 requesting energy such that more critical vehicle subsystems 14, 16 are powered before less critical subsystem. The load shedding strategy may operate in real-time so that the ECU 20 can continuously enable, disable, and otherwise manage energy consumed by the vehicle subsystem 14, 16 according to the amount of energy currently available from the energy source 12 or likely to be available within the future. This may include disablement of less critical subsystem 14, 16 when energy levels run low, implementing limp-home functionality when energy levels are critically low, and/or otherwise specifying energy consumption limits.
The energy available from the energy source 12 may be dependent on the vehicle and its configuration for charging the energy source 12 and the configuration of the energy source 12 to maintain/distribute energy. For example, if the energy source 12 is a DC battery, capacitor, or other passive storage device charged by a vehicle alternator (not shown) or if the energy source is a fuel cell or other renewable energy source (not shown), the amount of available energy may fluctuate depending on ambient temperature, starter motor “cranking” state, vehicle payload (weight), switching on and off of energy consuming devices, and any number of other operating conditions that may change the amount of current drawn from the energy source 12 by various vehicle subsystems 14, 16.
The present invention, however, is not intended to be limited, unless otherwise noted, to any particular energy source 12 or means for charging the energy source 12. The present invention full contemplates to the use of any energy source 12 having capabilities for providing a DC voltage to the inverter 16 in a manner sufficient of the inverter to output a single-phase AC voltage of the type suitable for powering most consumer electronic devices, e.g., 110/120/220V ac at 50/60 Hz. The inversion performed by the inverter 16 may be accomplished with any suitable inverter configuration.
The network interface 30 may be configured to allow the inverter 16 to interface with the ECU 20 through an exchange of one-way or two-way messages and according to any suitable protocol. The exposure of the inverter 16 to the ECU 20 can be helpful in allowing the ECU 20 to control energy consumption of the inverter 16, and in some case, to set operating controls for the inverter 16 according to load shedding and other control techniques used by the ECU 20 to manage energy consumption of the vehicle electrical system 10. The network interface 30 may be configured to send and/or receive messages over the vehicle network 22 according to any desirable architecture, such as but not limited to that required to support local interconnect network (LIN) version 2.1.
The network interface 30 may be connected to a primary stage microcontroller 32 used to control a primary stage wherein the DC battery voltage is boosted to a greater DC voltage. The primary stage may include a DC/DC converter 34 configured to boost a DC voltage from the energy source 12 prior to inversion by a DC/AC inverter 36 included in within a secondary stage. The DC/DC converter 34 may be configured as a push-pull converter where a chopper 38 operates in response to related DC/DC control signals to control switching operations of switching elements (not shown) that operate in cooperation with a transformer 40 to output a boosted DC voltage to a rectifier 42 where it is rectified into the boosted DC output voltage provided to the DC/AC stage. While the push-pull configuration is illustrated, the present invention fully contemplates the use of other configuration for the primary stage.
The DC voltage output from the primary stage may be inverted in the secondary stage to the single-phase AC voltage used to power the AC device 18. A full-bridge inverter 46 may be used to invert the DC output from the primary stage according to control a number of switching devices operable in response to DC/AC control signals received from a secondary stage microcontroller 48. The DC/AC control signals may be set to invert the DC output to any suitable single-phase AC voltage. Optionally, the secondary controller 48 may select the AC voltage and frequency depending on the connected device 18, such as by user input and/or wireline or wireless communication with the device 18.
An opto-isolator 50 may be included between the primary and secondary stage microcontrollers 32, 48. The opto-isolator 50 may be of the type that allows optical data signals to be transmitted between the microcontrollers 32, 48 without requiring the microcontrollers 32, 48 to be electrically connected to each other. The configuration of primary and second side windings of the transformer 40 may cooperate with the opto-isolator 50 to facilitate electrically isolating the primary microcontroller 32 from the secondary microcontroller 48. This isolation can be helpful with the electronic communications carried out through the network interface 30 since it prevents interference caused by the switching operations of the second stage from interfering with communications taking place on the vehicle network 22.
The primary and secondary stages may include sensors or other feedback to facilitate monitoring and controller related switching operations and/or to facilitate implementing energy consumption strategies. The primary microcontroller 32 is shown to receive a battery voltage value and a primary temperature value. The battery voltage value is used to represent the DC voltage input to the primary stage and to facilitate related controls to insure the desired DC output voltage is provided to the secondary stage for the given DC input voltage. The primary temperature value represents a temperature of the primary stage and may be used by the primary microcontroller to control automatic shutdown and/or output reductions in the event the temperature rises above a desired operating range. The secondary microcontroller 48 includes similar feedback values to facilitate similar operations. The secondary microcontroller may include an additional short circuit sensor to sense shorts that occur within the AC device 18 and/or though an outlet (not shown) used within the vehicle to removably connect the AC device 18.
As illustrated, the network interface 30 exchanges signals between the vehicle bus 22 and the primary microcontroller 32. The primary microcontroller 32 may then issue related messages or route the received messages, if needed, through the opto-isolator 50 in order to maintain electrical isolation from the stages. The secondary microcontroller 48 may issue messages to the primary microcontroller 32 for communication to the ECU 20. For example, the secondary stage microcontroller 48 may determine an energy demand of the attached load 18 and issue a related message to the primary controller 32 to request the energy necessary to power the load 18. The request may specify voltage levels, power levels, and/or desired frequency for the single-phase AC output. The primary microcontroller 32 may then communicate this request to the ECU 20 for processing. The ECU 20 may respond with an authorization message authorizing output of the requested energy demand or some percentage thereof depending on the parameter set by the load shedding strategy.
The ability of the ECU 20 to transmit messages to, and in some cases, receive messages from one or both of the primary and secondary microcontrollers 32, 48 can be beneficial in allowing the ECU 20 to control any number of operations of the inverter 16. The ECU 20, for example, may be configured to prevent inverter operations until an ignition is changed from an ‘off’ position to an ‘on’ position (accessory power and/or engine running) and/or while an engine (not shown) is stopped as a part of a stop/start strategy, such as the type used with hybrid electric vehicles where the engine is stopped under certain circumstances without requiring the ignition to be turned to the off position. The ECU 20 may require the inverter 16 to request start, stop, and modified operations with corresponding message transmissions, such as to require connection of authorized load 18 before inverter 16 operations are permitted, as opposed to always making energy available from the inverter outlet. The ECU 20 may also transmit messages to shutdown or modify inverter operations, such as upon the ignition turning from the on position back to the off position or upon changes in the load shedding strategy. Optionally, the inverter 16 may retain some control over its own operations, such as by delaying shutdown for a period time, e.g. five minutes, after receipt of a shutdown message from the ECU 20.
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale, some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for the claims and/or as a representative basis for teaching one skilled in the art to variously employ the present invention. The features of various implementing embodiments may be combined to form further embodiments of the invention.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Cruickshank, William, Khan, Aftab Ali, Sweet, Benjamin D., Hanjaya, Raymond
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5963442, | Dec 26 1997 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Inverter system for driving motor |
6411534, | Jun 05 2001 | DELPHI TECHNOLOGIES IP LIMITED | Control methods for power converter circuit |
6617820, | Sep 07 2001 | GM Global Technology Operations LLC | Auxiliary power conversion by phase-controlled rectification |
6679344, | Jun 30 1998 | Robert Bosch GmbH | Method and device for energy distribution in a motor vehicle |
6807072, | Jun 05 2002 | Omron Corporation | Electric power conversion device with push-pull circuitry |
6963796, | Sep 10 2003 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Modularized power take-off systems for vehicles |
7012401, | May 08 2003 | Denso Corporation | Inverter system of automotive motor |
7138773, | Jun 24 2003 | GE GLOBAL SOURCING LLC | Multiple inverters for motors |
7154314, | Jun 28 2002 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Communication apparatus including driver means for applying a switched signal to a communication line with a controlled slew rate |
7218539, | Mar 22 2005 | Delphi Technologies, Inc. | Technique for increasing power capability of a DC-to-AC converter |
7277304, | Sep 23 2005 | GM Global Technology Operations LLC | Multiple inverter system with single controller and related operating method |
7336510, | Mar 23 2005 | BorgWarner US Technologies LLC | Method and system for increasing load start-up capability of a DC-to-AC converter |
7372712, | Sep 23 2005 | GM Global Technology Operations LLC | Multiple inverter system with single controller and related operating method |
7414439, | Sep 25 2002 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Receiver for a switched signal on a communication line |
7948113, | Jul 24 2007 | Denso Corporation | Power supply management system |
20040022276, | |||
20040189098, | |||
20040222767, | |||
20070284159, | |||
20080068770, | |||
20080254329, | |||
20090026838, | |||
20090315393, | |||
CN101207331, | |||
CN101355265, | |||
DE102005046340, | |||
DE102007013459, | |||
DE19829150, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 06 2014 | Lear Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 06 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 16 2024 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 06 2019 | 4 years fee payment window open |
Jun 06 2020 | 6 months grace period start (w surcharge) |
Dec 06 2020 | patent expiry (for year 4) |
Dec 06 2022 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 06 2023 | 8 years fee payment window open |
Jun 06 2024 | 6 months grace period start (w surcharge) |
Dec 06 2024 | patent expiry (for year 8) |
Dec 06 2026 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 06 2027 | 12 years fee payment window open |
Jun 06 2028 | 6 months grace period start (w surcharge) |
Dec 06 2028 | patent expiry (for year 12) |
Dec 06 2030 | 2 years to revive unintentionally abandoned end. (for year 12) |