Devices and methods for cooling microwave antennae and microwave hub construction are disclosed herein. The cooling system and hub can be utilized with a variety of microwave antenna types. A microwave hub is utilized to provide cooling fluids to a microwave antenna. The hub is constructed using no glue or adhesive for holding the different parts of the chambers in place. O-rings provide an increased reliability and consistency for fluid-tight seals in the hub. The various parts of the hub are form fitted and work together with the o-rings.

Patent
   RE46362
Priority
Nov 16 2009
Filed
Jun 25 2015
Issued
Apr 11 2017
Expiry
Nov 16 2029
Assg.orig
Entity
Large
0
349
currently ok
0. 8. A microwave assembly, comprising:
a hub, the hub comprising a proximal end, a distal end, an input port and an output port;
a first insert, the first insert having a center hole;
a second insert; the second insert having a center hole, and an end portion;
a first lumen path and a second lumen path concentrically oriented respective to each other and wherein the first lumen path is received in the center hole of the first insert and the second lumen path is received in the center hole of the second insert;
a first chamber defined by the first insert and the hub; and
a second chamber defined by the first insert, the second insert, and the hub.
1. A microwave assembly, comprising:
a hub, the hub comprising a proximal end, a distal end, an input port and an output port;
a first insert, the first insert having a center hole;
a second insert; the second insert having a center hole, and an end portion;
a first lumen path and a second lumen path concentrically oriented respective to each other and wherein the first lumen path is connected to the center hole of the first insert and the second lumen path is connected to the center hole of the second insert;
a handle, the handle functionally connected to a probe;
a first chamber defined by the first insert; and
a second chamber defined by the first insert and the second insert,
wherein the first insert is inserted into the proximal end of the hub, the proximal end of the hub being adapted to receive the first insert, the second insert is inserted into the distal end of the hub, the hub adapted to receive the second insert, the first lumen path and the second lumen path extend through the center hole of the second insert and through the distal end of the hub, and the handle is inserted into the proximal end of the hub in abutting engagement with the first insert.
2. The microwave assembly of claim 1, wherein the hub further comprises an interior surface, and further comprising:
a first o-ring adapted to fit around the first insert creates a seal against the interior surface;
a second o-ring adapted to fit around the handle creates a seal against the interior surface; and
a third o-ring adapted to fit around the second insert creates a seal against the interior surface.
3. The microwave assembly of claim 2, wherein the first chamber is between the first and second o-rings and the second chamber is between the first and third o-rings, wherein the first chamber is in fluid communication with the input port and the second chamber is in fluid communication with the output port.
4. The microwave assembly of claim 1, wherein the second insert is attached to the distal end of the hub.
5. The microwave assembly of claim 1, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop.
6. The microwave assembly of claim 1, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, and the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially.
7. The microwave assembly of claim 1, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially, and the hub further comprises an extension adapted to extend laterally away from the center of the hub and to engage the handle to disallow incorrect insertion of the handle into the proximal end of the hub.
0. 9. The microwave assembly of claim 8, wherein the hub further comprises an interior surface, and further comprising:
a first o-ring adapted to fit around the first insert creates a seal against the interior surface;
a second o-ring adapted to fit around the handle creates a seal against the interior surface; and
a third o-ring adapted to fit around the second insert creates a seal against the interior surface.
0. 10. The microwave assembly of claim 9, wherein the first chamber is between the first and second o-rings and the second chamber is between the first and third o-rings, wherein the first chamber is in fluid communication with the input port and the second chamber is in fluid communication with the output port.
0. 11. The microwave assembly of claim 8, wherein the second insert is attached to the distal end of the hub.
0. 12. The microwave assembly of claim 8, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop.
0. 13. The microwave assembly of claim 8, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, and the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially.
0. 14. The microwave assembly of claim 8, wherein the hub comprises a stop in the interior surface and the first insert abuts the stop, the interior surface circumferentially decreases from the proximal end to a predetermined location toward a center point of the hub and ceases to decrease circumferentially before the stop; and wherein the interior surface circumferentially decreases from the distal end to a predetermined location toward the center point of the hub and ceases to decrease circumferentially, and the hub further comprises an extension adapted to extend laterally away from the center of the hub and to engage the handle to disallow incorrect insertion of the handle into the proximal end of the hub.

The present invention relates generally to the field of ablation. More particularly, the present invention relates to apparatus, systems, and methods for cooling electrosurgical probes or microwave antennas. More particularly, the present invention relates to methods of assembly of electro-surgery and microwave antennas.

During the course of surgical procedures, it is often necessary for medical personnel to utilize electrosurgical instruments to ablate tissue in a body. High frequency probes or antennas are often utilized to ablate tissue in a body. In use, the probes or antennas are connected to a high frequency power source to heat body tissue when inserted into the tissue. Among the drawbacks of such devices is the potential that the probes or antennas will overheat, thus causing damage to the bodily tissue or causing damage to the instrument. A cooling system may be used in conjunction with the instrument to provide cooling of the instrument and often to the tissue adjacent to the instrument so as to provide optimal thermal characteristics in the instrument and the tissue. In the event that the heat is not dissipated in the instrument, charring of the tissue or failure of the instrument can occur.

Surgical systems exist that provide cooling systems for the instrument. Existing systems provide a flow of a cooling fluid to the instrument thus cooling the instrument and potentially the tissue adjacent to or abutting the targeted tissue. These systems generally employ a mechanism whereby the cooling fluid flows into a hub through a chamber. The fluid flows into a lumen path and down to the tip of the instrument, providing cooling along the shaft of the instrument. The fluid returns to another chamber in the hub and exits through a fluid egress channel.

The chambers, lumen paths, hub and seals of a hub are constructed in a manner requiring an adhesive, or glue, to maintain their integrity during stress. It is known that during use, pressure is created in the interior of the hub causing stress at the seal locations, in the chambers and at the connection points. However, adhesives or glue can be inconsistent and unreliable. Not only can adhesives breakdown under stress or heat conditions, but the application of the adhesives during the manufacturing process can be inconsistent. These breakdowns and inconsistencies can lead to malfunctions and inadequate cooling.

According to one embodiment of the present invention, there is provided an electro surgical hub. The hub is adapted to provide cooling fluid to probes that extend from a distal end of the hub. The probes are utilized by medical personnel to ablate tissue in a body.

Two chambers and a dual path lumen provide cooling liquid to a probe. Cooling fluid enters into the hub and is channeled from a first chamber through a lumen path which transports the fluid to the probes for cooling purposes. An insert defines the boundary for the first chamber and causes the cooling fluid to spin, thus reducing the presence of air bubbles. The insert is adapted to accommodate a first o-ring to form a seal between the first chamber and a second chamber. A connector connected to the probes which conducts power to the probe, is also adapted to accommodate a second o-ring to form a seal on the back side of the first chamber.

The cooling fluid returns through a second lumen path and enters a second chamber. A plug is adapted to accommodate a third o-ring to form a second seal on the second chamber. The plug has an annular ring utilized to center the plug in the hub and maintain the third o-ring in position during high stress conditions.

In general, the apparatus of the present invention is directed to a twin sealing chamber ablation hub constructed without glues or adhesives. The system offers a method of construction that improves reliability in the chamber seals. The apparatus includes a geometry whereby air bubbles which can cause hot spots on the ablation probe are substantially removed from the cooling liquid.

There is accordingly a need for an electrosurgical hub that provides consistency in manufactured result as well as reliability under stress conditions. There is a need for a hub that overcomes the breakdown of adhesives. There is also a need for a hub that allows for consistent manufacturing procedures.

FIG. 1 is a view of an embodiment of the invention showing twin chambers in a hub with inserts providing separation of the chambers;

FIG. 2 is an alternate view of an embodiment of the invention showing twin chambers in a hub with inserts providing separation of the chambers; and

FIG. 3 is a view of an insert of an embodiment of the invention.

In one embodiment of the invention, a twin chamber microwave ablation hub comprises a plurality of inserts and o-rings causing seals between the chambers. A first chamber provides fluidic connection to an input port and a second chamber provides fluidic connection to an exit port. A dual path lumen provides fluidic connection from the first chamber to the second chamber. The first and second chambers are adapted to minimize the presence of air bubbles in a cooling fluid as the fluid travels through the input port and the first chamber, through a first path in the lumen to the distal end of an ablation probe. The cooling fluid returns via a second path in the lumen to the second chamber and exits the hub via the exit port. The first path and second path are concentric.

The term “probe” is not limited to the present embodiment or depiction. Naturally, the efficacy of the present invention may be optimized by different types of devices intended to facilitate energy focalization in a body, such as electrodes, antennas or other suitable device. The term “probe” is used to include any device, mechanism or structure capable of being inserted into a body and allowing an energy source to be focalized for ablation or other medical treatment.

FIG. 1 is a view of an embodiment of the invention showing a hub 10 and probe 20. Hub 10 comprises a first chamber 30, a second chamber 40, a first lumen path 50, a second lumen path 60, a first port 70 and a second port 72. First port 70 fluidicly couples to first chamber 30. First chamber 30 fluidicly couples to first lumen path 50. First lumen path 50 extends along a substantial portion of the probe 20. The second lumen path 60 extends around and along the first lumen path 50 and fluidicly couples with the second chamber 40.

The first 30 and second 40 chambers are defined by inserts inside the hub 10. A first insert 80 fits inside one end of hub 10. In one embodiment, the first chamber 30 is at one end by the first insert toward the handle end of the hub 10. The first insert 80 is positioned against stops 88. Stops 88 provide a positioning stop on the interior walls 90 of the hub for the first insert 80. The stops 88 provide a more precise positioning for the first insert 80 and eliminate placement guesswork. This allows for ease of insertion by providing a physical indicator of the proper insertion position.

The interior walls 90 of the hub 10 may be graduated so that they are of decreasing diameter from the handle end of the hub to the stops 88. This also allows for ease of insertion as well as precision in placement. In an embodiment of the invention, the graduation of the interior walls ceases prior to the stop 88, creating a zone where the interior wall 90 is flat. As discussed below, the flat zone in wall 90 allows for more reliable sealing of the first chamber 30.

An o-ring 82 is positioned in space 83 of the insert first 80. It is understood that the space 83 is a groove or other indentation in the first insert 80. When the first insert 80 in inserted into the hub 10 to the proper depth, the o-ring 82 will contact the flat portion of the interior wall. The o-ring 82 provides for continued sealing in the event of slight movement or slight inaccuracies in the manufacture of the first insert 80 or hub 10. The flat area allows for continued contact of the o-ring 82 in the event of slight movement. The o-ring 82 provides a water-tight seal for the first chamber 30. Accordingly, any cooling fluid will not flow around chamber 30 and past stops 88.

The second chamber 40 is positioned distally of the first chamber 30, toward the probe end of the hub 10. As noted above, the first insert 80 is inserted inside the hub 10 to stops 88. One end of the second chamber 40 is formed by the back side of the first insert 80. The second chamber 40 is completed by second insert 95 opposite the first insert 80. Insert 95 is inserted into the distal end of the hub 10 opposite the first insert 80. In one embodiment, the interior walls of the hub 10 at the distal end are graduated so that they are of decreasing diameter from the end of hub 10 to the interior. The graduation of the interior walls ceases at the location where the o-ring 84 reside. This creates a flat zone which allows continued sealing in the event of slight movement or slight inaccuracies in the manufacture of the insert 95 or hub 10. The graduation of the interior walls of hub 10 allow for ease of insertion of insert 95 as well as precision in placement.

The insert 95 comprises an end portion 96 adapted to provide a stopping mechanism. The end portion 96 acts to contact the end of hub 10. End portion 96 abuts the hub 10 and provides for precision in placement. An o-ring 84 is positioned in the second insert 95 to contact the interior wall 90 when the second insert 95 is inserted into the hub 10. The O-ring 84 is positioned in space 98 of the second insert 95. The o-ring 84 provides a water-tight seal for the second chamber 40. Accordingly, cooling fluid will not flow around chamber 40 or into the first chamber 30. The second insert 95 is molded to hub 10 on the opposite end of the hub 10 from handle 100. The molding maintains closure and sealing during high pressure conditions.

When the second insert 95 is inserted, a centered position in the hub is desired to help eliminate any leakage that may occur otherwise. An annular ring 120 is utilized to maintain a centered position of the second insert 95 and the o-ring 84 within the hub 10. When the second insert 95 in inserted so that the end portion 96 abuts the hub 10, the annular ring 120 contacts the interior wall 90 and disallows movement of the second insert 95.

A third o-ring 86 is positioned in handle 100. The third o-ring 86 provides a fluid seal on the back side of chamber 30. The handle 100 in inserted into the end of the hub 10 opposing the position of insert 95. In an embodiment, the handle 100 is molded to hub 10. The handle 100 is adapted to abut or closely abut first insert 80. The position of insert 80 is maintained by the handle 100 under high pressure conditions.

Handle 100 connects to the probe 20. Box 110 disallows improper insertion of the handle 100 and ensures that the probe 20 is connected properly through the hub 10. Box 110 protrudes away from the hub to disallow upside down insertion of the handle 100. The probe 20 protrudes through the first 30 and second 40 chambers and first 80 and second 95 inserts.

FIG. 2 is a perspective view of an embodiment of the invention showing hub 210 and probe 220 extending from within the handle 299 out through the distal end of the hub 210. The probe 220 connects within the handle 299 to a power source (not shown). Hub 210 comprises a first chamber 230, a second chamber 240, a first lumen path 250, a second lumen path 260 and a first 270 and second 272 port. In an embodiment, the first 270 and second 272 ports are angled in relation to the axis of the hub 210 so that they are not perpendicular to the axis. The angle of the ports 270, 272 forms an acute angle toward the proximal end of the hub 210. The handle 299 forms a seal at the proximal end of the hub 210.

A first insert 280 forms the first chamber 230 between the handle 299 and the first insert 280. A second insert 295 forms the second chamber 240 between the first insert 280 and the second insert 295. The first chamber 230 is sealed by an o-ring 282 on the distal end of the chamber 230 and an o-ring 286 on the proximal end of the chamber 230. The second chamber 240 is sealed by o-ring 282 and an o-ring 284 on the distal end of the second chamber 240. Each O-ring 282, 284, 286 resides in a groove, or other formation, formed to receive the o-ring in the first insert 280, the second insert 295 and the handle 299, respectively.

The first lumen path 250 forms a fluid passage allowing a cooling fluid to travel from the first chamber 230 along the probe 220 to the distal end of the probe 220. The cooling fluid provides a cooling action along the length and tip (not shown) of the probe 220. The second lumen path 260 provides a return passage for the cooling liquid and is fluidicly coupled to the second chamber 240. The cooling liquid returns concentrically and outside the first lumen path 250 and empties into the second chamber 240.

As noted above relating to FIGS. 1 and 2, the first insert (80 in FIGS. 1 and 280 in FIG. 2) defines a boundary for the first chamber (30 in FIGS. 1 and 230 in FIG. 2) and causes the cooling fluid to spin and thus reduce the presence of air bubbles. FIG. 3 provides a detailed view of the first insert 280. As noted above, the first insert 280 creates the first chamber (230 FIG. 2). The first insert 280 creates the chamber by using a seal 310 in the hub (210 FIG. 2). In an embodiment, the seal 310 is an o-ring which fits in a grooved portion 320, or other formed recess, of the insert. The grooved portion 320 is adapted to accommodate the o-ring 310.

Cooling fluid flows into the first chamber and fills the space within the first insert 280. The geometry 325 on the insert 280 is concave and induces spin in the cooling fluid as it enters the first chamber. The vortex type action induced on the cooling fluid allows it to move around the probe as it moves down the first lumen path. The vortex action aids in the elimination of air bubbles which may cause overheating of the probe.

The first insert 280 comprises a plurality of legs 330. In one embodiment, four legs 330 provide support for the first insert 280. The legs 330 provide a mechanism to abut the handle (not shown in FIG. 3) when the hub (not shown in FIG. 3) is assembled. The legs 330 will push against the handle to force the insert 280 against the stops on the interior of the hub.

Referring again to FIG. 1, regarding the operation of the invention. Cooling fluid flows into the first port 70 and fills the first chamber 30. In one embodiment, the first chamber 30 is sized so that it fills with fluid relatively rapidly. The first insert 80 is shaped so that the fluid entering the first chamber 30 spins in a circular manner. The spinning of the fluid causes any residual air bubbles to be removed from the probe 20 and the walls of the first chamber 30. Air bubbles are known in the art to cause over-heating of the probe 20 and lead to failure of the device. The o-ring 82 in the first insert 30 seals the chamber 30, thus not allowing fluid to enter the second chamber 40. It is understood by those skilled in the art that the first insert 30 provides sealing. The o-ring 82 provides an extra level of sealing to ensure integrity under pressure conditions.

The handle 100 has the O-ring 86 to create a seal on the back side of the first chamber 30. It is understood by those skilled in the art that the handle 100 provides a level of sealing. The o-ring 86 provides an extra level of sealing to ensure integrity under pressure conditions. The cooling fluid flows out of chamber 30 and through the first lumen path 50. The first lumen path 50 carries the cooling fluid to the proximal end of the probe 20 providing a cooling effect on the probe 20. The cooling fluid returns to the hub 10 via the second lumen path 60. The cooling fluid empties from the second lumen path 60 into the second chamber 40. The second chamber is sealed by the o-ring 82 on one end which is positioned in the first insert 80 and the o-ring 84 which is positioned in the second insert 95. It is understood by those skilled in the art that the second insert 95 provides a level of sealing. The o-ring 84 provides and extra level of sealing to ensure integrity under pressure conditions.

As the cooling fluid pressure increases in the hub 10, the pressure will cause a separating force on the components within the hub 10. This pressure will stress the position of the o-ring 82 in the first insert 80 and the o-ring 84 of the second insert 95. An external geometry (not shown) positioned on the outside of the handle 100 will hold the handle 100 in place and resist movement of the inserts 80, 95 and o-rings 82, 84.

Referring again to FIG. 2, the microwave assembly is easily manufactured with the hub 210, the first insert 280, the second insert 295 and the handle 299. The first insert 280 is inserted into the hub 210 until it abuts the stops 288 which are formed on the inside of the hub 210. The o-ring 282 in the first insert provides a seal against the interior wall of hub 210. In an embodiment, the wall of the hub 210 is graduated so that the circumference lessens toward the middle of the hub 210. The graduation levels off and ceases as the wall nears the stop 288 to allow a location for the o-ring 282 to seal.

The interior lumen path 260 connects to the central hole 292 in the first insert 280. The lumen paths 250, 260 protrude through the end of the hub 210. The second insert 295 is inserted over the lumen paths 250, 260 and into the distal end of the hub 210. O-ring 284 fits in a groove around the second insert 295 and forms a seal against the interior wall of the hub 210. In one embodiment, the wall at the distal end of the hub 210 is also graduated so that the circumference lessens toward the middle of the hub 210. The graduation levels off and ceases at a predetermined location which coincides with the position of the o-ring 284. The second insert 295 is molded to the distal end of the hub 210 to provide stability during high pressure situations.

The handle 299 and the probes are inserted into the proximal end of the hub 210. The probe 220 passes through the central holes in the inserts 280, 295 and helps create and enforce the lumen paths 250, 260. In an embodiment, the handle 299 and probe 220 are pre-assembled to maintain a sound electrical connection. A lip portion 298 extends from the portion of the hub 210 opposite the ports 270, 272. The lip portion 298 allows the insertion of the handle 299 in only one way to assure proper insertion of the handle 299. Insertion of the handle 299 provides sufficient pressure on the first insert 280 to maintain the insert 280 in the proper position. The stop 288 on the interior of the hub 210 wall prevents the first insert from being inserted too far inside the hub 210. The handle 299 is then molded to the hub 210.

It is understood that the above described embodiments are only illustrative of the application of the principles of the present disclosure. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present disclosure. The appended claims are intended to cover such modifications and arrangements.

DeCarlo, Arnold V.

Patent Priority Assignee Title
Patent Priority Assignee Title
5129396, Nov 10 1988 Microwave aided balloon angioplasty with lumen measurement
5167619, Nov 17 1989 Sonokinetics Group Apparatus and method for removal of cement from bone cavities
5301687, Jun 06 1991 TRUSTEES OF DARTMOUTH COLLEGE A CORPORATION OF NH Microwave applicator for transurethral hyperthermia
5312400, Oct 09 1992 Symbiosis Corporation Cautery probes for endoscopic electrosurgical suction-irrigation instrument
5370644, Nov 25 1988 INNOVATIVE CARDIAC SOLUTIONS, INC Radiofrequency ablation catheter
5507744, Apr 23 1992 Boston Scientific Scimed, Inc Apparatus and method for sealing vascular punctures
5545137, Mar 06 1992 PROJECT TROJAN INTELLECTUAL PROPERTY ACQUISITION, LLC; AUSLO RESEARCH LLC Device for asymmetrical thermal therapy with helical dipole microwave antenna
5603697, Feb 14 1995 AFX INC ; AFX, INC Steering mechanism for catheters and methods for making same
5624392, May 11 1990 VENTION MEDICAL ADVANCED COMPONENTS, INC Heat transfer catheters and methods of making and using same
5693082, May 14 1993 MAQUET CARDIOVASCULAR LLC Tunable microwave ablation catheter system and method
5741249, Nov 25 1996 MAQUET CARDIOVASCULAR LLC Anchoring tip assembly for microwave ablation catheter
5974343, Jan 12 1996 MICROMEDICARE SA Probe, particulary a urethral probe, for heating of tissues by microwave and for the measurement of temperature by radiometry
5980505, Dec 12 1995 Abbott Laboratories Vascular Enterprises Limited; ABBOTT LABORATORIES VASCULAR ENTITLES LIMITED Overlapping welds for catheter constructions
5993447, Aug 16 1996 United States Surgical Corporation Apparatus for thermal treatment of tissue
5995875, Oct 01 1997 United States Surgical Corporation Apparatus for thermal treatment of tissue
6014581, Mar 26 1998 Boston Scientific Scimed, Inc Interface for performing a diagnostic or therapeutic procedure on heart tissue with an electrode structure
6061551, Oct 21 1998 ParkerVision, Inc.; ParkerVision, Inc Method and system for down-converting electromagnetic signals
6106524, Apr 23 1997 Intact Medical Corporation Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue
6117101, Jul 08 1997 Regents of the University of California, The Circumferential ablation device assembly
6139527, Mar 05 1996 Covidien LP Method and apparatus for treating hemorrhoids
6186978, Oct 09 1996 TARGET THEREPEUTICS, INC Braid reinforced infusion catheter with inflatable membrane
6188355, Dec 12 1997 Covidien LP Wireless six-degree-of-freedom locator
6210367, Sep 06 1995 CORAL SAND BEACH, LLC Intracorporeal microwave warming method and apparatus
6235024, Jun 21 1999 IRVINE BIOMEDICAL, INC Catheters system having dual ablation capability
6277113, May 28 1999 MAQUET CARDIOVASCULAR LLC Monopole tip for ablation catheter and methods for using same
6355016, Mar 06 1997 MIRAGE IP LLC Catheter core wire
6398781, Mar 05 1999 Gyrus Medical Limited Electrosurgery system
6485486, Aug 04 1998 Trustees of Dartmouth College System and methods for fallopian tube occlusion
6494892, Oct 20 1998 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Disposable hub for a surgical cutting instrument
6496737, Mar 26 1999 PROJECT TROJAN INTELLECTUAL PROPERTY ACQUISITION, LLC; AUSLO RESEARCH LLC Thermal therapy catheter
6496738, Sep 06 1995 CORAL SAND BEACH, LLC Dual frequency microwave heating apparatus
6514249, Jul 08 1997 ATRIONIX, INC Positioning system and method for orienting an ablation element within a pulmonary vein ostium
6547788, Jul 08 1997 ATRIONIX, INC Medical device with sensor cooperating with expandable member
6599288, May 16 2000 ATRIONIX, INC Apparatus and method incorporating an ultrasound transducer onto a delivery member
6629951, Aug 05 1999 SRONCUB, INC Devices for creating collateral in the lungs
6629974, Feb 22 2000 ENERGIST LIMITED Tissue treatment method
6635055, May 05 1998 AngioDynamics, Inc Microwave applicator for endometrial ablation
6645234, Apr 21 1998 ZOLL CIRCULATION, INC Cardiovascular guiding catheter with heat exchange properties and methods of use
6652515, Jul 08 1997 ATRIONIX, INC Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
6676657, Dec 07 2000 HEALTH AND HUMAN SERVICES Endoluminal radiofrequency cauterization system
6706040, Nov 23 2001 MEDLENNIUM TECHNOLOGIES, INC Invasive therapeutic probe
6723091, Feb 22 2000 ENERGIST LIMITED Tissue resurfacing
6740108, Apr 05 2001 PROJECT TROJAN INTELLECTUAL PROPERTY ACQUISITION, LLC; AUSLO RESEARCH LLC Thermal treatment catheter having preferential asymmetrical heating pattern
6770070, Mar 17 2000 AngioDynamics, Inc Lung treatment apparatus and method
6780183, Sep 16 2002 Biosense Webster, Inc. Ablation catheter having shape-changing balloon
6847848, Jan 07 2003 MMTC, INC Inflatable balloon catheter structural designs and methods for treating diseased tissue of a patient
6869431, Jul 08 1997 ATRIONIX, INC Medical device with sensor cooperating with expandable member
6893436, Jan 03 2002 MAQUET CARDIOVASCULAR LLC Ablation instrument having a flexible distal portion
6932776, Jun 02 2003 CORAL SAND BEACH, LLC Method and apparatus for detecting and treating vulnerable plaques
6997925, Jul 08 1997 Atrionx, Inc. Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall
7004938, Nov 29 2001 Medwaves, Inc.; MEDWAVES, INC Radio-frequency-based catheter system with improved deflection and steering mechanisms
7047068, Dec 11 2000 Boston Scientific Scimed, Inc Microelectrode catheter for mapping and ablation
7049068, Jun 27 1995 The University of North Carolina at Chapel Hill Microelectronic device for electrochemical detection of nucleic acid hybridization
7089063, May 16 2000 ATRIONIX, INC Deflectable tip catheter with guidewire tracking mechanism
7113832, Jan 31 2001 Consiglio Nazionale delle Richerche Interstitial microwave antenna with miniaturized choke hyperthermia in medicine and surgery
7197356, Jun 02 2003 CORAL SAND BEACH, LLC Microwave detection apparatus
7200445, Oct 21 2005 Boston Scientific Scimed, Inc Energy delivery devices and methods
7233820, Apr 16 2003 Covidien LP Endoscope structures and techniques for navigating to a target in branched structure
7261001, Dec 02 2004 Krohne AG Magnetoinductive flowmeter and method for producing a magnetoinductive flowmeter
7263398, Jun 25 2003 CORAL SAND BEACH, LLC Apparatus for measuring intravascular blood flow
7275547, Oct 08 2003 Boston Scientific Scimed, Inc Method and system for determining the location of a medical probe using a reference transducer array
7285116, May 15 2004 Irvine Biomedical Inc. Non-contact tissue ablation device and methods thereof
7294125, Aug 22 2003 Boston Scientific Scimed, Inc Methods of delivering energy to body portions to produce a therapeutic response
7300436, Feb 22 2000 ENERGIST LIMITED Tissue resurfacing
7303558, Aug 30 2000 Boston Scientific Scimed, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
7402168, Apr 11 2005 J W MEDICAL SYSTEMS LTD Custom-length stent delivery system with independently operable expansion elements
7410486, Jul 23 2002 Biosense Webster, Inc. Ablation catheter having stabilizing array
7438712, Mar 05 2003 LifeShield Sciences LLC Multi-braid exterior tube
7460898, Oct 04 2006 DEXCOM, INC Dual electrode system for a continuous analyte sensor
7467015, Apr 29 2004 NEUWAVE MEDICAL, INC Segmented catheter for tissue ablation
7507229, Oct 10 2002 Covidien LP Wire braid-reinforced microcatheter
7559916, Sep 24 2004 Syn Variflex, LLC Catheter with controllable stiffness and method for operating a selective stiffening catheter
7608056, Oct 31 2005 Cook Medical Technologies LLC Steerable catheter devices and methods of articulating catheter devices
7611508, Aug 23 2005 Wisconsin Alumni Research Foundation Floating sleeve microwave antenna for tumor ablation
7697972, Nov 19 2002 Medtronic Navigation, Inc Navigation system for cardiac therapies
7706894, Apr 26 2005 Medtronic, Inc. Heart wall ablation/mapping catheter and method
7713259, Mar 11 2003 Advanced Cardiovascular Systems, Inc. Guiding catheter shaft with improved radiopacity on the wire braid
7722604, Mar 28 2003 Boston Scientific Scimed, Inc Braided mesh catheter
7734330, Jun 02 2003 CORAL SAND BEACH, LLC Method and apparatus for detecting and treating vulnerable plaques
7766844, Apr 21 2004 Smith & Nephew, Inc.; Smith & Nephew, Inc Surgical instrument aspiration valve
7769469, Jun 26 2006 CORAL SAND BEACH, LLC Integrated heating/sensing catheter apparatus for minimally invasive applications
7824392, Aug 20 2003 Boston Scientific Scimed, Inc Catheter with thin-walled braid
7826904, Feb 07 2006 AngioDynamics, Inc. Interstitial microwave system and method for thermal treatment of diseases
7833218, Apr 17 2007 Medtronic Vascular, Inc.; Medtronic Vascular, Inc Catheter with reinforcing layer having variable strand construction
7850685, Jun 20 2005 Medtronic Ablation Frontiers, LLC Ablation catheter
7921855, Jan 07 1998 Boston Scientific Scimed, Inc Method for treating an asthma attack
7933660, Jun 02 2003 CORAL SAND BEACH, LLC Apparatus for detecting and treating vulnerable plaques
7981051, Aug 05 2005 Senorx, Inc Biopsy device with fluid delivery to tissue specimens
7993351, Jul 24 2002 PRESSURE PRODUCTS MEDICAL SUPPLIES, INC Telescopic introducer with a compound curvature for inducing alignment and method of using the same
8021351, Aug 18 2005 Medtronic, Inc Tracking aspiration catheter
8075532, Jun 30 2006 CVDevices, LLC Devices, systems, and methods for pericardial access
8152795, Jul 14 1999 CARDIOFOCUS, INC. Method and device for cardiac tissue ablation
8182466, Dec 29 2006 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Dual braided catheter shaft
8206373, Jul 01 2008 Boston Scientific Scimed, Inc. Medical device including braid with coated portion
8206380, Jun 13 2008 Advanced Caridiac Therapeutics Inc. Method and apparatus for measuring catheter contact force during a medical procedure
8226566, Jun 12 2009 Flowcardia, Inc. Device and method for vascular re-entry
8251987, Aug 28 2008 Covidien LP Microwave antenna
8277438, Dec 05 2003 Boston Scientific Scimed, Inc. Guide catheter with removable support
8289551, Aug 03 2009 Ricoh Company, Ltd.; Ricoh Company, LTD Approach for processing print data without a client print driver
8292881, May 27 2009 Covidien LP Narrow gauge high strength choked wet tip microwave ablation antenna
8328799, Aug 05 2009 Covidien LP Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
8328800, Aug 05 2009 Covidien LP Directive window ablation antenna with dielectric loading
8328801, Aug 17 2009 Covidien LP Surface ablation antenna with dielectric loading
8340740, Oct 14 2008 DELTATRE AG Garment for monitoring physiological properties
8343145, Sep 28 2009 Covidien LP Microwave surface ablation using conical probe
8394092, Nov 17 2009 Covidien LP Electromagnetic energy delivery devices including an energy applicator array and electrosurgical systems including same
8412306, Feb 28 2007 Wisconsin Alumni Research Foundation Voltage standing wave suppression for MR-guided therapeutic interventions
8467853, Nov 19 2002 Medtronic Navigation, Inc. Navigation system for cardiac therapies
8476242, Mar 24 2005 Medifocus, Inc Pre-conditioning/fixation for disease treatment heat activation/release with thermo-activated drugs and gene products
8515554, Jun 26 2006 CORAL SAND BEACH, LLC Radiometric heating/sensing probe
8632461, Jun 21 2005 Philips Electronics Ltd System, method and apparatus for navigated therapy and diagnosis
8655454, Nov 27 2007 Covidien LP Targeted cooling of deployable microwave antenna with cooling chamber
8672932, Mar 24 2006 NEUWAVE MEDICAL, INC Center fed dipole for use with tissue ablation systems, devices and methods
8768485, Nov 27 2002 Medical Device Innovations Limited Tissue ablation apparatus and method of ablating tissue
8795268, Aug 28 2008 Covidien LP Microwave antenna
8852180, Oct 28 2009 Covidien LP System and method for monitoring ablation size
8906008, May 22 2012 Covidien LP Electrosurgical instrument
8920410, May 04 2012 Covidien LP Peripheral switching device for microwave energy platforms
8936631, Jan 04 2010 Covidien LP Apparatus and methods for treating hollow anatomical structures
8945113, Apr 05 2012 Covidien LP Electrosurgical tissue ablation systems capable of detecting excessive bending of a probe and alerting a user
8951225, Jun 10 2005 ACCLARENT, INC Catheters with non-removable guide members useable for treatment of sinusitis
8968290, Mar 14 2012 Covidien LP Microwave ablation generator control system
8968300, Aug 05 2009 Covidien LP Electrosurgical devices having dielectric loaded coaxial aperture with distally positioned resonant structure
9017328, Jan 28 2008 Covidien LP Polyp encapsulation system and method
9039698, Nov 30 2009 MEDWAVES, INC Radio frequency ablation system with tracking sensor
9066681, Jun 26 2012 Covidien LP Methods and systems for enhancing ultrasonic visibility of energy-delivery devices within tissue
9125639, Nov 23 2004 EKOS LLC Steerable device for accessing a target site and methods
20020022836,
20030004508,
20030191451,
20050215942,
20050245920,
20060009833,
20060085054,
20060089637,
20060167416,
20060241564,
20060253102,
20070073285,
20070088319,
20070208351,
20070287912,
20080027424,
20080091169,
20080147056,
20080161890,
20080208039,
20080228167,
20080255507,
20080262342,
20080287946,
20090076409,
20090138010,
20090187180,
20090222002,
20090234220,
20100036369,
20100185191,
20100262134,
20100268196,
20110004205,
20110054458,
20110085720,
20110130750,
20110166518,
20110166519,
20110282336,
20110301587,
20120029359,
20120035603,
20120065481,
20120071822,
20120078175,
20120078230,
20120277730,
20130137977,
20130197481,
20130197482,
20130237980,
20130241769,
20130245624,
20130253500,
20130261617,
20130261620,
20130267946,
20130289560,
20130296841,
20130304057,
20130317407,
20130317495,
20130317499,
20130324910,
20130324911,
20130338661,
20130345541,
20130345551,
20130345552,
20130345553,
20130345699,
20140000098,
20140005655,
20140005657,
20140018668,
20140018677,
20140018793,
20140094789,
20140094792,
20140094793,
20140094794,
20140094797,
20150022342,
20150065944,
20150065964,
CN1103807,
223367,
D263020, Jan 22 1980 Retractable knife
D266842, Jun 27 1980 Phonograph record spacer
D278306, Jun 30 1980 Microwave oven rack
D295893, Sep 25 1985 MEDICAL ACTION INDUSTRIES INC Disposable surgical clamp
D295894, Sep 26 1985 MEDICAL ACTION INDUSTRIES INC Disposable surgical scissors
D354218, Oct 01 1992 Fiberslab Pty Limited Spacer for use in concrete construction
D424693, Apr 08 1999 ASPEN SURGICAL PRODUCTS, INC Needle guide for attachment to an ultrasound transducer probe
D424694, Oct 23 1998 VALLEYLAB, INC Forceps
D425201, Oct 23 1998 Covidien AG; TYCO HEALTHCARE GROUP AG Disposable electrode assembly
D449886, Oct 23 1998 Sherwood Services AG Forceps with disposable electrode
D457958, Apr 06 2001 Covidien AG; TYCO HEALTHCARE GROUP AG Vessel sealer and divider
D457959, Apr 06 2001 Covidien AG; TYCO HEALTHCARE GROUP AG Vessel sealer
D487039, Nov 27 2002 Robert Bosch Corporation Spacer
D496997, May 15 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Vessel sealer and divider
D499181, May 15 2003 Covidien AG; TYCO HEALTHCARE GROUP AG Handle for a vessel sealer and divider
D525361, Oct 06 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Hemostat style elongated dissecting and dividing instrument
D531311, Oct 06 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Pistol grip style elongated dissecting and dividing instrument
D533942, Jun 30 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Open vessel sealer with mechanical cutter
D535027, Oct 06 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Low profile vessel sealing and cutting mechanism
D541418, Oct 06 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Lung sealing device
D541938, Apr 09 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Open vessel sealer with mechanical cutter
D564662, Oct 13 2004 Covidien AG; TYCO HEALTHCARE GROUP AG Hourglass-shaped knife for electrosurgical forceps
D576932, Mar 01 2005 Robert Bosch Corporation Spacer
D594736, Aug 13 2008 Saint-Gobain Ceramics & Plastics, Inc.; Saint-Gobain Ceramics & Plastics, Inc Spacer support
D594737, Oct 28 2008 Meadow Burke, LLC Rebar chair
D606203, Jul 04 2008 CAMBRIDGE TEMPERATURE CONCEPTS, LTD Hand-held device
D613412, Aug 06 2009 Covidien LP Vented microwave spacer
D634010, Aug 05 2009 Covidien LP Medical device indicator guide
D681810, Mar 05 2012 Covidien LP Ergonomic handle for ablation device
DE4303882,
DE102004022206,
DE102009015699,
DE10224154,
DE10310765,
DE10328514,
DE1099658,
DE1139927,
DE1149832,
DE1439302,
DE19608716,
DE19717411,
DE19751106,
DE19751108,
DE19801173,
DE19848540,
DE202005015147,
DE2407559,
DE2415263,
DE2429021,
DE2439587,
DE2455174,
DE2460481,
DE2504280,
DE2540968,
DE2602517,
DE2627679,
DE2803275,
DE2820908,
DE2823291,
DE2946728,
DE29616210,
DE3045996,
DE3120102,
DE3143421,
DE3510586,
DE3604823,
DE3711511,
DE3904558,
DE390937,
DE3942998,
DE4238263,
DE4303882,
DE4339049,
DE8712328,
EP246350,
EP521264,
EP556705,
EP558429,
EP648515,
EP836868,
EP882955,
EP1034747,
EP1034748,
EP1055400,
EP1159926,
EP2147651,
EP2322113,
FR1275415,
FR1347865,
FR179607,
FR2235669,
FR2276027,
FR2313708,
FR2502935,
FR2517953,
FR2573301,
FR2862813,
FR2864439,
JP11244298,
JP2000342599,
JP2000350732,
JP2001003776,
JP2001008944,
JP2001029356,
JP2001037775,
JP2001128990,
JP2001231870,
JP2008142467,
JP540112,
JP55106,
JP6343644,
JP7265328,
JP8056955,
JP8252263,
JP856955,
JP9000492,
JP9010223,
KR20070093068,
KR20100014406,
KR20120055063,
SU166452,
SU401367,
SU727201,
WO10456,
WO36985,
WO57811,
WO100114,
WO167035,
WO245790,
WO2006084676,
WO2008068485,
WO2010035831,
WO9416632,
WO9724074,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 11 2009DECARLO, ARNOLD V VIVANT MEDICAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0412720018 pdf
Dec 26 2012VIVANT MEDICAL, INC VIVANT MEDICAL LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0417350577 pdf
Dec 28 2012VIVANT MEDICAL LLCCovidien LPMERGER SEE DOCUMENT FOR DETAILS 0412730172 pdf
Dec 28 2012VIVANT MEDICAL LLCCovidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0417350802 pdf
Jun 25 2015Covidien LP(assignment on the face of the patent)
Date Maintenance Fee Events
Nov 20 2020M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Apr 11 20204 years fee payment window open
Oct 11 20206 months grace period start (w surcharge)
Apr 11 2021patent expiry (for year 4)
Apr 11 20232 years to revive unintentionally abandoned end. (for year 4)
Apr 11 20248 years fee payment window open
Oct 11 20246 months grace period start (w surcharge)
Apr 11 2025patent expiry (for year 8)
Apr 11 20272 years to revive unintentionally abandoned end. (for year 8)
Apr 11 202812 years fee payment window open
Oct 11 20286 months grace period start (w surcharge)
Apr 11 2029patent expiry (for year 12)
Apr 11 20312 years to revive unintentionally abandoned end. (for year 12)