A display system includes a driver for operating a panel having a plurality of pixels arranged by a plurality of first lines and at least one second line The driver includes a driver output unit for providing to the panel a single driver output for activating the plurality of first lines, the single driver output being demultiplexed on the panel to activate each first line.
|
0. 4. A method of driving a display panel having a multiplicity of pixels arranged in rows and columns, each of said pixels having a drive transistor that includes a gate, a source and a drain, said method comprising:
multiplexing driver signals to generate a single gate driver signal;
providing a single gate driver signal for multiple rows of said pixels of said display panel,
demultiplexing the single gate driver signal by controllably coupling said single gate driver signal to selected ones of said multiple rows of pixels in sequence, and controllably disconnecting said gate driver signal from said multiple rows of pixels to which said single gate driver signal is not coupled.
1. A drive system for an a light emitting device (led) display panel having a multiplicity of led pixels arranged in rows and columns, each of said led pixels having a drive transistor that includes a gate, a source and a drain and each of said led pixels further having an led coupled to said drive transistor, comprising:
a gate driver having at least one address cell providing a single gate driver output for multiple rows of pixels of said led display panel,
a gate driver multiplexer and a demultiplexer that includes multiple switch blocks coupled to the gate driver and controllably coupling said single gate driver output to said multiple rows of pixels in sequence so that whenever such that when a selected one of said multiple rows is connected to said single gate driver output, all the other said multiple rows are disconnected from said single-game single-gate driver output.
2. A display system according to
at least one multiplexer, the multiplexer for multiplexing driver signals to provide the single gate driver output.
3. A display system according to
a demultiplexer having a plurality of switch blocks for activating the first lines multiple rows, each switch block receiving outputs from the at least one multiplexer.
|
The present invention relates to a display system, more specifically to a method and system for driving light emitting displays.
A display device having a plurality of pixels (or subpixels) arranged in a matrix has been widely used in various applications. Such a display device includes a panel having the pixels and peripheral circuits for controlling the panels. Typically, the pixels are defined by the intersections of scan lines and data lines, and the peripheral circuits include a gate driver for scanning the scan lines and a source driver for supplying image data to the data lines. The source driver may include gamma corrections for controlling gray scale of each pixel. In order to display a frame, the source driver and the gate driver respectively provide a data signal and a scan signal to the corresponding data line and the corresponding scan line. As a result, each pixel will display a predetermined brightness and color.
In recent years, the matrix display has been widely employed in small electronic devices, such as handheld devices, cellular phones, personal digital assistants (PDAs), and cameras. However, the conversional scheme and structure of the source driver and the gate driver demands the large number of elements (e.g., resistors, switchers, and operational amplifiers), resulting that the layout area of the peripheral circuits is still large and expensive.
Therefore there is a need to provide a display driver that can reduce a driver die area and thus cost, without reducing the driver performance.
It is an object of the invention to provide a method and system that obviates or mitigates at least one of the disadvantages of existing systems.
According to an embodiment of this disclosure, there is provided a display system, which includes: a driver for operating a panel having a plurality of pixels arranged by a plurality of first lines and at least one second line, the driver having: a driver output unit for providing to the panel a single driver output for activating the plurality of first lines, the single driver output being demultiplexed on the panel to activate each first line.
According to an embodiment of this disclosure, there is provided a display system, which includes: a driver for operating a panel having a plurality of pixels arranged by a plurality of data lines and at least one scan line, the driver having: a shift register unit including a plurality of shift registers; a latch and shift register unit including a plurality of latch and shift circuits for the plurality of shift registers, each storing an image signal from the corresponding shift register or shifting the image signal to a next latch and shift circuit; and a decoder unit including at least one decoder coupled to one of the latch and shift circuits, for decoding the image signal latched in the one of the latch and shift circuit to provide a driver output.
According to an embodiment of this disclosure, there is provided a display system, which includes: a driver for operating a panel having a plurality of pixels, the driver having: a plurality of multiplexers for a plurality of offset gamma curve sections, each offset gamma curve section having a first range less than a second range of a main gamma curve, at least one of offset gamma curve sections being offset by a predetermined voltage from a corresponding section of the main gamma curve; a plurality of decoders for the plurality of multiplexers; and an output buffer for providing a driver output based on the output from the decoder and the predetermined voltage.
These and other features of the invention will become more apparent from the following description in which reference is made to the appended drawings wherein:
One or more currently preferred embodiments have been described by way of example. It will be apparent to persons skilled in the art that a number of variations and modifications can be made without departing from the scope of the invention as defined in the claims.
Embodiments in this disclosure are described using a panel having pixels that are coupled to at least first line and at least one second line (e.g., scan lines and data lines) and being operated by a driver. The driver may be a driver IC having a plurality of pins, e.g., source driver ICs, gate driver ICs. The panel may be, for example, but not limited to, a LCD or LED panel. The panel may be a color panel or a monochrome panel.
In the description below, the terms “source driver” and “data driver” are used interchangeably, and the terms “gate driver” and “address driver” are used interchangeably. In the description below, the terms “row”, “scan line” and “address line” may be used interchangeably. In the description below, the terms “column”, “data line” and “source line” may be used interchangeably. In the description below, the terms “pixel” and “subpixel” may be used interchangeably.
Referring to
The gate driver 102 includes a driver output unit 104 having at least one address cell 106 (Cell #i). The address cell 106 provides a single gate driver output 108 which is shared by M rows. An individual gate driver output 108 from the gate driver 102 is active for M rows. On the panel side 110, a demultiplexer 112 (“1:M Demuxs” in
The demultiplexer 112 is implemented using, for example, thin film transistors, on the panel 110. The demultiplexer 112 includes a plurality of switch blocks for activating M rows. In
In
Referring to
After the programming of the row SEL (i−1)*M+1, the next control signal CTRL (2) is high, resulting that the next row SEL (i−1)*M+2 becomes active. This continues till the entire display is programmed (end of a frame).
If a row is not active, the control signal related to that row is low or the address cell related to that row is not active. Thus, the row is connected to VGL which will disconnect the pixels in that row from the gate driver 102.
Referring to
In the system 130, gate driver output signals are multiplexed on the gate driver 132 side, and the outputs from the gate driver 132 are demultiplexed on the panel 140 side.
The gate driver 132 includes a driver output unit 133 having a plurality of multiplexers for a plurality of address cells. Each address cell provides a gate driver signal, and each multiplexer multiplexing the gate driver signals and outputs a single gate driver output. In
The panel 140 includes a multiplexer 142 (“1:M Demuxs” in
Each switch group block in the panel 140 includes a plurality of switch blocks 148. In
In
In this structure, the physical multiplexing is used at the gate driver side 132. As a result, the number of address cells remains the same while the number of gate driver outputs is reduced by a factor of multiplexing blocks. The number of rows in each set (SET #k) can be increased for further reduction in output of the gate driver and the frequency of the control signals. Since multiple gate driver outputs can be active, the operation frequency of the demultiplexing control signals is reduced.
Referring to
After the programming of the rows SEL (i) and SEL (i+1), the next control signal CTRL (2) is high (152), resulting that the next rows SEL (i+2) and SEL (i+3) become active. At this period (152), the control signal iCTRL is in the other state (e.g., high). The gate driver output 136a corresponds to the output from the address cell 138c (Cell #i+2) and the gate driver output 136b corresponds to the output from the address cell 138d (Cell #i+3). The image data can be written in the pixels of the selected rows SEL (i+2) and SEL (i+3). This continues till the entire display is programmed (end of a frame).
If a row is not active, the control signal related to that row is low or the address cell related to that row is not active. Thus, the row is connected to VGL which will disconnect the pixels in that row from the gate driver 132.
Referring to
The source driver 162 includes a driver output unit 164 having a CMOS multiplexer 166 and a CMOS digital to analog converter (DAC) 170. The multiplexer 166 multiplexes a Red gamma correction 168a, a Green gamma correction 168b and a Blue gamma correction 168c. The DAC 170 includes a decoder. In the description, the terms “DAC” and “DAC decoder” may be used interchangeably.
Each of the gamma corrections 168a, 168b and 168c provides a reference voltage to the DAC 170. The reference voltage is selected based on the dynamic range of the DAC decoder 170. The reference voltage at the gamma correction block may be generated using, for example, resistors, or be stored using, for example, registers.
The output from the multiplexer 166 is provided to the DAC 170. The multiple gammas share one decoder in the DAC 170. The DAC decoder 170 operates on an output from a multiplexer 172. The multiplexer 172 multiplexes a Red register (reg) 174a for storing image data for Red, a Green register (reg) 174b for storing image data for Green, and a Blue register (reg) 174c for storing image data for Blue. The CMOS DAC 170 provides a single source driver output 174.
A demultiplexer 182 is employed on the panel 180 side to demultiplex the driver output 174 from the source driver 162. The demultiplexer 182 is implemented using, for example, thin film transistors, on the panel 180. The outputs from the demultiplexer 182 are couples to three data lines. The driver output 174 is demultiplexed 182 on the panel 180 side and goes to different subpixels (i.e., Red subpixel, Blue subpixel and Green subpixel).
In the system 160, the output of the source driver 162 is multiplexed to reduce the number of driver pins and demultiplexed at the panel 180. To further improve the size of the driver area, the multiplexing is executed at few stage earlier at the gamma selection and DAC inputs. For example, when, the Red pixels are being programmed at the panel 180, the Red data (Red register 174a) and the red gamma 168a are assigned to the DAC 170.
The multiplexers 166 and 172 may be controlled by a color selection control signal ColorSel. The demultiplexer 182 may be controlled by the control signal ColorSel or a control signal associated with the multiplexing control signal ColorSel.
As shown in
Generally, the output range of the voltage required for the light emitting displays is high and thus source drivers are to be a rail-to-rail design for the power. Currently, this results in using multiple CMOS decoders, leading to a larger area source driver. Referring to
The source driver 192 includes gamma corrections for Red, Blue and Green, each providing a reference voltage to a DAC decoder. The reference voltage is selected based on the dynamic range of the decoder. The reference voltage may be generated using, for example, resistors, or be stored using, for example, registers. Each gamma correction has a high voltage level gamma correction (high voltage level of gamma corrections) and a low voltage level gamma correction (low voltage level of gamma corrections). The high voltage level of gamma corrections is a level from a predefined reference voltage to the high point of the driver output, and the low voltage level of gamma corrections is a level from the predetermined reference voltage to the beginning of the gamma voltage. The predetermined reference voltage may be at the middle for the driver output range. For example, if the driver range is 10V, the predetermined reference voltage is 5V; the high voltage level of gamma corrections is 5 to 10V; and the low voltage level of gamma corrections is 0 to 5V.
The source driver 192 includes a driver output unit 194 having a PMOS multiplexer 196 for the high voltage level of gamma corrections, and a NMOS multiplexer 200 for the low voltage level of gamma corrections. In
The driver output unit 194 includes a DAC that is divided into separate components: a PMOS component 204 (“PMOS DAC” in
The driver output unit 194 includes a CMOS multiplexer 212 for multiplexing the outputs from the PMOS and NMOS components 204 and 206. The multiplexer 212 is operated by an output from a multiplexer 214. The multiplexer 214 multiplexes bit signals R[j], G[i], and B[k], based on the color selection control signal ColorSel. R[j] (G[i], B[k]) is a bit that defines when to use which part of the gamma for Red (Green, Blue). The bit R[j] (G[i], B[k]) is generated based on the Red register 210a (210b, 210c) and predefined data about the gamma curve for Red (Green, Blue), e.g., gamma values. The multiplexer 212 outputs a single source driver output 216.
When the bit signal R[j] is active and the other signals are not active, the source driver 192 outputs the driver output 216 based on either the high Red gamma correction or the low Red gamma correction.
A demultiplexer 222 is employed on the panel 220 side to demultiplex the source driver output 216. The demultiplexer 222 corresponds to the demultiplexer 182 of
Based on the image data, one of the low gamma correction and the high gamma correction is selected. For example, if the high voltage level of gamma corrections is 5 to 10V, the low voltage level of gamma corrections is 0 to 5V, and the image data requires 6 V, the high end of gamma correction will be selected.
Based on the color selection control signal ColorSel, the Red pixels, Green pixels and Blue pixels may be programmed sequentially, similar to that of
Instead of using a CMOS decoder that has twice as many transistors as a PMOS or NMOS decoder for the entire range the output voltage, the PMOS decoder 204 is used for the higher range and the NOMS decoder 206 for the lower range of the voltage. Thus, the area will be reduced by using twice less transistors.
Referring to
The source driver 232 includes gamma corrections for White, Green, Blue and Red, each providing a reference voltage to a DAC decoder. The gamma correction may be generated using, for example, resistors, or be stored using, for example, registers. Each gamma correction has a high voltage level gamma correction (high voltage level of gamma corrections) and a low voltage level gamma correction (low voltage level of gamma corrections). As described above, the high voltage level of gamma corrections is a level from the reference voltage to the reference voltage to the high point of the driver output, and the low voltage level of gamma corrections is a level from the reference voltage to the beginning of the gamma voltage.
The source driver 232 includes a driver output unit 270 having PMOS multiplexers 240a and 240b for high voltage level of gamma corrections, and NMOS multiplexers 244a and 244b for low voltage level of gamma corrections. The multiplexer 240a multiplexes a high White gamma correction 242a and a high Green gamma correction 242b, and the multiplexer 240b multiplexes a high Blue gamma correction 242c and a high RED gamma correction 242d. The multiplexer 244a multiplexes a low White gamma correction 246a and a low Green gamma correction 246b, and the multiplexer 244b multiplexes a low Blue gamma correction 246c and a low RED gamma correction 246d.
The driver output unit 270 includes a PMOS multiplexer 248 for multiplexing the outputs from the PMOS multiplexers 240a and 240b, and a NMOS multiplexer 250 for multiplexing the outputs from the NMOS multiplexers 244a and 244b. Based on the image data and a color selection, one of the low gamma correction and the high gamma correction for the selected color is selected.
The driver output unit 270 includes a DAC that is divided into separate components; a PMOS component 252 (“PMOS DAC” in
The PMOS and NMOS decoders in the components 252 and 254 operate on an output from a multiplexer 256 for multiplexing a White/Blue register 258a and a Green/Red register 258b. The White/Blue register 258a stores image data for White/Blue. The Green/Red register 258b stores image data for Green/Red. In the RGBW structure, each data line carries data for two different colors. In this example, one data line carries data for White and Blue, and the other data line carries data for Green and Red. In one row, a data line is connected, for example, to White pixels (Green pixels) while during the next row it is connected to Blue pixels (Red pixels). As a result, the register 258a used for White and Blue data is shared, and the register 258b used for Green and Red is shared.
The driver output unit 270 includes a CMOS multiplexer 260 for multiplexing the outputs from the PMOS and NMOS decoders in the components 252 and 254. The multiplexer 260 is operated by a multiplexer 262 for multiplexing bit signals G/R[i] and W/B[k]. W/B[k] (G/R[j]) is a bit that defines when to use which part of the gamma for White or Blue (Green or Red). The bit W/B[k (G/R[j]) is generated based on the White/Blue register 258a (Green/Red register 258b) and predefined gamma values for White and Blue (Green and Red). The multiplexer 260 provides a source driver output 264.
When the bit signal W/B[k] is active, the source driver 192 outputs the source driver output 264 based on the high White gamma correction, the low White gamma correction, the high Blue gamma correction, the low White gamma correction or the low Blue gamma correction.
A demultiplexer 272 is employed in the panel 270 side to demultiplex the driver output 264 from the source driver 232. The demultiplexer 272 is implemented using, for example, thin film transistors, on the panel 270. The outputs from the demultiplexer 272 are couples to two data lines 274 and 276. The demultiplexer 272 is controlled by a control signal associated with the color selection. Based on the output from the demultiplexer 272, one of two data lines 274 and 276 is active. The driver output 264 is demultiplexed 272 on the panel 270 side and goes to different subpixels (i.e., White subpixel, Blue subpixel, Green subpixel, Red subpixel).
In the source driver 232, one PMOS decoder 254 is used for the higher range and one NOMS decoder 254 for the lower range of the voltage. Thus, the area will be reduced by using twice less transistors than a CMOS decoder.
In the panel 270, instead of having four Red subpixel, Green subpixel, Blue subpixel, and White subpixel side by side, they are configured in a quad arrangement where two subpixels for two colors are in one row and the other two colors are in the other row. In this example, one data line 274 carries data for White and Blue subpixels 278a and 278b, and the other data line 276 carries data for Green and Red subpixels 278c and 278d, as shown in
Referring to
A PMOS multiplexer 292 is employed in the external gamma buffer area 290 for high voltage level of gamma corrections, and a NMOS multiplexer 294 is employed in the external gamma buffer area 290 for low voltage level of gamma corrections. The multiplexer 292 multiplexes a high Red gamma correction 296a, a high Green gamma correction 296b and a high Blue gamma correction 296c, and the multiplexer 294 multiplexes a low Red gamma correction 298a, a low Green gamma correction 298b and a low Blue gamma correction 298c. The gamma corrections 296a, 296b and 296c correspond to the gamma corrections 198a, 198b and 198c of
The source driver 282 includes a driver output unit 284. The driver output unit 284 includes a DAC that is divided into separate components: a PMOS component 300 (“PMOS DAC” in
The driver output unit 284 includes a CMOS multiplexer 308 for multiplexing the outputs from the PMOS and NMOS components 300 and 302. The multiplexer 308 is operated by a multiplexer 310 for multiplexing bit signals R[j], G[i] and B[k]. The multiplexers 308 and 310 correspond to the multiplexers 212 and 214 of
A demultiplexer 322 is employed on the panel 320 side to demultiplex the driver output 264 from the source driver 282. The demultiplexer 322 corresponds to the demultiplexer 182 of
In this example, the PMOS decoder component 300 is used for the higher range and the NOMS decoder component 302 for the lower range of the voltage. Thus, the source area will be reduced by using twice less transistors than that of a CMOS decoder. In addition, the gammas are multiplexed and provided from the outside of the source driver 282 area, thus the number of inputs required for the gamma correction is reduced as well.
For small displays, the gamma correction is internally programmable. The data for gamma correction is stored in internal registers. To reduce the number of gamma registers, DAC resistive ladders and DAC decoders, the gamma registers are multiplexed, as shown in
The source driver 332 includes a driver output unit 334 having a multiplexer 340 for multiplexing a Red gamma register 342a, a Green gamma register 342b and a Blue gamma register 342c, each for storing the corresponding gamma correction data. The gamma correction is internally programmed (configurable), and the data for the gamma correction is stored in the resister. The driver output unit 334 includes a gamma circuit 344 for generating the gamma voltage based on its input signals from the multiplexer 340 (i.e., data from the gamma resister 342a, 342b, 342c). The gamma circuit 344 may be, for example, but not limited to, a digital potentiometer or a DAC.
The driver output unit 334 includes a CMOS DAC 346 that has a decoder and receives the output from the gamma correction 344. The DAC decoder in the DAC 346 operates on an output from a multiplexer 348 for multiplexing a Red register 350a, a Green register 350b and a Blue register 350c. The registers 350a, 350b and 350c correspond to the resisters 174a, 174b and 174c of
For further improving the source driver area, the DAC is divided into NMOS and PMOS decoders as shown in
The source driver 372 includes a driver output unit 374 having a multiplexer 380 for multiplexing a Red gamma register 382a, a Green gamma register 382b and a Blue gamma register 382c. The gamma registers 382a, 382b and 382c correspond to the gamma resisters 342a, 342b and 342c of
The driver output unit 374 includes PMOS and NMOS components 390 and 392. The PMOS component 390 includes a PMOS decoder and is provided for the high gamma 384. The NMOS component 392 includes a NMOA decoder and is provided for the low gamma 386. The PMOS and NMOS components 390 and 392 correspond to the PMOS and NMOS components 204 and 206 of
The driver output unit 374 includes a CMOS multiplexer 400 for multiplexing the outputs from the PMOS and NMOS decoders in the components 390 and 392. The multiplexer 400 is operated by a multiplexer 402 for multiplexing bit signals R[j], G[i] and B[k]. The bit signals R[j], G[i] and B[k] correspond to the bit signals R[j], G[i] and B[k] of
A demultiplexer 422 is employed on the panel 420 side to demultiplex the driver output 404 from the source driver 372. The demultiplexer 422 corresponds to the demultiplexer 182 of
To develop muxing in a source driver, data for each color is multiplexed as shown in
To further reduce the source area, the latch unit 456 is replaced with shift registers as shown in
It will be appreciated by one of ordinary skill in the art that the number of the shift registers and the number of the latch and shift registers are not limited to four and may vary. It will be appreciated by one of ordinary skill in the art that the source driver 480 may include components not illustrated in
Each latch and shift register in the second stage latch and shift unit 486 can copy its input signal and keep it intact till the next activation signal. The input signal to the latch and shift register may come from the corresponding first stage shift register or the previous latch and shift register in the chain. As a result, the latch and shift register can store the data for a row from the first stage shift register or it can shift its own data to the next units. For example, the latch and shift register 488a latches a digital image signal in response to an activation signal from the corresponding shift register 484a. The latched signal is shifted to the next latch and shift register 488b.
After the input signal for a row is stored in the shift register unit 482, the second stage latch unit 486 is activated and copies the signals from the shift register unit 482. After that, the second stage latch unit 486 shifts the data one by one to the DACs connected in M intervals connect to the latch unit where M defines the muxing order.
After the first color data is programmed, the latch data is shifted by the number of required bits so that the second data is stored in the latch 488c connected to the DAC 490. This operation is executed for other colors as well until all the colors are programmed. This implementation results in a simpler routing and smaller die area. It will be appreciated by one of ordinary skill in the art that a panel side may have a demultiplexer for demultiplexing the source driver 480 output associated with the M multiplexing operation. It will be appreciated by one of ordinary skill in the art that the source driver 480 is applicable to monochrome displays.
Referring to
The source driver 500 includes a gamma block 502 for changing the color (gray scale) mapping for a display, a resistive ladder 504 for generating reference voltages, and an overlapping multiplexer block 506 for the offset gamma curve sections.
The overlapping multiplexer block 506 includes a plurality of multiplexers, each for multiplexing reference voltages for different colors. In
The source driver 500 includes a DAC decoder section that is segmented into a plurality of low voltage decoders for the offset gamma curve sections. In
In
Referring to
The source driver 500 includes an output buffer 516. The output buffer 516 outputs a source driver output 520 based on the output from the decoder and the offset voltage.
Based on the pixel circuit data, one offset gamma curve section with its corresponding decoder is being selected. Then the data is passed to the output buffer 516. In order to create the required voltage, the created voltage is being shifted up at the output buffer 516. If a voltage is selected from the second gamma curve section 542 of
Each segment is in its own well so that the body bias can be adjusted accordingly. The decoder can be implemented in low voltage process, leading to smaller die area (over three times saving).
Referring to
Referring to
Referring to
In the above example, the gate drivers and the source drivers are described separately. However, one of ordinary skill in the art would appreciate that any of the gate drivers of
Chaji, Gholamreza, Li, Kongning, Gupta, Vasudha, Nathan, Arokia
Patent | Priority | Assignee | Title |
10242619, | Mar 08 2013 | IGNIS INNOVATION INC | Pixel circuits for amoled displays |
10290284, | May 28 2011 | IGNIS INNOVATION INC | Systems and methods for operating pixels in a display to mitigate image flicker |
10311790, | Dec 11 2012 | IGNIS INNOVATION INC | Pixel circuits for amoled displays |
10446086, | Oct 14 2015 | IGNIS INNOVATION INC | Systems and methods of multiple color driving |
10515585, | May 17 2011 | IGNIS INNOVATION INC | Pixel circuits for AMOLED displays |
10593263, | Mar 08 2013 | IGNIS INNOVATION INC | Pixel circuits for AMOLED displays |
11030955, | Dec 11 2012 | IGNIS INNOVATION INC | Pixel circuits for AMOLED displays |
9978310, | Dec 11 2012 | IGNIS INNOVATION INC | Pixel circuits for amoled displays |
Patent | Priority | Assignee | Title |
3506851, | |||
3750987, | |||
3774055, | |||
4090096, | Mar 31 1976 | Nippon Electric Co., Ltd. | Timing signal generator circuit |
4354162, | Feb 09 1981 | National Semiconductor Corporation | Wide dynamic range control amplifier with offset correction |
4996523, | Oct 20 1988 | Eastman Kodak Company | Electroluminescent storage display with improved intensity driver circuits |
5134387, | Nov 06 1989 | Texas Digital Systems, Inc. | Multicolor display system |
5153420, | Nov 28 1990 | Thomson Licensing | Timing independent pixel-scale light sensing apparatus |
5170158, | Jun 30 1989 | Kabushiki Kaisha Toshiba | Display apparatus |
5204661, | Dec 13 1990 | Thomson Licensing | Input/output pixel circuit and array of such circuits |
5266515, | Mar 02 1992 | Semiconductor Components Industries, LLC | Fabricating dual gate thin film transistors |
5278542, | Nov 06 1989 | Texas Digital Systems, Inc. | Multicolor display system |
5408267, | Jul 06 1993 | SAMSUNG ELECTRONICS CO , LTD | Method and apparatus for gamma correction by mapping, transforming and demapping |
5498880, | Jan 12 1995 | Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated | Image capture panel using a solid state device |
5572444, | Aug 19 1992 | MTL Systems, Inc. | Method and apparatus for automatic performance evaluation of electronic display devices |
5589847, | Sep 23 1991 | Thomson Licensing | Switched capacitor analog circuits using polysilicon thin film technology |
5619033, | Jun 07 1995 | Xerox Corporation | Layered solid state photodiode sensor array |
5648276, | May 27 1993 | Sony Corporation | Method and apparatus for fabricating a thin film semiconductor device |
5670973, | Apr 05 1993 | Cirrus Logic, Inc. | Method and apparatus for compensating crosstalk in liquid crystal displays |
5691783, | Jun 30 1993 | Sharp Kabushiki Kaisha | Liquid crystal display device and method for driving the same |
5701505, | Sep 14 1992 | Fuji Xerox Co., Ltd. | Image data parallel processing apparatus |
5714968, | Aug 09 1994 | VISTA PEAK VENTURES, LLC | Current-dependent light-emitting element drive circuit for use in active matrix display device |
5744824, | Jun 15 1994 | Sharp Kabushiki Kaisha | Semiconductor device method for producing the same and liquid crystal display including the same |
5745660, | Apr 26 1995 | Intellectual Ventures I LLC | Image rendering system and method for generating stochastic threshold arrays for use therewith |
5748160, | Aug 21 1995 | UNIVERSAL DISPLAY CORPORATION | Active driven LED matrices |
5758129, | Jul 21 1993 | PGM Systems, Inc. | Data display apparatus |
5835376, | Oct 27 1995 | TechSearch, LLC | Fully automated vehicle dispatching, monitoring and billing |
5870071, | Sep 07 1995 | EIDOS ADVANCED DISPLAY, LLC | LCD gate line drive circuit |
5874803, | Sep 09 1997 | TRUSTREES OF PRINCETON UNIVERSITY, THE | Light emitting device with stack of OLEDS and phosphor downconverter |
5880582, | Sep 04 1996 | SUMITOMO ELECTRIC INDUSTRIES, LTD | Current mirror circuit and reference voltage generating and light emitting element driving circuits using the same |
5903248, | Apr 11 1997 | AMERICAN BANK AND TRUST COMPANY | Active matrix display having pixel driving circuits with integrated charge pumps |
5917280, | Feb 03 1997 | TRUSTEES OF PRINCETON UNIVERSITY, THE | Stacked organic light emitting devices |
5949398, | Apr 12 1996 | Thomson multimedia S.A. | Select line driver for a display matrix with toggling backplane |
5952789, | Apr 14 1997 | HANGER SOLUTIONS, LLC | Active matrix organic light emitting diode (amoled) display pixel structure and data load/illuminate circuit therefor |
5990629, | Jan 28 1997 | SOLAS OLED LTD | Electroluminescent display device and a driving method thereof |
6023259, | Jul 11 1997 | ALLIGATOR HOLDINGS, INC | OLED active matrix using a single transistor current mode pixel design |
6069365, | Nov 25 1997 | Alan Y., Chow | Optical processor based imaging system |
6091203, | Mar 31 1998 | SAMSUNG DISPLAY CO , LTD | Image display device with element driving device for matrix drive of multiple active elements |
6097360, | Mar 19 1998 | Analog driver for LED or similar display element | |
6100868, | Sep 15 1997 | SUPER INTERCONNECT TECHNOLOGIES LLC | High density column drivers for an active matrix display |
6144222, | Jul 09 1998 | International Business Machines Corporation | Programmable LED driver |
6229506, | Apr 23 1997 | MEC MANAGEMENT, LLC | Active matrix light emitting diode pixel structure and concomitant method |
6229508, | Sep 29 1997 | MEC MANAGEMENT, LLC | Active matrix light emitting diode pixel structure and concomitant method |
6246180, | Jan 29 1999 | Gold Charm Limited | Organic el display device having an improved image quality |
6252248, | Jun 08 1998 | Sanyo Electric Co., Ltd. | Thin film transistor and display |
6268841, | Jan 09 1998 | Sharp Kabushiki Kaisha | Data line driver for a matrix display and a matrix display |
6288696, | Mar 19 1998 | Analog driver for led or similar display element | |
6307322, | Dec 28 1999 | Transpacific Infinity, LLC | Thin-film transistor circuitry with reduced sensitivity to variance in transistor threshold voltage |
6310962, | Aug 20 1997 | Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD | MPEG2 moving picture encoding/decoding system |
6323631, | Jan 18 2001 | ORISE TECHNOLOGY CO , LTD | Constant current driver with auto-clamped pre-charge function |
6333729, | Jul 10 1997 | LG DISPLAY CO , LTD | Liquid crystal display |
6388653, | Mar 03 1998 | JAPAN DISPLAY INC | Liquid crystal display device with influences of offset voltages reduced |
6392617, | Oct 27 1999 | Innolux Corporation | Active matrix light emitting diode display |
6396469, | Sep 12 1997 | AU Optronics Corporation | Method of displaying an image on liquid crystal display and a liquid crystal display |
6414661, | Feb 22 2000 | MIND FUSION, LLC | Method and apparatus for calibrating display devices and automatically compensating for loss in their efficiency over time |
6417825, | Sep 29 1998 | MEC MANAGEMENT, LLC | Analog active matrix emissive display |
6430496, | Oct 27 1995 | TechSearch, LLC | Fully automated vehicle dispatching, monitoring and billing |
6433488, | Jan 02 2001 | Innolux Corporation | OLED active driving system with current feedback |
6473065, | Nov 16 1998 | Canon Kabushiki Kaisha | Methods of improving display uniformity of organic light emitting displays by calibrating individual pixel |
6475845, | Mar 27 2000 | Semiconductor Energy Laboratory Co., Ltd. | Electro-optical device |
6501098, | Nov 25 1998 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Semiconductor device |
6501466, | Nov 18 1999 | Sony Corporation | Active matrix type display apparatus and drive circuit thereof |
6522315, | Feb 17 1997 | Intellectual Keystone Technology LLC | Display apparatus |
6535185, | Mar 06 2000 | LG DISPLAY CO , LTD | Active driving circuit for display panel |
6542138, | Sep 11 1999 | BEIJING XIAOMI MOBILE SOFTWARE CO , LTD | Active matrix electroluminescent display device |
6559839, | Sep 28 1999 | Mitsubishi Denki Kabushiki Kaisha | Image display apparatus and method using output enable signals to display interlaced images |
6580408, | Jun 03 1999 | LG DISPLAY CO , LTD | Electro-luminescent display including a current mirror |
6583398, | Dec 14 1999 | Koninklijke Philips Electronics N V | Image sensor |
6618030, | Sep 29 1997 | MEC MANAGEMENT, LLC | Active matrix light emitting diode pixel structure and concomitant method |
6639244, | Jan 11 1999 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Semiconductor device and method of fabricating the same |
6680580, | Sep 16 2002 | AU Optronics Corporation | Driving circuit and method for light emitting device |
6686699, | May 30 2001 | Sony Corporation | Active matrix type display apparatus, active matrix type organic electroluminescence display apparatus, and driving methods thereof |
6690000, | Dec 02 1998 | Renesas Electronics Corporation | Image sensor |
6693610, | Sep 11 1999 | BEIJING XIAOMI MOBILE SOFTWARE CO , LTD | Active matrix electroluminescent display device |
6694248, | Oct 27 1995 | TechSearch, LLC | Fully automated vehicle dispatching, monitoring and billing |
6697057, | Oct 27 2000 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of driving the same |
6724151, | Nov 06 2001 | LG DISPLAY CO , LTD | Apparatus and method of driving electro luminescence panel |
6734636, | Jun 22 2001 | Innolux Corporation | OLED current drive pixel circuit |
6753655, | Sep 19 2002 | Industrial Technology Research Institute | Pixel structure for an active matrix OLED |
6753834, | Mar 30 2001 | SAMSUNG DISPLAY CO , LTD | Display device and driving method thereof |
6756741, | Jul 12 2002 | AU Optronics Corp. | Driving circuit for unit pixel of organic light emitting displays |
6777888, | Mar 21 2001 | Canon Kabushiki Kaisha | Drive circuit to be used in active matrix type light-emitting element array |
6781567, | Sep 29 2000 | ELEMENT CAPITAL COMMERCIAL COMPANY PTE LTD | Driving method for electro-optical device, electro-optical device, and electronic apparatus |
6788231, | Feb 21 2003 | Innolux Corporation | Data driver |
6809706, | Aug 09 2001 | Hannstar Display Corporation | Drive circuit for display device |
6828950, | Aug 10 2000 | Semiconductor Energy Laboratory Co., Ltd. | Display device and method of driving the same |
6858991, | Sep 10 2001 | ELEMENT CAPITAL COMMERCIAL COMPANY PTE LTD | Unit circuit, electronic circuit, electronic apparatus, electro-optic apparatus, driving method, and electronic equipment |
6859193, | Jul 14 1999 | Sony Corporation | Current drive circuit and display device using the same, pixel circuit, and drive method |
6876346, | Sep 29 2000 | SANYO ELECTRIC CO , LTD | Thin film transistor for supplying power to element to be driven |
6900485, | Apr 30 2003 | Intellectual Ventures II LLC | Unit pixel in CMOS image sensor with enhanced reset efficiency |
6903734, | Dec 22 2000 | LG DISPLAY CO , LTD | Discharging apparatus for liquid crystal display |
6911960, | Nov 30 1998 | Sanyo Electric Co., Ltd. | Active-type electroluminescent display |
6911964, | Nov 07 2002 | Duke University | Frame buffer pixel circuit for liquid crystal display |
6914448, | Mar 15 2002 | SANYO ELECTRIC CO , LTD | Transistor circuit |
6919871, | Apr 01 2003 | SAMSUNG DISPLAY CO , LTD | Light emitting display, display panel, and driving method thereof |
6924602, | Feb 15 2001 | SANYO ELECTRIC CO , LTD | Organic EL pixel circuit |
6937220, | Sep 25 2001 | Sharp Kabushiki Kaisha | Active matrix display panel and image display device adapting same |
6940214, | Feb 09 1999 | SANYO ELECTRIC CO , LTD | Electroluminescence display device |
6954194, | Apr 04 2002 | Sanyo Electric Co., Ltd. | Semiconductor device and display apparatus |
6970149, | Sep 14 2002 | UNILOC 2017 LLC | Active matrix organic light emitting diode display panel circuit |
6975142, | Apr 27 2001 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
6975332, | Mar 08 2004 | Adobe Inc | Selecting a transfer function for a display device |
6995519, | Nov 25 2003 | Global Oled Technology LLC | OLED display with aging compensation |
7027015, | Aug 31 2001 | TAHOE RESEARCH, LTD | Compensating organic light emitting device displays for color variations |
7034793, | May 23 2001 | AU Optronics Corporation | Liquid crystal display device |
7038392, | Sep 26 2003 | TWITTER, INC | Active-matrix light emitting display and method for obtaining threshold voltage compensation for same |
7057588, | Oct 11 2002 | Sony Corporation | Active-matrix display device and method of driving the same |
7061451, | Feb 21 2001 | Semiconductor Energy Laboratory Co., Ltd, | Light emitting device and electronic device |
7071932, | Nov 20 2001 | Innolux Corporation | Data voltage current drive amoled pixel circuit |
7106285, | Jun 18 2003 | SK HYNIX SYSTEM IC WUXI CO , LTD | Method and apparatus for controlling an active matrix display |
7112820, | Jun 20 2003 | AU Optronics Corp. | Stacked capacitor having parallel interdigitized structure for use in thin film transistor liquid crystal display |
7113864, | Oct 27 1995 | TechSearch, LLC | Fully automated vehicle dispatching, monitoring and billing |
7122835, | Apr 07 1999 | SEMICONDUCTOR ENERGY LABORATORY CO , LTD | Electrooptical device and a method of manufacturing the same |
7129914, | Dec 20 2001 | BEIJING XIAOMI MOBILE SOFTWARE CO , LTD | Active matrix electroluminescent display device |
7164417, | Mar 26 2001 | Global Oled Technology LLC | Dynamic controller for active-matrix displays |
7224332, | Nov 25 2003 | Global Oled Technology LLC | Method of aging compensation in an OLED display |
7248236, | Feb 18 2002 | IGNIS INNOVATION INC | Organic light emitting diode display having shield electrodes |
7259737, | May 16 2003 | LG DISPLAY CO , LTD | Image display apparatus controlling brightness of current-controlled light emitting element |
7262753, | Aug 07 2003 | BARCO N V | Method and system for measuring and controlling an OLED display element for improved lifetime and light output |
7274363, | Dec 28 2001 | Pioneer Corporation | Panel display driving device and driving method |
7310092, | Apr 24 2002 | EL TECHNOLOGY FUSION GODO KAISHA | Electronic apparatus, electronic system, and driving method for electronic apparatus |
7315295, | Sep 29 2000 | BOE TECHNOLOGY GROUP CO , LTD | Driving method for electro-optical device, electro-optical device, and electronic apparatus |
7317434, | Dec 03 2004 | LG Chem, Ltd | Circuits including switches for electronic devices and methods of using the electronic devices |
7321348, | May 24 2000 | Global Oled Technology LLC | OLED display with aging compensation |
7327357, | Oct 08 2004 | SAMSUNG DISPLAY CO , LTD | Pixel circuit and light emitting display comprising the same |
7333077, | Nov 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Display device and electronic device |
7343243, | Oct 27 1995 | Total Technology, Inc. | Fully automated vehicle dispatching, monitoring and billing |
7414600, | Feb 16 2001 | IGNIS INNOVATION INC | Pixel current driver for organic light emitting diode displays |
7466166, | Apr 20 2004 | Panasonic Corporation | Current driver |
7495501, | Dec 27 2005 | Semiconductor Energy Laboratory Co., Ltd. | Charge pump circuit and semiconductor device having the same |
7502000, | Feb 12 2004 | Canon Kabushiki Kaisha | Drive circuit and image forming apparatus using the same |
7515124, | May 24 2004 | Rohm Co., Ltd. | Organic EL drive circuit and organic EL display device using the same organic EL drive circuit |
7535449, | Feb 12 2003 | ELEMENT CAPITAL COMMERCIAL COMPANY PTE LTD | Method of driving electro-optical device and electronic apparatus |
7554512, | Oct 08 2002 | Innolux Corporation | Electroluminescent display devices |
7569849, | Feb 16 2001 | IGNIS INNOVATION INC | Pixel driver circuit and pixel circuit having the pixel driver circuit |
7595776, | Jan 30 2004 | Renesas Electronics Corporation | Display apparatus, and driving circuit for the same |
7604718, | Feb 19 2003 | Bioarray Solutions Ltd. | Dynamically configurable electrode formed of pixels |
7609239, | Mar 16 2006 | Princeton Technology Corporation | Display control system of a display panel and control method thereof |
7612745, | Jan 15 2001 | Sony Corporation | Active matrix type display device, active matrix type organic electroluminescent display device, and methods of driving such display devices |
7619594, | May 23 2005 | OPTRONIC SCIENCES LLC | Display unit, array display and display panel utilizing the same and control method thereof |
7619597, | Dec 15 2004 | IGNIS INNOVATION INC | Method and system for programming, calibrating and driving a light emitting device display |
7639211, | Jul 21 2005 | Seiko Epson Corporation | Electronic circuit, electronic device, method of driving electronic device, electro-optical device, and electronic apparatus |
7683899, | Oct 12 2000 | PANASONIC LIQUID CRYSTAL DISPLAY CO , LTD | Liquid crystal display device having an improved lighting device |
7688289, | Mar 29 2004 | ROHM CO , LTD | Organic EL driver circuit and organic EL display device |
7692641, | Mar 24 2005 | Renesas Electronics Corporation | Display driver and display driving method |
7760162, | Sep 10 2001 | ELEMENT CAPITAL COMMERCIAL COMPANY PTE LTD | Unit circuit, electronic circuit, electronic apparatus, electro-optic apparatus, driving method, and electronic equipment which can compensate for variations in characteristics of transistors to drive current-type driven elements |
7808008, | Jun 29 2007 | Semiconductor Energy Laboratory Co., Ltd. | Display device and driving method thereof |
7859520, | Sep 21 2001 | Semiconductor Energy Laboratory Co., Ltd. | Display device and driving method thereof |
7889159, | Nov 16 2004 | IGNIS INNOVATION INC | System and driving method for active matrix light emitting device display |
7903127, | Oct 08 2004 | SAMSUNG DISPLAY CO , LTD | Digital/analog converter, display device using the same, and display panel and driving method thereof |
7920116, | Jun 23 2006 | Samsung Electronics Co., Ltd. | Method and circuit of selectively generating gray-scale voltage |
7944414, | May 28 2004 | SOLAS OLED LTD | Display drive apparatus in which display pixels in a plurality of specific rows are set in a selected state with periods at least overlapping each other, and gradation current is supplied to the display pixels during the selected state, and display apparatus |
7978170, | Dec 08 2005 | LG DISPLAY CO , LTD | Driving apparatus of backlight and method of driving backlight using the same |
7989392, | Sep 13 2000 | MONSANTO TECHNOLOGY, LLC | Herbicidal compositions containing glyphosate bipyridilium |
7995008, | Apr 05 2005 | Global Oled Technology LLC | Drive circuit for electroluminescent device |
8063852, | Oct 13 2004 | SAMSUNG DISPLAY CO , LTD | Light emitting display and light emitting display panel |
8102343, | Mar 30 2007 | BOE TECHNOLOGY GROUP CO , LTD | Liquid crystal device, driving circuit for liquid crystal device, method of driving liquid crystal device, and electronic apparatus |
8144081, | Jul 21 2005 | Seiko Epson Corporation | Electronic circuit, electronic device, method of driving electronic device, electro-optical device, and electronic apparatus |
8159007, | Aug 12 2002 | Aptina Imaging Corporation | Providing current to compensate for spurious current while receiving signals through a line |
8242979, | Dec 27 2002 | Semiconductor Energy Laboratory Co., Ltd. | Display device |
8253665, | Jan 09 2006 | IGNIS INNOVATION INC | Method and system for driving an active matrix display circuit |
8319712, | Nov 16 2004 | IGNIS INNOVATION INC | System and driving method for active matrix light emitting device display |
20010002703, | |||
20010009283, | |||
20010026257, | |||
20010030323, | |||
20010040541, | |||
20010043173, | |||
20010045929, | |||
20010052940, | |||
20020000576, | |||
20020011796, | |||
20020011799, | |||
20020012057, | |||
20020030190, | |||
20020047565, | |||
20020052086, | |||
20020080108, | |||
20020084463, | |||
20020101172, | |||
20020117722, | |||
20020140712, | |||
20020158587, | |||
20020158666, | |||
20020158823, | |||
20020171613, | |||
20020186214, | |||
20020190971, | |||
20020195967, | |||
20020195968, | |||
20030001828, | |||
20030020413, | |||
20030030603, | |||
20030062524, | |||
20030062844, | |||
20030076048, | |||
20030090445, | |||
20030090447, | |||
20030090481, | |||
20030095087, | |||
20030098829, | |||
20030107560, | |||
20030107561, | |||
20030111966, | |||
20030112205, | |||
20030112208, | |||
20030117348, | |||
20030122474, | |||
20030122747, | |||
20030128199, | |||
20030151569, | |||
20030156104, | |||
20030169241, | |||
20030169247, | |||
20030179626, | |||
20030185438, | |||
20030189535, | |||
20030197663, | |||
20030214465, | |||
20030227262, | |||
20030230141, | |||
20030230980, | |||
20040004589, | |||
20040032382, | |||
20040041750, | |||
20040066357, | |||
20040070557, | |||
20040129933, | |||
20040130516, | |||
20040135749, | |||
20040145547, | |||
20040150595, | |||
20040155841, | |||
20040171619, | |||
20040174349, | |||
20040174354, | |||
20040183759, | |||
20040189627, | |||
20040196275, | |||
20040227697, | |||
20040239696, | |||
20040251844, | |||
20040252085, | |||
20040252089, | |||
20040256617, | |||
20040257353, | |||
20040257355, | |||
20040263437, | |||
20050007357, | |||
20050052379, | |||
20050057459, | |||
20050067970, | |||
20050067971, | |||
20050083270, | |||
20050110420, | |||
20050110727, | |||
20050123193, | |||
20050140610, | |||
20050145891, | |||
20050156831, | |||
20050168416, | |||
20050206590, | |||
20050219188, | |||
20050243037, | |||
20050248515, | |||
20050258867, | |||
20050285825, | |||
20060012311, | |||
20060038750, | |||
20060038758, | |||
20060038762, | |||
20060044236, | |||
20060066533, | |||
20060077077, | |||
20060092185, | |||
20060125408, | |||
20060139253, | |||
20060145964, | |||
20060191178, | |||
20060209012, | |||
20060214888, | |||
20060221009, | |||
20060227082, | |||
20060232522, | |||
20060244391, | |||
20060244697, | |||
20060261841, | |||
20060290614, | |||
20070001939, | |||
20070001945, | |||
20070008251, | |||
20070008297, | |||
20070035489, | |||
20070035707, | |||
20070040773, | |||
20070040782, | |||
20070063932, | |||
20070080908, | |||
20070085801, | |||
20070109232, | |||
20070128583, | |||
20070164941, | |||
20070182671, | |||
20070236430, | |||
20070241999, | |||
20070242008, | |||
20080001544, | |||
20080043044, | |||
20080048951, | |||
20080055134, | |||
20080074360, | |||
20080088549, | |||
20080094426, | |||
20080122819, | |||
20080129906, | |||
20080228562, | |||
20080231641, | |||
20080265786, | |||
20080290805, | |||
20090009459, | |||
20090015532, | |||
20090058789, | |||
20090121988, | |||
20090146926, | |||
20090153448, | |||
20090153459, | |||
20090174628, | |||
20090201230, | |||
20090201281, | |||
20090251486, | |||
20090278777, | |||
20090289964, | |||
20100039451, | |||
20100039453, | |||
20100207920, | |||
20100225634, | |||
20100251295, | |||
20100269889, | |||
20100277400, | |||
20100315319, | |||
20110050741, | |||
20110069089, | |||
20120299976, | |||
AU729652, | |||
AU764896, | |||
CA1294034, | |||
CA2242720, | |||
CA2249592, | |||
CA2303302, | |||
CA2354018, | |||
CA2368386, | |||
CA2432530, | |||
CA2436451, | |||
CA2438363, | |||
CA2443206, | |||
CA2463653, | |||
CA2472671, | |||
CA2495726, | |||
CA2498136, | |||
CA2507276, | |||
CA2519097, | |||
CA2522396, | |||
CA2523841, | |||
CA2526782, | |||
CA2557713, | |||
CA2567076, | |||
CA2651893, | |||
CA2672590, | |||
CN1601594, | |||
CN1886774, | |||
DE202006007613, | |||
EP478186, | |||
EP1028471, | |||
EP1130565, | |||
EP1194013, | |||
EP1321922, | |||
EP1335430, | |||
EP1381019, | |||
EP1429312, | |||
EP1439520, | |||
EP1465143, | |||
EP1473689, | |||
EP1517290, | |||
EP1521203, | |||
GB2399935, | |||
GB2460018, | |||
JP10254410, | |||
JP11231805, | |||
JP2002278513, | |||
JP2003076331, | |||
JP2003099000, | |||
JP2003173165, | |||
JP2003186439, | |||
JP2003195809, | |||
JP2003271095, | |||
JP2003308046, | |||
JP2004054188, | |||
JP2004226960, | |||
JP2005004147, | |||
JP2005099715, | |||
JP2005258326, | |||
JP2005338819, | |||
JP9090405, | |||
TW1239501, | |||
TW200526065, | |||
TW569173, | |||
WO127910, | |||
WO2067327, | |||
WO3034389, | |||
WO3063124, | |||
WO3075256, | |||
WO2004003877, | |||
WO2004015668, | |||
WO2004034364, | |||
WO2005022498, | |||
WO2005055185, | |||
WO2005055186, | |||
WO2005069267, | |||
WO2005122121, | |||
WO2006063448, | |||
WO2006128069, | |||
WO20080290805, | |||
WO2008057369, | |||
WO2009059028, | |||
WO2009127065, | |||
WO2010066030, | |||
WO2010120733, | |||
WO9811554, | |||
WO9948079, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 04 2014 | Ignis Innovation Inc. | (assignment on the face of the patent) | / | |||
Mar 31 2023 | IGNIS INNOVATION INC | IGNIS INNOVATION INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 063706 | /0406 |
Date | Maintenance Fee Events |
Dec 28 2020 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 26 2020 | 4 years fee payment window open |
Mar 26 2021 | 6 months grace period start (w surcharge) |
Sep 26 2021 | patent expiry (for year 4) |
Sep 26 2023 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 26 2024 | 8 years fee payment window open |
Mar 26 2025 | 6 months grace period start (w surcharge) |
Sep 26 2025 | patent expiry (for year 8) |
Sep 26 2027 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 26 2028 | 12 years fee payment window open |
Mar 26 2029 | 6 months grace period start (w surcharge) |
Sep 26 2029 | patent expiry (for year 12) |
Sep 26 2031 | 2 years to revive unintentionally abandoned end. (for year 12) |