The present invention describes a method for the synthesis of enantiomerically pure 3-amidinophenylalanine derivatives, which are used as pharmaceutically effective urokinase inhibitors, by starting from 3-cyanophenylalanine derivatives. The methods of manufacture comprising only one synthesis step lead to new intermediates, namely 3-hydroxyamidino- and 3-amidrazonophenylalanine derivatives. These intermediates or their acetyl derivatives can be reduced into the desired 3-amidino-phenylalanine derivatives under gentle conditions (H2 or ammonium formiate formate, Pd/C (approx. 10%), ethanol/water, room temperature, normal pressure or also H2, Pd/C, AcOH or HCl/ethanol, 1-3 bar) in excellent yields and in an enantiomeric excess of up to 99.9%.
|
##STR00004##
or salts thereof formed with acids, which are present as either L- or D-configurated isomers and wherein R1 is selected from the group consisting of:
(a) a group of formula
##STR00005##
wherein
(i) p=1 and r=2 and R2 is benzyloxycarbonyl, benyzlaminocarbonyl benzylaminocarbonyl or 2-thienylhydrazinocarbonyl or
(ii) p=2 and r=1 and R2 is ethoxycarbonyl, 2-propyloxycarbonyl, 2-propylcarbonyl, 2-propylaminocarbonyl, methylaminocarbonyl or methyl; and
(b) a group of formula
##STR00006##
wherein R3 is selected from the group consisting of methoxycarbonyl, ethoxycarbonyl, benzyloxycarbonyl, dimethylaminocarbonyl, acetyl, and propionyl,
comprising the reduction of a compound of the general formula (IIa)
##STR00007##
present as L- or D-enantiomers, as (E)- or (Z)-isomers or (E/Z)-mixtures, and wherein R1 is selected from the group consisting of:
(a) a group of formula
##STR00008##
wherein
(i) p=1 and r=2 and R2 is benzyloxycarbonyl, benyzlaminocarbonyl benzylaminocarbonyl or 2-thienylhydrazinocarbonyl or
(ii) p=2 and r=1 and R2 is ethoxycarbonyl, 2-propyloxycarbonyl, 2-propylcarbonyl, 2-propylaminocarbonyl, methylaminocarbonyl or methyl; and
(b) a group of formula
##STR00009##
wherein R3 is selected from the group consisting of methoxycarbonyk methoxycarbonyl, ethoxycarbonyl, benzyloxycarbonyl, dimethylaminocarbonyl, acetyl, and propionyl,
in the presence of Pd/C in an alcoholic-aqueous solution with hydrogen or ammonium formiate formate.
2. The method of
0. 3. The method of
4. The method of claim 3 1, wherein the acetoxyamidino derivatives are hydrogenated in the presence of Pd/C in an alcoholic, acetic acid- or hydrogen chloride-containing solution at a pressure of 1-3 bar.
5. The method of claim 3 1, wherein the transformation of the compounds of formula (IIa) into the corresponding acetoxyamidino derivatives occurs at a temperature between 20 and 60° C.
6. The method of
7. The method of
8. The method of
9. The method of
|
This application formiate formate (which is advantageously applied in an at least 4-fold excess) either by directly starting from unsubstituted amidoxime, or over the acetylated amidoxime manufactured in situ with acetanhydride in the presence of hydrochloric acid, advantageously at 20 to 60° C., in an alcoholic-aqueous solution, preferably in an ethanolic-aqueous solution, advantageously in the ratio of 1:1 to 20:1, preferably 3:1 to 10:1, ideally 5:1, in the presence of Pd/C, advantageously 1 to 50%, preferably 5 to 30% Pd/C (approx. 10%), advantageously at normal pressure and a temperature between 10 and 50° C., preferably between 20 and 30° C., ideally at room temperature. However, reduction can also occur by hydrogenation in the presence of Pd/C in an alcoholic, acetic acid-containing solution at a pressure of about 1-3 bar.
In a second embodiment of the method of the present invention, transformation of 3-cyanophenylalanine derivatives of general formula (III) into 3-amidinoderivatives of general formula I occurs over the amidrazone intermediate of general formula (IIb) by boiling, advantageously for 2 to 20 hours, preferably for 4 to 10 hours, a compound of formula (III) with an excess of hydrazine in alcoholic, preferably ethanolic solution. Reduction of the amidrazone intermediate (IIb) into the corresponding amidine (I) occurs under the same conditions as those starting from amidoxime (IIa).
Further objects of the present invention are compounds of general formula (II) as represented in
##STR00003##
as (L)- or (D)-enantiomers, and as (E)- or (Z)-isomers or (E/Z)-mixtures, and as free bases or as salts thereof formed with acids.
The following examples further explain the improved methods of synthesis of the present invention and the synthesis of new intermediates, however without restricting the invention.
Analysis of the eluates and products obtained according to the examples was carried out with 1H-NMR, HPLC electrospray MS or elementary analysis. The enantiomeric excess was determined according to known methods using HPLC and chiral analytical columns. The starting compounds of general formula (III) and their manufacture are known (e.g. WO 00/17158).
75.4 g (0.126 mol) of N-α-2,4,6-triisopropylphenylsulfonyl-3-cyano-(L)-phenylalanine-4-ethoxycarbonyl piperazide was dissolved in 1.5 l of ethanol, the solution was mixed with 32.5 g (0.47 mol) of hydroxylamine hydrochloride and with a solution of 25.4 g (0.24 mol) of Na2CO3 in 0.5 l of water and refluxed for 6 hours (80° C.). The crude product obtained after evaporation of the solvent was taken up in 1.5 l of ethyl acetate and extracted with water (3×0.5 l), washed with saturated NaCl, dried over Na2SO4, filtered and the solvent was evaporated. Yield: 71.3 g (90%).
71.3 g (0.113 mol) of the N-α-2,4,6-triisopropylphenylsulfonyl-3-oxamidino-(L)-phenylalanine-4-ethoxycarbonyl piperazide obtained under (A) was dissolved in 0.71 l of ethanol and the solution was mixed with a suspension of 14.2 g of 10% palladium coal in 140 ml of water. Injection of hydrogen until saturation was followed by hydration until complete transformation at normal pressure (approx. 5 hours). The suspension was filtered over Celite, washed with ethanol/water (9:1) and the solvent was evaporated. The crude product obtained was purified over silica gel 60 (ethyl acetate/2-propanol, 8:2) and finally transformed into the corresponding hydrochloride over Amberlite IRA-400 (Cl− form) in 2-propanol/water (8:2). Yield: 65.4 g (89%), ee-value: 99.9% of the (L) form.
71.3 g (0.113 mol) of the N-α-2,4,6-triisopropylphenylsulfonyl-3-oxamidino-(L)-phenylalanine-4-ethoxycarbonyl piperazide was dissolved in 0.71 l of ethanol, the solution was mixed with 45.6 g (0.46 mol) of acetic anhydride and stirred for 10 min. at room temperature. Afterwards, 0.46 l of 1 N HCl was added and the thereby warm becoming solution was further stirred for 10 min. After cooling to room temperature, 29 g (0.46 mol) of ammonium formiate formate was added and the mixture was stirred for 5 min. After addition of a suspension of 14.2 g of 10% Pd/C in 140 ml of water, the mixture was stirred for 24 hours at room temperature. After HPLC check of the reaction completion, the suspension was filtered over Celite, washed with a 1:9 mixture of water/ethanol and the solvent was evaporated. The crude product was taken up in 1.5 l of EtOAc, washed with 3 portions of 0.5 l each of 1N HCl, water and saturated NaCl, and dried over Na2SO4. After chromatographic purification over silica gel 60 with ethylacetate/2-propanol (8:2) and subsequent ion exchange chromatography over Amberlite IRA-400 (Cl− form) in 2-propanol/water (8:2) for the conversion into the corresponding hydrochloride, 62.5 g (85%) of product was obtained. ee value: 99.9% of the (L) form.
2.3 g (3.6 mmol) of Nα-2,4,6-triisopropylphenylsulfonyl-(L)-3-cyanophenylalanyl-nipecotinic acid benzylamide was dissolved in 45 ml of ethanol and the solution was mixed with 0.94 g (13.6 mmol) of hydroxylamine hydrochloride followed by a solution of 0.74 g (7 mmol) of Na2CO3 in 15 ml of water and refluxed for 6 hours (80° C.). The crude product obtained after evaporation of the solvent was taken up in 100 ml of ethylacetate, extracted with water (3×30 ml), washed with saturated NaCl, dried over Na2SO4 and filtered, and the solvent was evaporated. Yield: 2.1 g (87%).
2.1 g (3.1 mmol) of the N-α-2,4,6-triisopropylphenylsulfonyl-(L)-3-oxamidino-phenylalanyl-nipecotinic acid benzylamide obtained under (A) was dissolved in 20 ml of ethanol and the solution was mixed with a suspension of 0.4 g of 10% palladium coal in 5 ml of water. Injection of hydrogen until saturation was followed by hydration at normal pressure until complete transformation (approx. 4 hours). The suspension was filtered over Celite, washed with ethanol/water (9:1) and the solvent was evaporated. The crude product obtained was purified over silica gel 60 (ethylacetate/2-propanol, 8:2) and finally converted into the corresponding hydrochloride over Amberlite IRA-400 (Cl− form) in 2-propanol/water (8:2). Yield: 1.74 g (85%), ee value: 99.7% of the (L) form.
75.4 g (0.126 mol) of N-α-2,4,6-triisopropylphenylsulfonyl-3-cyano-(L)-phenylalanine-4-ethoxycarbonyl piperazide was dissolved in 1.5 l of ethanol, the solution was mixed with 18.1 g (0.47 mol) of a 100% hydrazine hydrate solution and refluxed for 6 hours (80° C.). The crude product obtained after evaporation of the solvent was taken up in 1.5 l of ethylacetate, extracted with water (3×0.5 l), washed with saturated NaCl, dried over Na2SO4 and filtered, and the solvent was evaporated. Yield: 65.7 g (83%).
65.5 g (0.104 mol) of the N-α-2,4,6-triisopropylphenylsulfonyl-3-amidrazono-(L)-phenylalanine-4-ethoxycarbonyl piperazide obtained under (A) was dissolved in 0.66 l of ethanol and the solution was mixed with a suspension of 13.1 g of 10% palladium coal in 130 ml of water. Injection of hydrogen gas until saturation was followed by hydration at normal pressure until complete transformation (approx. 5 hours). The suspension was filtered over Celite and washed with ethanol/water (9:1), and the solvent was evaporated. The crude product obtained was purified over silica gel 60 (ethylacetate/2-propanol, 8:2) and finally converted into the corresponding hydrochloride over Amberlite IRA-400 (Cl− form) in 2-propanol/water (8:2). Yield: 54.1 g (80%), ee value: 99.8% of the (L) form.
Wikstroem, Peter, Ziegler, Hugo
Patent | Priority | Assignee | Title |
11045453, | Mar 10 2020 | RedHill Biopharma Ltd. | Serine protease inhibitor for treating coronavirus infection |
11052073, | Mar 10 2020 | RedHill Biopharma Ltd. | Sphingosine kinase 2 inhibitor for treating coronavirus infection |
11364227, | Mar 10 2020 | RedHill Biopharma Ltd. | Sphingosine kinase 2 inhibitor for treating coronavirus infection |
11471448, | Dec 15 2020 | REDHILL BIOPHARMA LTD | Sphingosine kinase 2 inhibitor for treating coronavirus infection in moderately severe patients with pneumonia |
11918560, | Mar 10 2020 | RedHill Biopharma Ltd. | Serine protease inhibitor for treating coronavirus infection |
12115150, | Dec 15 2020 | RedHill Biopharma Ltd. | Biomarkers of coronavirus pneumonia |
Patent | Priority | Assignee | Title |
2375611, | |||
5518735, | Nov 15 1990 | Wilex AG | Meta-substituted phenylalanine derivatives |
5852051, | Dec 06 1994 | ABBOTT GMBH & CO KG | Dipeptide p-amidinobenzylamides with N-terminal sulfonyl or aminosulfonyl radicals |
6342609, | May 30 1997 | Daiichi Pharmaceutical Co., Ltd. | Process for preparing 3-(7-amidino-2-naphthyl)-2-phenylpropionic acid derivatives |
6838460, | Jan 21 2000 | BOEHRINGER INGELHEIM PHARMA GMBH & CO KG | Substituted phenylamidines medicaments containing said compounds and method for production thereof |
7745441, | Sep 18 1998 | Wilex AG | Urokinase inhibitors |
CH689611, | |||
EP739886, | |||
JP10509727, | |||
WO17158, | |||
WO153280, | |||
WO155175, | |||
WO9854132, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 31 2013 | Wilex AG | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 20 2019 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Aug 21 2023 | REM: Maintenance Fee Reminder Mailed. |
Feb 05 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 06 2020 | 4 years fee payment window open |
Dec 06 2020 | 6 months grace period start (w surcharge) |
Jun 06 2021 | patent expiry (for year 4) |
Jun 06 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 06 2024 | 8 years fee payment window open |
Dec 06 2024 | 6 months grace period start (w surcharge) |
Jun 06 2025 | patent expiry (for year 8) |
Jun 06 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 06 2028 | 12 years fee payment window open |
Dec 06 2028 | 6 months grace period start (w surcharge) |
Jun 06 2029 | patent expiry (for year 12) |
Jun 06 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |