An image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element has positive refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric. The fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof.

Patent
   RE46747
Priority
Jan 12 2012
Filed
Aug 02 2015
Issued
Mar 06 2018
Expiry
Sep 13 2032
Assg.orig
Entity
Large
4
262
currently ok
0. 53. An image capturing system, comprising:
a first lens having positive refractive power and being convex toward an object side and concave toward an image side;
a second lens having negative refractive power and being convex toward the object side and concave toward the image side;
a third lens having positive refractive power and being concave toward the object side and convex toward the image side;
a fourth lens having negative refractive power and being concave toward the object side and convex toward the image side; and
a fifth lens having refractive power and comprising:
an object-side surface being convex in the center and concave at the periphery; and
an image-side surface being concave in the center and convex at the periphery, wherein:
at least one inflection point is formed on the object-side and image-side surfaces of the fifth lens, and
the first lens, the second lens, the third lens, the fourth lens and the fifth lens are sequentially arranged from the object side toward the image side.
0. 41. An image capturing system, comprising:
a first lens having positive refractive power and being convex toward an object side;
a second lens having negative refractive power and being convex toward the object side and concave toward an image side;
a third lens having positive refractive power and being concave toward the object side and convex toward the image side;
a fourth lens having negative refractive power and being concave toward the object side and convex toward the image side; and
a fifth lens having a refractive power and comprising:
an object-side surface being convex in the center and concave at the periphery; and
an image-side surface being concave in the center and convex at the periphery, wherein:
at least one inflection point is formed on the object-side and image-side surfaces of the fifth lens,
the first lens is thicker than the third lens and the fourth lens is thicker than the second lens, and
the first lens, the second lens, the third lens, the fourth lens and the fifth lens are sequentially arranged from the object side toward the image side.
21. An image capturing system comprising, in order from an object side to an image side:
a first lens element with positive refractive power having a convex object-side surface;
a second lens element with negative refractive power;
a third lens element with refractive power;
a fourth lens element with negative refractive power having a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric; and
a fifth lens element with refractive power having a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof;
wherein the first through fifth lens elements are five independent and non-cemented lens elements, an axial distance between the object-side surface of the first lens element and an image plane is ttl, and the following relationship is satisfied:

2.2 mm<TTL<3.5 mm.
1. An image capturing system comprising, in order from an object side to an image side:
a first lens element with positive refractive power having a convex object-side surface;
a second lens element with negative refractive power;
a third lens element with positive refractive power;
a fourth lens element with negative refractive power having a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric; and
a fifth lens element with refractive power having a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof;
wherein the first through fifth lens elements are five independent and non-cemented lens elements, a maximum image height of the image capturing system is ImgH, an axial distance between the object-side surface of the first lens element and an image plane is ttl, a focal length of the image capturing system is f, and the following relationship is satisfied:

2.8 mm<(f/ImgH)×TTL<4.6 mm.
12. An image capturing system comprising, in order from an object side to an image side:
a first lens element with positive refractive power having a convex object-side surface;
a second lens element with negative refractive power;
a third lens element with refractive power;
a fourth lens element with negative refractive power having a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric; and
a fifth lens element with refractive power having a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof;
wherein an axial distance between the object-side surface of the first lens element and an image plane is ttl, a focal length of the image capturing system is f, a half of the maximal field of view of the image capturing system is HFOV, an abbe number of the third lens element is V3, an abbe number of the fourth lens element is V4, and the following relationships are satisfied:

6.0 mm2<TTL×f/tan(HFOV)<16.0 mm2; and

27<V3−V4<45.
0. 34. An image capturing system for imaging an object on an object side to an image plane on an image side opposite of the object side, comprising:
a first lens element structured to exhibit positive refractive power and to include a convex object-side surface facing the object side to direct light from the object into the image capturing system;
a second lens element positioned on an image side of the first lens element and structured to exhibit negative refractive power and to include a convex object-side surface facing the first lens element and a concave image-side surface;
a third lens element positioned on an image side of the second lens element and structured to exhibit positive refractive power and to include a convex image-side surface facing the fourth lens element, the third lens element being thinner than the first lens element;
a fourth lens element positioned on an image side of the third lens element and structured to exhibit negative refractive power and to include a concave object-side surface facing the third lens element and a convex image-side surface; and
a fifth lens element positioned on an image side of the fourth lens element and structured to exhibit refractive power and to project the image onto the image plane, the fifth lens element including an object-side surface that is convex on an optical axis of the fifth lens element and concave off the optical axis and an image-side surface that is concave on the optical axis and convex off the optical axis, wherein at least one inflection point is formed on each of the object-side and image-side surfaces of the fifth lens element,
wherein the first, the second, the third, the fourth and the fifth lens elements are structured and arranged to have a maximal field of view, FOV, of the image capturing system between 70 degrees and 90 degrees:

70 degrees<FOV<90 degrees.
0. 27. An image capturing system for imaging an object on an object side to an image plane on an image side opposite of the object side, comprising:
a first lens element structured to exhibit positive refractive power and to include a convex object-side surface and a concave image-side surface and positioned as an optical input of the image capturing system to receive light from the object to be imaged by the image capturing system onto the image plane;
a second lens element positioned next to the first lens element to receive light from the first lens element, the second lens element structured to exhibit negative refractive power and to include a convex object-side surface and a concave image-side surface;
a third lens element positioned next to the second lens element to receive light from the second lens element, and structured to exhibit positive refractive power and to include a convex image-side surface, the third lens element being thinner than the first lens element and thicker than the second lens element;
a fourth lens element positioned next to the third lens element to receive light from the third lens element, and structured to exhibit negative refractive power and to include a concave object-side surface and a convex image-side surface, the fourth lens element being thinner than the first lens element and thicker than the second lens element; and
a fifth lens element positioned next to the fourth lens element to receive light from the fourth lens element and to image onto the image plane, and structured to exhibit refractive power and to include an object-side surface that is convex on an optical axis of the fifth lens element and concave off the optical axis, and an image-side surface that is concave on the optical axis and convex off the optical axis, wherein the fifth lens element is shaped to include at least one inflection point is formed on each of the object-side and image-side surfaces and is thicker than the first lens element,
wherein the first, the second, the third, the fourth and the fifth lens elements are sequentially arranged from the object side toward the image side of the image capturing system.
2. The image capturing system of claim 1, wherein the focal length of the image capturing system is f, a focal length of the second lens element is f2, and the following relationship is satisfied:

−1.4<f/f2<−0.18.
3. The image capturing system of claim 1, wherein a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, and the following relationship is satisfied:

0.20 mm<(CT2+CT3+CT4)/3<0.31 mm.
4. The image capturing system of claim 1, wherein an abbe number of the first lens element is V1, an abbe number of the second lens element is V2, and the following relationship is satisfied:

20<V1−V2<50.
5. The image capturing system of claim 1, wherein an abbe number of the third lens element is V3, an abbe number of the fourth lens element is V4, and the following relationship is satisfied:

27<V3−V4<45.
6. The image capturing system of claim 1, wherein the axial distance between the object-side surface of the first lens element and an image plane is ttl, the focal length of the image capturing system is f, a half of the maximal field of view of the image capturing system is HFOV, and the following relationship is satisfied:

6.5 mm2<TTL×f/tan(HFOV)<13.4 mm2.
7. The image capturing system of claim 1, wherein at least one of the object-side surface and the image-side surface of the first through third lens elements respectively is aspheric, and the first through fifth lens elements are made of plastic material.
8. The image capturing system of claim 7, wherein a maximal field of view of the image capturing system is FOV, and the following relationship is satisfied:

70 degrees<FOV<90 degrees.
9. The image capturing system of claim 7, wherein the second lens element has a concave image-side surface.
10. The image capturing system of claim 7, wherein the fifth lens element has a convex object-side surface.
11. The image capturing system of claim 1, wherein the focal length of the image capturing system is f, and the following relationship is satisfied:

1.8 mm<f<3.2 mm.
13. The image capturing system of claim 12, wherein the second lens element has a concave image-side surface.
14. The image capturing system of claim 12, wherein a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, and the following relationship is satisfied:

0.2 mm<(CT2+CT3+CT4)/3<0.31 mm.
15. The image capturing system of claim 12, wherein an abbe number of the first lens element is V1, an abbe number of the second lens element is V2, and the following relationship is satisfied:

20<V1−V2<50.
16. The image capturing system of claim 12, wherein the axial distance between the object-side surface of the first lens element and the image plane is ttl, the focal length of the image capturing system is f, the half of the maximal field of view of the image capturing system is HFOV, and the following relationship is satisfied:

6.5 mm2<TTL×f/tan(HFOV)<13.4 mm2.
17. The image capturing system of claim 12, wherein a maximal field of view of the image capturing system is FOV, and the following relationship is satisfied:

70 degrees<FOV<90 degrees.
18. The image capturing system of claim 12, wherein the focal length of the image capturing system is f, and the following relationship is satisfied:

1.8 mm<f<3.2 mm.
19. The image capturing system of claim 12, wherein at least one of the object-side surface and the image-side surface of the first through third lens elements respectively is aspheric, and the first through fifth lens elements are made of plastic material.
20. The image capturing system of claim 12, wherein a maximum image height of the image capturing system is ImgH, the axial distance between the object-side surface of the first lens element and the image plane is ttl, and the following relationship is satisfied:

ttl/ImgH<1.55.
22. The image capturing system of claim 21, wherein a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, a central thickness of the fourth lens element is CT4, and the following relationship is satisfied:

0.2 mm<(CT2+CT3+CT4)/3<0.31 mm.
23. The image capturing system of claim 21, wherein a maximum image height of the image capturing system is ImgH, the axial distance between the object-side surface of the first lens element and the image plane is ttl, and the following relationship is satisfied:

ttl/ImgH<1.55.
24. The image capturing system of claim 21, wherein a maximal field of view of the image capturing system is FOV, and the following relationship is satisfied:

70 degrees<FOV<90 degrees.
25. The image capturing system of claim 21, wherein at least one of the object-side surface and the image-side surface of the first through third lens elements respectively is aspheric, and the first through fifth lens elements are made of plastic material.
26. The image capturing system of claim 21, wherein a focal length of the image capturing system is f, and the following relationship is satisfied:

1.8 mm<f<3.2 mm.
0. 28. The image capturing system of claim 27, wherein each of the first, the second, the third, the fourth and the fifth lens elements is a non-cemented lens element.
0. 29. The image capturing system of claim 27, wherein the third lens element includes a concave object-side surface facing the second lens element.
0. 30. The image capturing system of claim 27, wherein the second, the third and the fourth lens elements are structured to have central thickness values of CT2, CT3 and CT4, respectively, so that a total thickness of the three lens elements satisfies:

0.20 mm<(CT2+CT3+CT4)/3<0.31 mm.
0. 31. The image capturing system of claim 27, wherein the third and the fourth lens elements are structured to have abbe numbers of V3 and V4, respectively, to cause a difference of the abbe numbers V3 and V4 to be between 27 and 45:

27<V3−V4<45.
0. 32. The image capturing system of claim 27, wherein the first, the second, the third, the fourth and the fifth lens elements are structured and arranged so that a ratio of an axial distance, ttl, between the object-side surface of the first lens element and the image plane of the image capturing system and a maximum image height, ImgH, of the image capturing system is less than 1.55:

ttl/ImgH<1.55.
0. 33. The image capturing system of claim 27, wherein the first, the second, the third, the fourth and the fifth lens elements are structured and arranged to effectuate a focal length, f, of the image capturing system between 1.8 mm and 3.2 mm:

1.8 mm<f<3.2 mm.
0. 35. The image capturing system of claim 34, wherein the first through fifth lens elements are each non-cemented lens elements.
0. 36. The image capturing system of claim 34, wherein the first lens element has a concave image-side surface facing the image side of the second lens element.
0. 37. The image capturing system of claim 34, wherein the third lens element has a concave object-side surface facing the image side of the second lens element.
0. 38. The image capturing system of claim 34, wherein an abbe number, V3, of the third lens element and an abbe number, V4, of the fourth lens element have a difference between 27 and 45:

27<V3−V4<45.
0. 39. The image capturing system of claim 34, wherein a ratio of an axial distance, ttl, between the object-side surface of the first lens element and the image plane of the image capturing system and a maximum image height, ImgH, of the image capturing system is less than 1.55:

ttl/ImgH<1.55.
0. 40. The image capturing system of claim 34, wherein the first, the second, the third, the fourth and the fifth lens elements are structured and arranged to effectuate an axial distance, ttl, between the object-side surface of the first lens element and the image, a focal length, f, of the image capturing system, a half of the maximal field of view, HFOV, of the image capturing system to have a relation of:

6.0 mm2<TTL×f/tan(HFOV)<16.0 mm2.
0. 42. The image capturing system of claim 41, wherein the first lens is concave toward the image side.
0. 43. The image capturing system of claim 41, wherein the second lens, the third lens, the fourth lens and the fifth lens are made of plastic.
0. 44. The image capturing system of claim 43, wherein the first lens is made of plastic.
0. 45. The image capturing system of claim 41, wherein the first and second lenses comprise at least one aspherical surface.
0. 46. The image capturing system of claim 41, further comprising an aperture disposed in front of the first lens.
0. 47. The image capturing system of claim 41, wherein
a focal length of the second lens is greater than a focal length of the fourth lens, and
a focal length of the third lens is greater than the focal length of the second lens.
0. 48. The image capturing system of claim 47, wherein a focal length of the first lens is greater than the focal length of the second lens and shorter than the focal length of the third lens.
0. 49. The image capturing system of claim 41, wherein
a radius of curvature of an object-side surface of the second lens is greater than a radius of curvature of an image-side surface of the second lens,
a radius of curvature of the object-side surface of the fifth lens is greater than a radius of curvature of the image-side surface of the fifth lens, and
a radius of curvature of an object-side surface of the fourth lens is greater than a radius of curvature of an image-side surface of the fourth lens.
0. 50. The image capturing system of claim 49, wherein a radius of curvature of an image-side surface of the first lens is greater than a radius of curvature of an object-side surface of the first lens.
0. 51. The image capturing system of claim 47, wherein the third lens is thicker than the second lens, and the first lens is thicker than the fourth lens.
0. 52. The image capturing system of claim 51, wherein the fifth lens is thicker than the first lens.
0. 54. The image capturing system of claim 53, wherein the first lens, the second lens, the third lens, the fourth lens and the fifth lens are made of plastic.
0. 55. The image capturing system of claim 53, wherein the first and second lenses comprise at least one aspherical surface.
0. 56. The image capturing system of claim 53, further comprising an aperture disposed in front of the first lens.
0. 57. The image capturing system of claim 53, wherein
a focal length of the second lens is greater than a focal length of the fourth lens,
a focal length of the first lens is greater than the focal length of the second lens, and
a focal length of the third lens is greater than the focal length of the first lens.
0. 58. The image capturing system of claim 53, wherein
a radius of curvature of an image-side surface of the first lens is greater than a radius of curvature of an object-side surface of the first lens,
a radius of curvature of an object-side surface of the second lens is greater than a radius of curvature of an image-side surface of the second lens,
a radius of curvature of an object-side surface of the fourth lens is greater than a radius of curvature of an image-side surface of the fourth lens, and
a radius of curvature of the object-side surface of the fifth lens is greater than a radius of curvature of the image-side surface of the fifth lens.
0. 59. The image capturing system of claim 53, wherein
the third and fourth lenses are thicker than the second lens,
the first lens is thicker than the third and fourth lenses, and
the fifth lens is thicker than the first lens.

According to another aspect of the present disclosure, an image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element to and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element has refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric. The fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof. When an axial distance between the object-side surface of the first lens element and an image plane is TTL, a focal length of the image capturing system is f, a half of the maximal field of view of the image capturing system is HFOV, an Abbe number of the third lens element is V3, and an Abbe number of the fourth lens element is V4, the following relationships are satisfied:
6.0 mm2<TTL×f/tan(HFOV)<16.0 mm2; and
27<V3−V4<45.

According to yet another aspect of the present disclosure, an image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The first lens element with positive refractive power has a convex object-side surface. The second lens element has negative refractive power. The third lens element has refractive power. The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, wherein at least one of the object-side surface and the image-side surface of the fourth lens element is aspheric. The fifth lens element with refractive power has a concave image-side surface, wherein at least one of an object-side surface and the image-side surface of the fifth lens element is aspheric, and the fifth lens element has at least one inflection point on the image-side surface thereof. The first through fifth lens elements are five independent and non-cemented lens elements. When an axial distance between the object-side surface of the first lens element and an image plane is TTL, the following relationship is satisfied:
2.2 mm<TTL<3.5 mm.

The invention can be more fully understood by reading the following detailed description of the embodiment, with reference made to the accompanying drawings as follows:

FIG. 1 is a schematic view of an image capturing system according to the 1st embodiment of the present disclosure;

FIG. 2 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 1st embodiment;

FIG. 3 is a schematic view of an image capturing system according to the 2nd embodiment of the present disclosure;

FIG. 4 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 2nd embodiment;

FIG. 5 is a schematic view of an image capturing system according to the to 3rd embodiment of the present disclosure;

FIG. 6 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 3rd embodiment;

FIG. 7 is a schematic view of an image capturing system according to the 4th embodiment of the present disclosure;

FIG. 8 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 4th embodiment;

FIG. 9 is a schematic view of an image capturing system according to the 5th embodiment of the present disclosure;

FIG. 10 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 5th embodiment;

FIG. 11 is a schematic view of an image capturing system according to the 6th embodiment of the present disclosure;

FIG. 12 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 6th embodiment;

FIG. 13 is a schematic view of an image capturing system according to the 7th embodiment of the present disclosure;

FIG. 14 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 7th embodiment;

FIG. 15 is a schematic view of an image capturing system according to the 8th embodiment of the present disclosure;

FIG. 16 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 8th embodiment;

FIG. 17 is a schematic view of an image capturing system according to the 9th embodiment of the present disclosure;

FIG. 18 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 9th embodiment;

FIG. 19 is a schematic view of an image capturing system according to the 10th embodiment of the present disclosure;

FIG. 20 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 10th embodiment;

FIG. 21 is a schematic view of an image capturing system according to the 11th embodiment of the present disclosure; and

FIG. 22 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 11th embodiment.

An image capturing system includes, in order from an object side to an image side, a first lens element, a second lens element, a third lens element, a fourth lens element and a fifth lens element. The image capturing system further includes an image sensor located on an image plane.

The first through fifth lens elements are five independent and non-cemented lens elements. That is, any two lens elements adjacent to each other are not cemented, and there is an air space between the two lens elements. The manufacture of the cemented lenses is more complex than the manufacture of the non-cemented lenses. Especially, the cemented surfaces of the two lens elements should have accurate curvatures for ensuring a precise bonding between the two lens elements, or else an undesirable gap between the cemented surfaces of the two lens elements created during the cementing process may affect the optical quality of the image capturing system. Therefore, the image capturing system of the present disclosure provides five independent and non-cemented lens elements for improving the problem generated by the cemented lens elements.

The first lens element with positive refractive power has a convex object-side surface, so that the positive refractive power of the first lens element can be enhanced for further reducing the total track length thereof.

The second lens element with negative refractive power corrects the aberration generated from the first lens element with positive refractive power. The second lens element has a concave image-side surface, so that the refractive power of the second lens element is proper by adjusting the curvature of the image-side surface of the second lens element, and the aberration of the image capturing system can be further corrected.

The third lens element with positive refractive power can reduce the sensitivity of the image capturing system by balancing the distribution of the positive refractive power of the image capturing system.

The fourth lens element with negative refractive power has a concave object-side surface and a convex image-side surface, so that the astigmatism and the high-order aberration of the image capturing system can be corrected.

The fifth lens element with refractive power has a convex object-side surface and a concave image-side surface, so that the principal point of the image capturing system can be positioned away from the image plane, and the total track length of the image capturing system can be reduced so as to maintain the compact size of the image capturing system. Furthermore, the fifth lens element has at least one inflection point on at least one of the object-side surface and the image-side surface thereof, so that the incident angle of the off-axis field on the image sensor can be effectively reduced and the aberration can be corrected as well.

When a maximum image height of the image capturing system is ImgH, an axial distance between the object-side surface of the first lens element and an image plane is TTL, and a focal length of the image capturing system is f, the following relationship is satisfied:
2.8 mm<(f/ImgH)×TTL<4.6 mm.

Therefore, the image capturing system with short total track length is applicable to the ultra-thin electronic products. Moreover, the optimized arrangement of the maximum image height of the image capturing system can provide the excellent image capture of the compact electronic products.

When the focal length of the image capturing system is f, and a focal length of the second lens element is f2, the following relationship is satisfied:
−1.4<f/f2<−0.18.

Therefore, the negative refractive power of the second lens element can to correct the aberration generated from the first lens element with positive refractive power.

When a central thickness of the second lens element is CT2, a central thickness of the third lens element is CT3, and acentral thickness of the fourth lens element is CT4, the following relationship is satisfied:
0.20 mm<(CT2+CT3+CT4)/3<0.31 mm.

Therefore, the thickness of the second lens element, the third lens element and the fourth lens element are proper for enhancing the yield of the manufacture and fabrication of the lens elements.

When an Abbe number of the first lens element is V1, an Abbe number of the second lens element is V2, an Abbe number of the third lens element is V3, and an Abbe number of the fourth lens element is V4, the following relationships are satisfied:
20<V1−V2<50; and
27<V3−V4<45.

Therefore, the chromatic aberration of the image capturing system can be corrected.

When the axial distance between the object-side surface of the first lens element and an image plane is TTL, the focal length of the image capturing system is f, and a half of the maximal field of view of the image capturing system is HFOV, the following relationship is satisfied:
6.0 mm2<TTL×f/tan(HFOV)<16.0 mm2.

Therefore, the short total track length of the image capturing system is applicable to the ultra-thin electronic product, and the field of view of the image to capturing system is proper for the image capture of the compact electronic product.

TTL, f, and HFOV can further satisfy the following relationship:
6.5 mm2<TTL×f/tan(HFOV)<13.4 mm2.

When a maximal field of view of the image capturing system is FOV, the following relationship is satisfied:
70 degrees<FOV<90 degrees.

Therefore, the proper range of the image can be captured by the image capturing system with larger field of view.

When the focal length of the image capturing system is f, the following relationship is satisfied:
1.8 mm<f<3.2 mm.

Therefore, the proper focal length of the image capturing system can maintain the compact size of the image capturing system.

When the maximum image height of the image capturing system is ImgH, and the axial distance between the object-side surface of the first lens element and an image plane is TTL, the following relationships are satisfied:
2.2 mm<TTL<3.5 mm; and
TTL/ImgH<<1.55.

Therefore, the image capturing system with short total track length can maintain the compact size for portable electronic products.

According to the image capturing system of the present disclosure, the lens elements thereof can be made of glass or plastic material. When the lens elements are made of glass material, the distribution of the refractive power of the image capturing system may be more flexible to design. When the lens elements are made of plastic material, the cost of manufacture can be effectively reduced. Furthermore, the surface of each lens element can be aspheric, so that it is easier to make the surface into non-spherical shapes. As a result, more controllable variables are obtained, and the aberration is reduced, as well as the number of required lens elements can be reduced while constructing an optical system. Therefore, the total track length of the image capturing system can also be reduced.

According to the image capturing system of the present disclosure, when the lens element has a convex surface, it indicates that the paraxial region of the surface is convex; and when the lens element has a concave surface, it indicates that the paraxial region of the surface is concave.

According to the image capturing system of the present disclosure, the image capturing system can include at least one stop, such as an aperture stop, glare stop, field stop, etc. Said glare stop or said field stop is allocated for reducing stray light while retaining high image quality. Furthermore, when a stop is an aperture stop, the position of the aperture stop within an optical system can be arbitrarily placed in front of the entire lens assembly, within the lens assembly, or in front of the image plane in accordance with the preference of the optical designer, in order to achieve the desirable optical features or higher image quality produced from the optical system.

According to the above description of the present disclosure, the following 1st-11th specific embodiments are provided for further explanation.

FIG. 1 is a schematic view of an image capturing system according to the 1st embodiment of the present disclosure, FIG. 2 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 1st embodiment. In FIG. 1, the image capturing system includes, in order from an object side to an image side, an aperture stop 100, the first lens element 110, the second lens element 120, the third lens element 130, the fourth lens element 140, the fifth lens element 150, an IR-cut filter 180, an image plane 160 and an image sensor 170.

The first lens element 110 with positive refractive power has a convex object-side surface 111 and a concave image-side surface 112, and is made of plastic material. The object-side surface 111 and the mage-side surface 112 of the first lens element 110 are aspheric.

The second lens element 120 with negative refractive power has a convex object-side surface 121 and a concave image-side surface 122, and is made of plastic material. The object-side surface 121 and the image-side surface 122 of the second lens element 120 are aspheric.

The third lens element 130 with positive refractive power has a concave object-side surface 131 and a convex image-side surface 132, and is made of plastic material. The object-side surface 131 and the image-side surface 132 of the third lens element 130 are aspheric.

The fourth lens element 140 with negative refractive power has a concave object-side surface 141 and a convex image-side surface 142, and is made of plastic material. The object-side surface 141 and the image-side surface 142 of the fourth lens element 140 are aspheric.

The fifth lens element 150 with negative refractive power has a convex object-side surface 151 and a concave image-side surface 152, and is made of plastic material. The object-side surface 151 and the image-side surface 152 of the fifth lens element 150 are aspheric. Furthermore, the fifth lens element 150 has inflection points on the object-side surface 151 and the image-side surface 152 thereof.

The IR-cut filter 180 is made of glass, and located between the fifth lens element 150 and the image plane 160, and will not affect the focal length of the image capturing system.

The equation of the aspheric surface profiles of the aforementioned lens elements of the 1st embodiment is expressed as follows:

X ( Y ) = ( Y 2 / R ) / ( 1 + sqrt ( 1 - ( 1 + k ) × ( Y / R ) 2 ) ) + i ( Ai ) × ( Y ) ,

wherein,

X is the distance between a point on the aspheric surface spaced at a distance Y from the optical axis and the tangential plane at the aspheric surface vertex on the optical axis;

Y is the distance from the point on the curve of the aspheric surface to the optical axis;

R is the curvature radius;

k is the conic coefficient; and

Ai is the i-th aspheric coefficient.

In the image capturing system according to the 1st embodiment, when a focal length of the image capturing system is f, an f-number of the image capturing system is Fno, and half of the maximal field of view is HFOV, these parameters have the following values:

f=2.85 mm;

Fno=2.35; and

HFOV=38.6 degrees.

In the image capturing system according to the 1st embodiment, when an Abbe number of the first lens element 110 is V1, an Abbe number of the second lens element 120 is V2, an Abbe number of the third lens element 130 is V3, and an Abbe number of the fourth lens element 140 is V4, the following relationships are satisfied:
V1−V2=32.6; and
V3−V4=32.6.

In the image capturing system according to the 1st embodiment, when a central thickness of the second lens element 120 is CT2, a central thickness of the third lens element 130 is CT3, and a central thickness of the fourth lens element 140 is CT4, the following relationship is satisfied:
(CT2+CT3+CT4)/3=0.28 mm.

In the image capturing system according to the 1st embodiment, when the focal length of the image capturing system is f, and a focal length of the second lens element 120 is f2, the following relationship is satisfied:
f/f2=−0.53.

In the image capturing system according to the 1st embodiment, when a maximal field of view of the image capturing system is FOV, the following relationship is satisfied:
FOV=77.2 degrees.

In the image capturing system according to the 1st embodiment, when a to maximum image height of the image capturing system is ImgH which here is a half of the diagonal length of the photosensitive area of the image sensor 170 on the image plane 160, an axial distance between the object-side surface 111 of the first lens element 110 and the image plane 160 is TTL, the focal length of the image capturing system is f, and the half of the maximal field of view of the image capturing system is HFOV, the following relationships are satisfied:
TTL=3.45 mm;
TTL/ImgH=1.50;
(f/ImgH)×TTL=4.28 mm; and
TTL×f/tan(HFOV)=12.32 mm2.

The detailed optical data of the 1st embodiment are shown in Table 1 and the aspheric surface data are shown in Table 2 below.

TABLE 1
1st Embodiment
f = 2.85 mm, Fno = 2.35, HFOV = 38.6 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.140
2 Lens 1 1.203440 (ASP) 0.415 Plastic 1.544 55.9 2.90
3 4.431400 (ASP) 0.120
4 Lens 2 4.333300 (ASP) 0.230 Plastic 1.640 23.3 −5.39
5 1.881120 (ASP) 0.123
6 Lens 3 −15.082100 (ASP) 0.359 Plastic 1.544 55.9 2.59
7 −1.299460 (ASP) 0.256
8 Lens 4 −0.795830 (ASP) 0.262 Plastic 1.640 23.3 −27.33
9 −0.940880 (ASP) 0.342
10 Lens 5 2.634130 (ASP) 0.574 Plastic 1.544 55.9 −3.41
11 1.004370 (ASP) 0.400
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.271
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 2
Aspheric Coefficients
Surface #
2 3 4 5 6
k = −1.03755E−01 −5.97353E+01 −6.29980E+01 −1.60475E+01 3.00000E+00
A4 = 1.24646E−02 −1.76708E−01 −6.10000E−01 −2.24518E−01 −1.39865E−01
A6 = 2.60307E−02 1.27409E−01 6.33182E−01 4.69619E−01 2.35312E−01
A8 = −1.39140E−02 −3.71507E−01 −1.67746E+00 −6.26812E−01 1.03273E+00
A10 = 1.99378E−01 −1.07462E+00 9.26878E−01 1.65426E−02 −1.12583E+00
A12 = −1.10184E+00 2.45859E−02 −3.52174E−02 −3.96623E−02 −1.70242E+00
A14 = 8.55180E−02 −1.22676E−01 7.84949E−02 2.46417E−02 2.93705E+00
A16= −1.81800E+00
Surface #
7 8 9 10 11
k= −2.85316E+00 −3.25701E+00 −6.60101E−01 −7.00000E+01 −8.28107E+00
A4 = −7.48994E−02 1.39780E−01 3.97380E−01 −2.87804E−01 −1.16665E−01
A6 = 1.35837E−04 −7.34782E−01 −3.80411E−01 9.50200E−02 4.81401E−02
A8 = 2.93692E−01 1.41788E+00 1.47130E−01 −4.76421E−02 −2.20238E−02
A10 = 8.90463E−01 −1.25174E+00 2.38860E−01 1.47559E−02 5.86354E−03
A12 = −5.25061E−01 1.86592E−01 −1.08667E−01 7.14737E−03 −1.17427E−03
A14 = 2.55746E−03 3.94098E−01 −1.58481E−01 4.31432E−04 1.34176E−04
A16 = −4.24467E−01 8.98673E−02 −1.42169E−03

In Table 1, the curvature radius, the thickness and the focal length are shown in millimeters (mm). Surface numbers 0-14 represent the surfaces sequentially arranged from the object-side to the image-side along the optical axis. In Table 2, k represents the conic coefficient of the equation of the aspheric surface profiles. A1-A16 represent the aspheric coefficients ranging from the 1st order to the 16th order. This information related to Table 1 and Table 2 applies also to the Tables for the remaining embodiments, and so an explanation in this regard will not be provided again.

FIG. 3 is a schematic view of an image capturing system according to the 2nd embodiment of the present disclosure. FIG. 4 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 2nd embodiment. In FIG. 3, the image capturing system includes, in order from an object side to an image side, an aperture stop 200, the first lens element 210, the second lens element 220, the third lens element 230, the fourth lens element 240, the fifth lens element 250, an IR-cut filter 280, an image plane 260 and an image sensor 270.

The first lens element 210 with positive refractive power has a convex object-side surface 211 and a concave image-side surface 212, and is made of plastic material. The object-side surface 211 and the mage-side surface 212 of the first lens element 210 are aspheric.

The second lens element 220 with negative refractive power has a convex object-side surface 221 and a concave image-side surface 222, and is made of plastic material. The object-side surface 221 and the image-side surface 222 of the second lens element 220 are aspheric.

The third lens element 230 with positive refractive power has a concave object-side surface 231 and a convex image-side surface 232, and is made of plastic material. The object-side surface 231 and the image-side surface 232 of the third lens element 230 are aspheric.

The fourth lens element 240 with negative refractive power has a concave object-side surface 241 and a conveximage-side surface 242, and is made of plastic material. The object-side surface 241 and the image-side surface 242 of the fourth lens element 240 are aspheric.

The fifth lens element 250 with negative refractive power has a convex to object-side surface 251 and a concave image-side surface 252, and is made of plastic material. The object-side surface 251 and the image-side surface 252 of the fifth lens element 250 are aspheric. Furthermore, the fifth lens element 250 has inflection points on the object-side surface 251 and the image-side surface 252 thereof.

The IR-cut filter 280 is made of glass, and located between the fifth lens element 250 and the image plane 260, and will not affect the focal length of the image capturing system.

The detailed optical data of the 2nd embodiment are shown in Table 3 and the aspheric surface data are shown in Table 4 below.

TABLE 3
2nd Embodiment
f = 2.85 mm, Fno = 2.45, HFOV = 38.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.183
2 Lens 1 0.995170 (ASP) 0.384 Plastic 1.544 55.9 2.56
3 3.001200 (ASP) 0.053
4 Lens 2 4.463000 (ASP) 0.230 Plastic 1.650 21.4 −8.44
5 2.410910 (ASP) 0.219
6 Lens 3 −5.577900 (ASP) 0.308 Plastic 1.544 55.9 5.57
7 −2.001630 (ASP) 0.148
8 Lens 4 −1.723240 (ASP) 0.269 Plastic 1.650 21.4 −81.09
9 −1.891030 (ASP) 0.474
10 Lens 5 1.441430 (ASP) 0.413 Plastic 1.544 55.9 −3.53
11 0.740770 (ASP) 0.400
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.205
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 4
Aspheric Coefficients
Surface #
2 3 4 5 6
k = −6.88502E−02 −3.00000E+01 3.00000E+00 −1.60883E+01 2.43205E+00
A4 = 2.58920E−02 −3.13122E−01 −5.79512E−01 −2.97877E−02 −2.49204E−01
A6 = 2.22230E−02 4.83341E−01 9.15215E−01 1.03649E+00 2.78333E−01
A8 = 6.60918E−02 −5.98899E−01 −6.28339E−03 −1.11360E+00 7.77147E−01
A10 = 6.19733E−01 1.79077E+00 −4.38440E−01 2.05247E+00 −2.23445E−01
A12 = −9.41374E−01 −2.68994E−01 7.57127E−02 −3.71567E−02 −1.59406E+00
A14 = 8.55178E−02 −1.22676E−01 7.84947E−02 8.06883E−01 2.80195E+00
A16= −1.81800E+00
Surface #
7 8 9 10 11
k = −2.28263E+00 −1.88163E+01 2.84586E−01 −3.00000E+01 −7.45249E+00
A4 = −7.02749E−02 1.08745E−01 3.18903E−01 −2.94009E−01 −1.27522E−01
A6 = −2.40392E−01 −7.85078E−01 −4.20075E−01 1.17479E−01 4.66619E−02
A8 = 6.28421E−01 1.16013E+00 1.06162E−01 −5.13621E−02 −1.82663E−02
A10 = 4.12552E−01 −1.10042E+00 2.16320E−01 1.18668E−02 3.99323E−03
A12 = −5.30755E−01 2.36807E−01 −1.16204E−01 4.58634E−03 −1.25535E−03
A14 = −1.96983E−02 4.20670E−01 −1.40508E−01 −8.02211E−04 2.35232E−04
A16 = −6.20491E−01 9.50575E−02 −2.82421E−04

In the image capturing system according to the 2nd embodiment, the definitions of f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 2nd embodiment. Moreover, these parameters can be calculated from Table 3 and Table 4 as the following values and satisfy the following relationships:

f (mm) 2.85
Fno 2.45
HFOV (deg.) 38.5
V1 − V2 34.5
V3 − V4 34.5
(CT2 + CT3 + CT4)/3 (mm) 0.27
f/f2 −0.34
FOV (deg.) 77.0
TTL (mm) 3.20
TTL/ImgH 1.41
(f/ImgH) × TTL (mm) 4.00
TTL × f/tan(HFOV) (mm2) 11.46

FIG. 5 is a schematic view of an image capturing system according to the 3rd embodiment of the present disclosure. FIG. 6 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 3rd embodiment. In FIG. 5 the image capturing to system includes, in order from an object side to an image side, an aperture stop 300, the first lens element 310, the second lens element 320, the third lens element 330, the fourth lens element 340, the fifth lens element 350, an IR-cut filter 380, an image plane 360 and an image sensor 370.

The first lens element 310 with positive refractive power has a convex object-side surface 311 and a concave image-side surface 312, and is made of plastic material. The object-side surface 311 and the image-side surface 312 of the first lens element 310 are aspheric.

The second lens element 320 with negative refractive power has a convex object-side surface 321 and a concave image-side surface 322, and is made of plastic material. The object-side surface 321 and the image-side surface 322 of the second lens element 320 are aspheric.

The third lens element 330 with positive refractive power has a convex object-side surface 331 and a convex image-side surface 332, and is made of plastic material. The object-side surface 331 and the image-side surface 332 of the third lens element 330 are aspheric.

The fourth lens element 340 with negative refractive power has a concave object-side surface 341 and a convex image-side surface 342, and is made of plastic material. The object-side surface 341 and the image-side surface 342 of the fourth lens element 340 are aspheric.

The fifth lens element 350 with negative refractive power has a convex object-side surface 351 and a concave image-side surface 352, and is made of plastic material. The object-side surface 351 and the image-side surface 352 of the fifth lens element 350 are aspheric. Furthermore, the fifth lens element 350 has inflection points on the object-side surface 351 and the image-side surface 352 thereof.

The IR-cut filter 380 is made of glass, and located between the fifth lens element 350 and the image plane 360, and will not affect the focal length of the image capturing system.

The detailed optical data of the 3rd embodiment are shown in Table 5 and the aspheric surface data are shown in Table 6 below.

TABLE 5
3rd Embodiment
f = 2.79 mm, Fno = 2.46, HFOV = 38.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.175
2 Lens 1 0.965900 (ASP) 0.372 Plastic 1.544 55.9 2.50
3 2.880820 (ASP) 0.094
4 Lens 2 5.297100 (ASP) 0.230 Plastic 1.634 23.8 −5.59
5 2.088420 (ASP) 0.189
6 Lens 3 5.634600 (ASP) 0.288 Plastic 1.544 55.9 4.91
7 −4.988600 (ASP) 0.222
8 Lens 4 −1.383080 (ASP) 0.246 Plastic 1.634 23.8 −79.45
9 −1.520270 (ASP) 0.424
10 Lens 5 0.766890 (ASP) 0.306 Plastic 1.535 56.3 −3.66
11 0.474360 (ASP) 0.400
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.203
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 6
Aspheric Coefficients
Surface #
2 3 4 5 6
k = −1.52053E−01 −2.27286E+01 −2.95852E+01 −2.61302E+01 −1.38343E+01
A4 = 1.50035E−02 −3.72892E−01 −8.14815E−01 −2.44773E−01 −1.74641E−01
A6 = 3.07480E−02 5.50794E−01 1.11088E+00 1.36473E+00 −2.75602E−01
A8 = −1.47997E−01 −1.12422E+00 2.23095E+00 −1.91585E+00 9.60878E−01
A10 = 1.07999E+00 4.61048E+00 −1.35747E+00 5.41594E+00 −1.67591E+00
A12 = −2.11199E+00 −4.21752E−01 −4.30110E−01 −1.71019E−01 −3.03776E+00
A14= 6.57100E−01 −1.61825E−01 2.70840E−01 1.98721E−01 5.86560E+00
A16 = −3.70216E+00
Surface #
7 8 9 10 11
k = −2.86726E+01 −9.73941E+00 −1.33029E−01 −1.32978E+01 −6.01898E+00
A4 = 4.94268E−02 9.63340E−02 2.40380E−01 −3.73738E−01 −1.78979E−01
A6 = −4.38237E−01 −1.30494E+00 −4.26133E−01 1.85615E−01 8.53388E−02
A8 = 7.70590E−01 2.12276E+00 1.74055E−01 −5.36970E−02 −3.49683E−02
A10 = −3.49464E−01 −9.31429E−01 4.09076E−01 9.10557E−03 9.87231E−03
A12 = −2.54616E−01 2.45176E−01 −9.46190E−02 4.96456E−03 −2.30035E−03
A14 = 1.61846E−03 −1.92494E−01 −3.27985E−01 −3.14677E−03 2.73973E−04
A16 = −2.26714E−01 1.51163E−01 4.64500E−04

In the image capturing system according to the 3rd embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2 FOV, TTL and ImgH are the same as those stated in the t embodiment with corresponding values for the 3rd embodiment. Moreover, these parameters can be calculated from Table 5 and Table 6 as the following values and satisfy the following relationships:

f (mm) 2.79
Fno 2.46
HFOV (deg.) 38.5
V1 − V2 32.1
V3 − V4 32.1
(CT2 + CT3 + CT4)/3 (mm) 0.25
f/f2 −0.50
FOV (deg.) 77.0
TTL (mm) 3.07
TTL/ImgH 1.37
(f/ImgH) × TTL (mm) 3.83
TTL × f/tan(HFOV) (mm2) 10.80

FIG. 7 is a schematic view of an image capturing system according to the 4th embodiment of the present disclosure. FIG. 8 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 4th embodiment. In FIG. 7, the image capturing system includes, in order from an object side to an image side, the first lens element 410, an aperture stop 400, the second lens element 420, the third lens element 430, the fourth lens element 440, the fifth lens element 450, an IR-cut filter 480, an image plane 460 and an image sensor 470.

The first lens element 410 with positive refractive power has a convex object-side surface 411 and a concave image-side surface 412, and is made of plastic material. The object-side surface 411 and the image-side surface 412 of the first lens element 410 are aspheric.

The second lens element 420 with negative refractive power has a convex object-side surface 421 and a concave image-side surface 422, and is made of plastic material. The object-side surface 421 and the image-side surface 422 of the second lens element 420 are aspheric.

The third lens element 430 with positive refractive power has a convex object-side surface 431 and a convex image-side surface 432, and is made of plastic material. The object-side surface 431 and the image-side surface 432 of the third lens element 430 are aspheric.

The fourth lens element 440 with negative refractive power has a concave object-side surface 441 and a convex image-side surface 442, and is made of plastic material. The object-side surface 441 and the image-side surface 442 of the fourth lens element 440 are aspheric.

The fifth lens element 450 with negative refractive power has a convex to object-side surface 451 and a concave image-side surface 452, and is made of plastic material. The object-side surface 451 and the image-side surface 452 of the fifth lens element 450 are aspheric. Furthermore, the fifth lens element 450 has inflection points on the object-side surface 451 and the image-side surface 452 thereof.

The IR-cut filter 480 is made of glass, and located between the fifth lens element 450 and the image plane 460, and will not affect the focal length of the image capturing system.

The detailed optical data of the 4th embodiment are shown in Table 7 and the aspheric surface data are shown in Table 8 below.

TABLE 7
4th Embodiment
f = 2.87 mm, Fno = 2.60, HFOV = 37.7 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano infinity
1 Lens 1 1.114520 (ASP) 0.437 Plastic 1.544 55.9 2.52
2 5.165400 (ASP) 0.030
3 Ape. Stop Plano 0.052
4 Lens 2 3.794800 (ASP) 0.230 Plastic 1.634 23.8 −4.26
5 1.539850 (ASP) 0.137
6 Lens 3 5.963700 (ASP) 0.335 Plastic 1.544 55.9 4.03
7 −3.406000 (ASP) 0.339
8 Lens 4 −1.077800 (ASP) 0.316 Plastic 1.634 23.8 −12.26
9 −1.393740 (ASP) 0.098
10 Lens 5 1.407860 (ASP) 0.626 Plastic 1.535 56.3 −10.96
11 0.959250 (ASP) 0.400
12 IR-cut filter Plano 0.200 Glass 1.516 64.1
13 Plano 0.253
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 8
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −1.61279E−01 −3.14814E+01 3.00000E+00 −6.34695E+00 −3.00000E+01
A4 = −1.53435E−02 −3.57102E−01 −6.60714E−01 −2.08486E−01 −1.35553E−01
A6 = 1.13129E−01 8.64537E−01 1.74149E+00 1.41973E+00 3.27963E−02
A8 = −6.60537E−01 −1.01259E+00 −1.45754E+00 −1.55368E+00 1.16148E+00
A10 = 1.63677E+00 3.18301E−01 −5.04256E−01 8.23901E−01 −7.76417E−01
A12 = −2.11418E+00 −4.24485E−01 −4.21846E−01 −1.72997E−01 −3.03822E+00
A14 = 6.59149E−01 −1.61830E−01 2.70835E−01 1.92076E−01 5.86313E+00
A16 = −3.70015E+00
Surface #
7 8 9 10 11
k = −1.86859E+01 −8.00378E+00 2.07442E−02 −1.46002E+01 −6.42227E+00
A4 = −3.15658E−02 9.47128E−02 2.17568E−01 −3.47865E−01 −1.48268E−01
A6 = −4.49228E−01 −1.37174E+00 −4.34101E−01 1.86086E−01 8.08642E−02
A8 = 1.02300E+00 2.03618E+00 1.49949E−01 −5.32172E−02 −3.56870E−02
A10 = −4.79755E−02 −1.01710E+00 3.94520E−01 9.23622E−03 1.02191E−02
A12 = 2.07706E−02 1.96202E−01 −9.53889E−02 4.93759E−03 −2.22584E−03
A14 = −7.69161E−01 −1.66874E−01 −3.22708E−01 −3.18512E−03 2.67199E−04
A16 = −1.13257E−01 1.59175E−01 4.72235E−04

In the image capturing system according to the 4th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2 FOV, TTL and ImgH are the same as those stated in the t embodiment with corresponding values for the 4th embodiment. Moreover, these parameters can be calculated from Table 7 and Table 8 as the following values and satisfy the following relationships:

f (mm) 2.87
Fno 2.60
HFOV (deg.) 37.7
V1 − V2 32.1
V3 − V4 32.1
(CT2 + CT3 + CT4)/3 (mm) 0.29
f/f2 −0.68
FOV (deg.) 75.4
TTL (mm) 3.45
TTL/ImgH 1.54
(f/ImgH) × TTL (mm) 4.43
TTL × f/tan(HFOV) (mm2) 12.84

FIG. 9 is a schematic view of an image capturing system according to the 5th embodiment of the present disclosure. FIG. 10 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 5th embodiment. In FIG. 9, the image capturing to system includes, in order from an object side to an image side, the first lens element 510, an aperture stop 500, the second lens element 520, the third lens element 530, the fourth lens element 540, the fifth lens element 550, an IR-cut filter 580, an image plane 560 and an image sensor 570.

The first lens element 510 with positive refractive power has a convex object-side surface 511 and a concave image-side surface 512, and is made of plastic material. The object-side surface 511 and the image-side surface 512 of the first lens element 510 are aspheric.

The second lens element 520 with negative refractive power has a concave object-side surface 521 and a concave image-side surface 522, and is made of plastic material. The object-side surface 521 and the image-side surface 522 of the second lens element 520 are aspheric.

The third lens element 530 with positive refractive power has a convex object-side surface 531 and a concave image-side surface 532, and is made of plastic material. The object-side surface 531 and the image-side surface 532 of the third lens element 530 are aspheric.

The fourth lens element 540 with negative refractive power has a concave object-side surface 541 and a convex image-side surface 542, and is made of plastic material. The object-side surface 541 and the image-side surface 542 of the fourth lens element 540 are aspheric.

The fifth lens element 550 with negative refractive power has a convex object-side surface 551 and a concave image-side surface 552, and is made of plastic material. The object-side surface 551 and the image-side surface 552 of the fifth lens element 550 are aspheric. Furthermore, the fifth lens element 550 has inflection points on the object-side surface 551 and the image-side surface 552 thereof.

The IR-cut filter 580 is made of glass, and located between the fifth lens element 550 and the image plane 560, and will not affect the focal length of the image capturing system.

The detailed optical data of the 5th embodiment are shown in Table 9 and the aspheric surface data are shown in Table 10 below.

TABLE 9
5th Embodiment
f = 2.77 mm, Fno = 2.60, HFOV = 38.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Lens 1 1.027520 (ASP) 0.422 Plastic 1.544 55.9 2.04
2 11.920400 (ASP) 0.007
3 Ape. Stop Plano 0.067
4 Lens 2 −27.933000 (ASP) 0.230 Plastic 1.640 23.3 −3.85
5 2.713100 (ASP) 0.146
6 Lens 3 3.015100 (ASP) 0.264 Plastic 1.544 55.9 7.90
7 9.771000 (ASP) 0.326
8 Lens 4 −1.367900 (ASP) 0.303 Plastic 1.640 23.3 −14.98
9 −1.733630 (ASP) 0.062
10 Lens 5 1.359220 (ASP) 0.623 Plastic 1.544 55.9 −10.88
11 0.928940 (ASP) 0.400
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.254
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 10
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −3.43318E−01 −3.84768E+02 0.00000E+00 −5.47436E+00 −2.69833E+01
A4 = −3.36501E−02 −3.92263E−01 −3.52197E−01 −1.60611E−01 −3.70184E−01
A6 = 2.50508E−02 7.14730E−01 2.11016E+00 1.97313E+00 5.45888E−03
A8 = −8.11433E−01 −1.10836E+00 −2.30435E+00 −1.90023E+00 1.28146E+00
A10 = 7.34044E−01 1.56618E−01 6.30659E−01 1.77306E+00 −1.48368E+00
A12 = −2.11137E+00 −4.24482E−01 −4.21843E−01 −1.72994E−01 −3.03682E+00
A14 = 6.59420E−01 −1.61826E−01 2.70839E−01 1.92080E−01 5.86777E+00
A16 = −3.70015E+00
Surface #
7 8 9 10 11
k = −3.00000E+01 −1.82327E+01 2.71553E−01 −2.33863E+01 −8.44770E+00
A4 = −1.70307E−01 1.26110E−01 2.38866E−01 −3.52152E−01 −1.46856E−01
A6 = −4.48634E−01 −1.41052E+00 −4.98677E−01 1.87769E−01 7.75380E−02
A8 = 1.00739E+00 1.88321E+00 1.32517E−01 −5.29516E−02 −3.62970E−02
A10 = −1.30601E−01 −1.09476E+00 3.93077E−01 9.35449E−03 1.01599E−02
A12 = −8.70973E−02 2.38898E−01 −9.29186E−02 4.99858E−03 −2.20638E−03
A14 = −6.63675E−01 −2.35952E−02 −3.18795E−01 −3.13159E−03 2.80074E−04
A16 = 1.00283E−01 1.66194E−01 4.31560E−04

In the image capturing system according to the 5th embodiment, the definitions of f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 5th embodiment. Moreover, these parameters can be calculated from Table 9 and Table 10 as the following values and satisfy the following relationships:

f (mm) 2.77
Fno 2.60
HFOV (deg.) 38.5
V1 − V2 32.6
V3 − V4 32.6
(CT2 + CT3 + CT4)/3 (mm) 0.27
f/f2 −0.72
FOV (deg.) 77.0
TTL (mm) 3.20
TTL/ImgH 1.43
(f/ImgH) × TTL (mm) 3.96
TTL × f/tan(HFOV) (mm2) 11.17

FIG. 11 is a schematic view of an image capturing system according to the 6th embodiment of the present disclosure. FIG. 12 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 6th embodiment. In FIG. 11, the image to capturing system includes, in order from an object side to an image side, the first lens element 610, an aperture stop 600, the second lens element 620, the third lens element 630, the fourth lens element 640, the fifth lens element 650, an IR-cut filter 680, an image plane 660 and an image sensor 670.

The first lens element 610 with positive refractive power has a convex object-side surface 611 and a convex image-side surface 612, and is made of plastic material. The object-side surface 611 and the image-side surface 612 of the first lens element 610 are aspheric.

The second lens element 620 with negative refractive power has a concave object-side surface 621 and a concave image-side surface 622, and is made of plastic material. The object-side surface 621 and the image-side surface 622 of the second lens element 620 are aspheric.

The third lens element 630 with positive refractive power has a convex object-side surface 631 and a convex image-side surface 632, and is made of plastic material. The object-side surface 631 and the image-side surface 632 of the third lens element 630 are aspheric.

The fourth lens element 640 with negative refractive power has a concave object-side surface 641 and a conveximage-side surface 642, and is made of plastic material. The object-side surface 641 and the image-side surface 642 of the fourth lens element 640 are aspheric.

The fifth lens element 650 with positive refractive power has a convex object-side surface 651 and a concave image-side surface 652, and is made of plastic material. The object-side surface 651 and the image-side surface 652 of the fifth lens element 650 are aspheric. Furthermore, the fifth lens element 650 has inflection points on the object-side surface 651 and the image-side surface 652 thereof.

The IR-cut filter 680 is made of glass, and located between the fifth lens element 650 and the image plane 660, and will not affect the focal length of the image capturing system.

The detailed optical data of the 6th embodiment are shown in Table 11 and the aspheric surface data are shown in Table 12 below.

TABLE 11
6th Embodiment
f = 2.87 mm, Fno = 2.60, HFOV = 37.4 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano infinity
1 Lens 1 1.078690 (ASP) 0.424 Plastic 1.544 55.9 1.93
2 −32.975000 (ASP) −0.006
3 Ape. Stop Plano 0.060
4 Lens 2 −71.428600 (ASP) 0.230 Plastic 1.640 23.3 −3.59
5 2.374170 (ASP) 0.192
6 Lens 3 8.407000 (ASP) 0.314 Plastic 1.544 55.9 12.45
7 −34.393600 (ASP) 0.305
8 Lens 4 −1.300330 (ASP) 0.272 Plastic 1.640 23.3 −6.74
9 −2.013250 (ASP) 0.030
10 Lens 5 1.314500 (ASP) 0.780 Plastic 1.544 55.9 24.75
11 1.152080 (ASP) 0.400
12 IR-cut filter Plano 0.150 Glass 1.516 64.1
13 Plano 0.250
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 12
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −3.59454E−01 −1.00000E+00 0.00000E+00 2.32370E+00 −3.00000E+01
A4 = −3.42040E−02 −3.59393E−01 −2.61149E−01 −9.54178E−02 −4.07777E−01
A6 = 2.76864E−02 1.06309E+00 2.20847E+00 1.69539E+00 −4.62508E−03
A8 = −8.20722E−01 −2.68042E+00 −4.60080E+00 −3.04730E+00 1.23933E+00
A10 = 7.92109E−01 2.18211E+00 5.04622E+00 4.14315E+00 −1.24872E+00
A12 = −2.11137E+00 −4.24482E−01 −4.21843E−01 −1.72994E−01 −3.03682E+00
A14 = 6.59420E−01 −1.61826E−01 2.70839E−01 1.92080E−01 5.86777E+00
A16 = −3.70015E+00
Surface #
7 8 9 10 11
k = 3.00000E+00 −1.86979E+01 3.46619E−01 −1.92615E+01 −7.83557E+00
A4 = −1.66431E−01 2.73519E−01 2.23431E−01 −3.53679E−01 −1.33232E−01
A6 = −5.15883E−01 −1.53053E+00 −4.85894E−01 1.91012E−01 7.22731E−02
A8 = 1.03001E+00 1.85234E+00 1.23076E−01 −5.24341E−02 −3.47368E−02
A10 = −1.01121E−01 −9.12899E−01 3.83642E−01 9.74909E−03 1.05131E−02
A12 = −8.08239E−02 2.74680E−01 −9.03108E−02 5.16568E−03 −2.16016E−03
A14 = −6.63675E−01 −2.77521E−01 −3.17706E−01 −3.02811E−03 2.27599E−04
A16 = 2.36114E−02 1.68134E−01 3.15619E−04

In the image capturing system according to the 6th embodiment, the definitions of f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 6th embodiment. Moreover, these parameters can be calculated from Table 11 and Table 12 as the following values and satisfy the following relationships:

f (mm) 2.87
Fno 2.60
HFOV (deg.) 37.4
V1 − V2 32.6
V3 − V4 32.6
(CT2 + CT3 + CT4)/3 (mm) 0.27
f/f2 −0.80
FOV (deg.) 74.8
TTL (mm) 3.40
TTL/ImgH 1.52
(f/ImgH) × TTL (mm) 4.36
TTL × f/tan(HFOV) (mm2) 12.75

FIG. 13 is a schematic view of an image capturing system according to the 7th embodiment of the present disclosure. FIG. 14 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 7th embodiment. In FIG. 13, the image to capturing system includes, in order from an object side to an image side, the first lens element 710, an aperture stop 700, the second lens element 720, the third lens element 730, the fourth lens element 740, the fifth lens element 750, an IR-cut filter 780, an image plane 760 and an image sensor 770.

The first lens element 710 with positive refractive power has a convex object-side surface 711 and a convex image-side surface 712, and is made of plastic material. The object-side surface 711 and the image-side surface 712 of the first lens element 710 are aspheric.

The second lens element 720 with negative refractive power has a concave object-side surface 721 and a concave image-side surface 722, and is made of plastic material. The object-side surface 721 and the image-side surface 722 of the second lens element 720 are aspheric.

The third lens element 730 with positive refractive power has a convex object-side surface 731 and a concave image-side surface 732, and is made of plastic material. The object-side surface 731 and the image-side surface 732 of the third lens element 730 are aspheric.

The fourth lens element 740 with negative refractive power has a concave object-side surface 741 and a convex image-side surface 742, and is made of plastic material. The object-side surface 741 and the image-side surface 742 of the fourth lens element 740 are aspheric.

The fifth lens element 750 with positive refractive power has a convex object-side surface 751 and a concave image-side surface 752, and is made of plastic material. The object-side surface 751 and the image-side surface 752 of the fifth lens element 750 are aspheric. Furthermore, the fifth lens element 750 has inflection points on the object-side surface 751 and the image-side surface 752 thereof.

The IR-cut filter 780 is made of glass, and located between the fifth lens element 750 and the image plane 760, and will not affect the focal length of the image capturing system.

The detailed optical data of the 7th embodiment are shown in Table 13 and the aspheric surface data are shown in Table 14 below.

TABLE 13
7th Embodiment
f = 2.80 mm, Fno = 2.45, HFOV = 38.1 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Lens 1 1.119890 (ASP) 0.426 Plastic 1.544 55.9 1.76
2 −5.821200 (ASP) −0.023
3 Ape. Stop Plano 0.052
4 Lens 2 −26.089800 (ASP) 0.230 Plastic 1.607 28.6 −2.83
5 1.842810 (ASP) 0.202
6 Lens 3 4.144500 (ASP) 0.263 Plastic 1.544 55.9 11.35
7 12.308100 (ASP) 0.308
8 Lens 4 −1.255580 (ASP) 0.281 Plastic 1.607 26.6 −10.46
9 −1.697400 (ASP) 0.030
10 Lens 5 1.205780 (ASP) 0.630 Plastic 1.535 56.3 44.00
11 1.035950 (ASP) 0.400
12 IR-cut filter Plano 0.150 Glass 1.516 64.1
13 Plano 0.354
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 14
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −4.89422E−01 −1.00000E+00 0.00000E+00 1.47669E+00 −3.17412E+00
A4 = −4.78999E−02 −2.54940E−01 −1.94436E−01 −1.12985E−01 −3.85344E−01
A6 = 6.66855E−02 1.32984E+00 2.66460E+00 1.58624E+00 8.02814E−02
A8 = −1.21705E+00 −3.89996E+00 −6.65036E+00 −2.91786E+00 1.13524E+00
A10 = 1.43194E+00 3.47957E+00 7.47017E+00 3.51316E+00 −7.14912E−01
A12 = −2.11137E+00 −4.24481E−01 −4.21842E−01 −1.72993E−01 −3.03682E+00
A14 = 6.59418E−01 −1.61826E−01 2.70839E−01 1.92080E−01 5.86777E+00
A16 = −3.70015E+00
Surface #
7 8 9 10 11
k = −1.00000E+00 −2.00369E+01 −3.33565E−01 −1.62425E+01 −7.88149E+00
A4 = −1.73728E−01 2.59742E−01 3.01686E−01 −3.62768E−01 −1.64726E−01
A6 = −5.35306E−01 −1.44905E+00 −5.22751E−01 1.90515E−01 8.05776E−02
A8 = 1.10409E+00 1.65899E+00 1.12120E−01 −5.29520E−02 −3.72522E−02
A10 = −3.78156E−02 −1.00404E+00 3.82854E−01 9.38154E−03 1.00866E−02
A12 = −4.14795E−02 3.05325E−01 −8.90255E−02 4.86369E−03 −2.07221E−03
A14 = −6.63675E−01 −1.76754E−01 −3.15349E−01 −3.22899E−03 2.57944E−04
A16 = 7.54633E−02 1.67192E−01 5.03307E−04

In the image capturing system according to the 7th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2 FOV, TTL and ImgH are the same as those stated in the t embodiment with corresponding values for the 7th embodiment. Moreover, these parameters can be calculated from Table 13 and Table 14 as the following values and satisfy the following relationships:

f (mm) 2.80
Fno 2.45
HFOV (deg.) 38.1
V1 − V2 29.3
V3 − V4 29.3
(CT2 + CT3 + CT4)/3 (mm) 0.26
f/f2 −0.99
FOV (deg.) 76.2
TTL (mm) 3.30
TTL/ImgH 1.48
(f/ImgH) × TTL (mm) 4.13
TTL × f/tan(HFOV) (mm2) 11.82

FIG. 15 is a schematic view of an image capturing system according to the 8th embodiment of the present disclosure. FIG. 16 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 8th embodiment. In FIG. 15, the image capturing system includes, in order from an object side to an image side, an aperture stop 800, the first lens element 810, a stop 801, the second lens element 820, the third lens element 830, the fourth lens element 840, the fifth lens element 850, an IR-cut filter 880, an image plane 860 and an image sensor 870.

The first lens element 810 with positive refractive power has a convex object-side surface 811 and a concave image-side surface 812, and is made of plastic material. The object-side surface 811 and the image-side surface 812 of the first lens element 810 are aspheric.

The second lens element 820 with negative refractive power has a convex object-side surface 821 and a concave image-side surface 822, and is made of plastic material. The object-side surface 821 and the image-side surface 822 of the second lens element 820 are aspheric.

The third lens element 830 with positive refractive power has a convex object-side surface 831 and a concave image-side surface 832, and is made of plastic material. The object-side surface 831 and the image-side surface 832 of the third lens element 830 are aspheric.

The fourth lens element 840 with negative refractive power has a concave object-side surface 841 and a convex image-side surface 842, and is made of plastic material. The object-side surface 841 and the image-side surface 842 of the fourth lens element 840 are aspheric.

The fifth lens element 850 with positive refractive power has a convex object-side surface 851 and a concave image-side surface 852, and is made of plastic material. The object-side surface 851 and the image-side surface 852 of the fifth lens element 850 are aspheric. Furthermore, the fifth lens element 850 has inflection points on the object-side surface 851 and the image-side surface 852 thereof.

The IR-cut filter 880 is made of glass, and located between the fifth lens element 850 and the image plane 860, and will not affect the focal length of the image capturing system.

The detailed optical data, of the 8th embodiment are shown in Table 15 and the aspheric surface data are shown in Table 16 below.

TABLE 15
8th Embodiment
f = 2.94 mm, Fno = 2.46, HFOV = 37.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.148
2 Lens 1 1.070080 (ASP) 0.449 Plastic 1.544 55.9 2.18
3 9.388500 (ASP) 0.030
4 Stop Plano 0.030
5 Lens 2 84.652700 (ASP) 0.240 Plastic 1.640 23.3 −5.34
6 3.277500 (ASP) 0.219
7 Lens 3 6.451000 (ASP) 0.256 Plastic 1.544 55.9 167.33
8 6.845800 (ASP) 0.337
9 Lens 4 −2.568740 (ASP) 0.282 Plastic 1.640 23.3 −13.91
10 −3.765400 (ASP) 0.047
11 Lens 5 1.238030 (ASP) 0.593 Plastic 1.544 55.9 97.18
12 1.053730 (ASP) 0.400
13 IR-cut filter Plano 0.110 Glass 1.516 64.1
14 Plano 0.350
15 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.
Effective radius of Surface 4 is 0.55 mm.

TABLE 16
Aspheric Coefficients
Surface #
2 3 5 6 7
k = −1.25115E−01 1.43813E+01 −9.00000E+01 −9.00000E+01 −1.62971E+01
A4 = −3.24904E−02 −3.46578E−01 −2.71748E−01 2.01805E−01 −5.12661E−01
A6 = 8.31961E−02 8.25956E−01 1.45537E+00 3.91515E−01 −2.18390E−01
A8 = −9.69593E−01 −2.88251E+00 −2.81983E+00 −7.55601E−01 2.80932E+00
A10 = 1.70029E+00 1.72981E+00 −9.98196E−01 5.89497E+00 −8.73332E+00
A12 = −1.95301E+00 8.05134E+00 1.77489E+01 −2.12222E+01 1.29551E+00
A14 = −1.40784E+00 −1.02407E+01 −1.73755E+01 3.13853E+01 3.83345E+01
A16 = −5.53900E+01
Surface #
8 9 10 11 12
k = −1.00000E+02 −9.00000E+01 −2.07918E+01 −2.13912E+01 −7.68740E+00
A4 = −2.44016E−01 3.33352E−01 −1.26866E−01 −4.00253E−01 −2.16002E−01
A6 = −8.78370E−01 −1.51045E+00 1.52241E+00 2.66439E−01 1.10894E−01
A8 = 2.90423E+00 4.50617E+00 −5.54351E+00 −6.98977E−02 −3.63247E−02
A10 = −5.31890E+00 −1.73903E+01 8.99824E+00 1.61916E−03 4.72950E−03
A12 = 4.94594E+00 3.73070E+01 −8.05875E+00 3.70311E−03 9.41363E−05
A14 = −9.45588E−01 −4.09507E+01 3.84242E+00 −8.23655E−04 −4.20686E−05
A16 = 1.77252E+01 −7.54720E−01 3.85845E−05

In the image capturing system according to the 8th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 8th embodiment. Moreover, these parameters can be calculated from Table 15 and Table 16 as the following values and satisfy the following relationships:

f (mm) 2.94
Fno 2.46
HFOV (deg.) 37.5
V1 − V2 32.6
V3 − V4 32.6
(CT2 + CT3 + CT4)/3 (mm) 0.26
f/f2 −0.55
FOV (deg.) 75.0
TTL (mm) 3.34
TTL/ImgH 1.46
(f/ImgH) × TTL (mm) 4.28
TTL × f/tan(HFOV) (mm2) 12.84

FIG. 17 is a schematic view of an image capturing system according to to the 9th embodiment of the present disclosure. FIG. 18 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 9th embodiment. In FIG. 17, the image capturing system includes, in order from an object side to an image side, the first lens element 910, an aperture stop 900, the second lens element 920, the third lens element 930, the fourth lens element 940, the fifth lens element 950, an IR-cut filter 980, an image plane 960 and an image sensor 970.

The first lens element 910 with positive refractive power has a convex object-side surface 911 and a concave image-side surface 912, and is made of plastic material. The object-side surface 911 and the image-side surface 912 of the first lens element 910 are aspheric.

The second lens element 920 with negative refractive power has a concave object-side surface 921 and a concave image-side surface 922, and is made of plastic material. The object-side surface 921 and the image-side surface 922 of the second lens element 920 are aspheric.

The third lens element 930 with positive refractive power has a convex object-side surface 931 and a concave image-side surface 932, and is made of plastic material. The object-side surface 931 and the image-side surface 932 of the third lens element 930 are aspheric.

The fourth lens element 940 with negative refractive power has a concave object-side surface 941 and a convex image-side surface 942, and is made of plastic material. The object-side surface 941 and the image-side surface 942 of the fourth lens element 940 are aspheric.

The fifth lens element 950 with negative refractive power has a convex object-side surface 951 and a concave image-side surface 952, and is made of plastic material. The object-side surface 951 and the image-side surface 952 of the fifth lens element 950 are aspheric. Furthermore, the fifth lens element 950 has inflection points on the object-side surface 951 and the image-side surface 952 thereof.

The IR-cut filter 980 is made of glass, and located between the fifth lens element 950 and the image plane 960, and will not affect the focal length of the image capturing system.

The detailed optical data of the 9th embodiment are shown in Table 17 and the aspheric surface data are shown in Table 18 below.

TABLE 17
9th Embodiment
f = 2.38 mm, Fno = 2.60, HFOV = 35.9 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Lens 1 0.910190 (ASP) 0.392 Plastic 1.544 55.9 1.80
2 11.313700 (ASP) 0.016
3 Ape. Stop Plano 0.068
4 Lens 2 −33.134500 (ASP) 0.230 Plastic 1.650 21.4 −3.53
5 2.469650 (ASP) 0.147
6 Lens 3 2.314550 (ASP) 0.266 Plastic 1.544 55.9 9.12
7 4.160700 (ASP) 0.268
8 Lens 4 −1.755140 (ASP) 0.308 Plastic 1.650 21.4 −12.57
9 −2.390230 (ASP) 0.030
10 Lens 5 1.255930 (ASP) 0.562 Plastic 1.544 55.9 −11.19
11 0.876950 (ASP) 0.300
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.144
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 18
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −3.37216E−01 −4.07406E+02 0.00000E+00 −4.79097E+00 −2.91430E+01
A4 = −3.62588E−02 −3.94009E−01 −3.32289E−01 −1.34179E−01 −3.65687E−01
A6 = −1.51795E−02 6.52326E−01 2.37826E+00 2.46088E+00 −1.04338E−01
A8 = −8.63759E−01 −1.62143E+00 −1.78763E+00 −1.32037E+00 7.47909E−01
A10 = −4.00602E−01 1.12390E+00 −2.19380E+00 2.15610E+00 −1.82371E+00
A12 = −2.54805E+00 −4.24483E−01 −4.21844E−01 −1.72995E−01 −3.03682E+00
A14 = 6.59349E−01 −1.61831E−01 2.70834E−01 1.92075E−01 5.86777E+00
A16 = −3.70003E+00
Surface #
7 8 9 10 11
k = −2.88995E+01 −3.77337E+01 9.87418E−01 −2.01461E+01 −7.79639E+00
A4 = −1.86869E−01 1.04720E−01 2.29860E−01 −3.57140E−01 −1.65451E−01
A6 = −5.11383E−01 −1.39831E+00 −5.76255E−01 2.08575E−01 9.20261E−02
A8 = 8.66303E−01 1.57904E+00 9.49921E−02 −5.40809E−02 −4.21111E−02
A10 = −5.16631E−01 −1.45564E+00 3.75014E−01 1.86384E−03 9.48995E−03
A12 = −8.70992E−02 1.45266E−01 −1.00134E−01 8.92986E−04 −3.25113E−03
A14 = −6.63679E−01 2.30884E−01 −3.12969E−01 −1.54282E−03 7.90432E−04
A16 = 7.68932E−01 1.88572E−01 1.46481E−03

In the image capturing system according to the 9th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 9th embodiment. Moreover, these parameters can be calculated from Table 17 and Table 18 as the following values and satisfy the following relationships:

f (mm) 2.38
Fno 2.60
HFOV (deg.) 35.9
V1 − V2 34.5
V3 − V4 34.5
(CT2 + CT3 + CT4)/3 (mm) 0.27
f/f2 −0.68
FOV (deg.) 71.8
TTL (mm) 2.83
TTL/ImgH 1.62
(f/ImgH) × TTL (mm) 3.85
TTL × f/tan(HFOV) (mm2) 9.32

FIG. 19 is a schematic view of an image capturing system according to the 10th embodiment of the present disclosure. FIG. 20 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 10th embodiment. In FIG. 19, the image capturing system includes, in order from an object side to an image side, an aperture stop 1000, the first lens element 1010, the second lens element 1020, the third lens element 1030, the fourth lens element 1040, the fifth lens element 1050, an IR-cut filter 1080, an image plane 1060 and an image sensor 1070.

The first lens element 1010 with positive refractive power has a convex object-side surface 1011 and a concave image-side surface 1012, and is made of plastic material. The object-side surface 1011 and the image-side surface 1012 of the first lens element 1010 are aspheric.

The second lens element 1020 with negative refractive power has a convex object-side surface 1021 and a concave image-side surface 1022, and is made of plastic material. The object-side surface 1021 and the image-side surface 1022 of the second lens element 1020 are aspheric.

The third lens element 1030 with positive refractive power has a convex object-side surface 1031 and a convex image-side surface 1032, and is made of plastic material. The object-side surface 1031 and the image-side surface 1032 of the third lens element 1030 are aspheric.

The fourth lens element 1040 with negative refractive power has a concave object-side surface 1041 and a convex image-side surface 1042, and is made of plastic material. The object-side surface 1041 and the image-side surface 1042 of the fourth lens element 1040 are aspheric.

The fifth lens element 1050 with negative refractive power has a convex object-side surface 1051 and a concave image-side surface 1052, and is made of plastic material. The object-side surface 1051 and the image-side surface 1052 of the fifth lens element 1050 are aspheric. Furthermore, the fifth lens element 1050 has inflection points on the object-side surface 1051 and the image-side surface 1052 thereof.

The IR-cut filter 1080 is made of glass, and located between the fifth lens element 1050 and the image plane 1060, and will not affect the focal length of the image capturing system.

The detailed optical data of the 10th embodiment are shown in Table 19 and the aspheric surface data are shown in Table 20 below.

TABLE 19
10th Embodiment
f = 2.18 mm, Fno = 2.37, HFOV = 38.5 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Ape. Stop Plano −0.106
2 Lens 1 0.946220 (ASP) 0.311 Plastic 1.544 55.9 2.55
3 2.621460 (ASP) 0.059
4 Lens 2 2.202410 (ASP) 0.230 Plastic 1.650 21.4 −7.42
5 1.449830 (ASP) 0.152
6 Lens 3 107.605400 (ASP) 0.309 Plastic 1.544 55.9 2.57
7 −1.413960 (ASP) 0.184
8 Lens 4 −0.770590 (ASP) 0.245 Plastic 1.650 21.4 −60.83
9 −0.884320 (ASP) 0.156
10 Lens 5 1.340890 (ASP) 0.443 Plastic 1.544 55.9 −3.31
11 0.678840 (ASP) 0.300
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.235
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 20
Aspheric Coefficients
Surface #
2 3 4 5 6
k = 1.46061E−02 −7.00000E+01 −3.96271E+01 −1.02906E+01 3.00000E+00
A4 = 3.37599E−02 −3.03077E−01 −7.77909E−01 −2.14063E−01 −2.28979E−01
A6 = 7.78434E−02 3.05948E−01 −1.95684E−02 2.35089E−01 6.69017E−02
A8 = 7.69186E−01 −1.97098E+00 −2.03011E−01 −1.58080E+00 1.28600E+00
A10 = −9.98338E−01 6.04596E+00 4.23651E+00 2.91597E+00 −3.37515E+00
A12 = −1.10184E+00 2.45861E−02 −3.52173E−02 −3.96619E−02 −1.70242E+00
A14 = 8.55183E−02 −1.22676E−01 7.84952E−02 2.46422E−02 2.93705E+00
A16 = −1.81800E+00
Surface #
7 8 9 10 11
k = 2.70188E−01 −4.14893E+00 −1.20712E+00 −2.48815E+01 −6.63032E+00
A4 = −1.70333E−01 2.04663E−02 5.18742E−01 −4.22592E−01 −2.00639E−01
A6 = 2.19899E−01 −6.09374E−01 −4.22724E−01 1.69210E−01 9.10051E−02
A8 = 7.98596E−01 1.78921E+00 1.40891E−01 −1.70236E−02 −3.93732E−02
A10 = 2.51173E+00 −1.13233E+00 2.88751E−01 2.11530E−02 3.33614E−03
A12 = 8.92554E−01 −2.91155E−02 −8.26757E−02 1.00165E−02 −9.89022E−04
A14 = 2.55808E−03 −1.18708E−01 −1.96880E−01 −2.06915E−03 6.25253E−04
A16 = −4.65095E−01 −5.67914E−02 −6.01017E−03

In the image capturing system according to the 10th embodiment, the definitions of f Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 10th embodiment. Moreover, these parameters can be calculated from Table 19 and Table 20 as the following values and satisfy the following relationships:

f (mm) 2.18
Fno 2.37
HFOV (deg.) 38.5
V1 − V2 34.5
V3 − V4 34.5
(CT2 + CT3 + CT4)/3 (mm) 0.26
f/f2 −0.29
FOV (deg.) 77.0
TTL (mm) 2.72
TTL/ImgH 1.56
(f/ImgH) × TTL (mm) 3.39
TTL × f/tan(HFOV) (mm2) 7.47

FIG. 21 is a schematic view of an image capturing system according to the 11th embodiment of the present disclosure. FIG. 22 shows spherical aberration curves, astigmatic field curves and a distortion curve of the image capturing system according to the 11th embodiment. In FIG. 21, the image capturing system includes, in order from an object side to an image side, the first lens element 1110, an aperture stop 1100, the second lens element 1120, the third lens element 1130, the fourth lens element 1140, the fifth lens element 1150, an IR-cut filter 1180, an image plane 1160 and an image sensor 1170.

The first lens element 1110 with positive refractive power has a convex object-side surface 1111 and a concave image-side surface 1112, and is made of plastic material. The object-side surface 1111 and the image-side surface 1112 of the first lens element 1110 are aspheric.

The second lens element 1120 with negative refractive power has a convex object-side surface 1121 and a concave image-side surface 1122, and is made of plastic material. The object-side surface 1121 and the image-side surface 1122 of the second lens element 1120 are aspheric.

The third lens element 1130 with positive refractive power has a convex object-side surface 1131 and a concave image-side surface 1132, and is made of plastic material. The object-side surface 1131 and the image-side surface 1132 of the third lens element 1130 are aspheric.

The fourth lens element 1140 with negative refractive power has a concave object-side surface 1141 and a convex image-side surface 1142, and is made of plastic material. The object-side surface 1141 and the image-side surface 1142 of the fourth lens element 1140 are aspheric.

The fifth lens element 1150 with positive refractive power has a convex object-side surface 1151 and a concave image-side surface 1152, and is made of plastic material. The object-side surface 1151 and the image-side surface 1152 of the fifth lens element 1150 are aspheric. Furthermore, the fifth lens element 1150 has inflection points on the object-side surface 1151 and the image-side surface 1152 thereof.

The IR-cut filter 1180 is made of glass, and located between the fifth lens element 1150 and the image plane 1160, and will not affect the focal length of the image capturing system.

The detailed optical data of the 11th embodiment are shown in Table 21 and the aspheric surface data are shown in Table 22 below

TABLE 21
11th Embodiment
f = 2.20 mm, Fno = 2.65, HFOV = 38.4 deg.
Surface Focal
# Curvature Radius Thickness Material Index Abbe # length
0 Object Plano Infinity
1 Lens 1 0.889320 (ASP) 0.372 Plastic 1.544 55.9 1.78
2 9.563700 (ASP) 0.015
3 Ape. Stop Plano 0.064
4 Lens 2 76.383800 (ASP) 0.230 Plastic 1.650 21.4 −3.94
5 2.474210 (ASP) 0.111
6 Lens 3 1.872980 (ASP) 0.232 Plastic 1.544 55.9 12.23
7 2.489220 (ASP) 0.242
8 Lens 4 −2.258450 (ASP) 0.283 Plastic 1.650 21.4 −6.79
9 −4.854200 (ASP) 0.030
10 Lens 5 0.846250 (ASP) 0.469 Plastic 1.535 56.3 127.74
11 0.689370 (ASP) 0.300
12 IR-cut filter Plano 0.100 Glass 1.516 64.1
13 Plano 0.136
14 Image Plano
Note:
Reference wavelength (d-line) is 587.6 nm.

TABLE 22
Aspheric Coefficients
Surface #
1 2 4 5 6
k = −4.48548E−01 −8.94672E+02 0.00000E+00 −7.95290E+00 −2.74951E+01
A4 = −5.85059E−02 −4.26459E−01 −3.11702E−01 −1.49839E−01 −3.80038E−01
A6 = −1.42851E−01 5.02376E−01 2.58544E+00 2.70971E+00 −2.10773E−01
A8 = −1.21959E+00 −2.34036E+00 −1.27936E+00 −3.42914E−01 3.40313E−01
A10 = −1.23231E+00 3.86129E+00 −6.54714E−01 1.97696E+00 −3.19399E+00
A12 = −2.54808E+00 −4.24481E−01 −4.21842E−01 −1.72993E−01 −3.03682E+00
A14 = 6.59331E−01 −1.61828E−01 2.70837E−01 1.92078E−01 5.86777E+00
A16 = −3.70004E+00
Surface #
7 8 9 10 11
k = −2.10141E+01 −2.52088E+02 −1.64555E+00 −1.64652E+01 −8.24454E+00
A4 = −1.49837E−01 1.89162E−01 2.50407E−01 −3.60422E−01 −1.78572E−01
A6 = −4.63623E−01 −1.37577E+00 −6.15990E−01 2.16730E−01 8.25622E−02
A8 = 8.18347E−01 1.51214E+00 7.90312E−02 −5.17629E−02 −4.49105E−02
A10 = −7.14987E−01 −1.55392E+00 3.76885E−01 2.74577E−03 9.02979E−03
A12 = −7.60853E−02 9.52445E−02 −9.78978E−02 8.79829E−04 −2.94899E−03
A14 = −6.63676E−01 3.07718E−01 −3.09399E−01 −1.82048E−03 1.03242E−03
A16 = 1.02469E+00 1.92688E−01 9.96584E−04

In the image capturing system according to the 11th embodiment, the definitions of f, Fno, HFOV, V1, V2, V3, V4, CT2, CT3, CT4, f2, FOV, TTL and ImgH are the same as those stated in the 1st embodiment with corresponding values for the 11th embodiment. Moreover, these parameters can be calculated from Table 21 and Table 22 as the following values and satisfy the following relationships:

f (mm) 2.20
Fno 2.65
HFOV (deg.) 38.4
V1 − V2 34.5
V3 − V4 34.5
(CT2 + CT3 + CT4)/3 (mm) 0.25
f/f2 −0.56
FOV (deg.) 76.8
TTL (mm) 2.58
TTL/ImgH 1.48
(f/ImgH) × TTL (mm) 3.24
TTL × f/tan(HFOV) (mm2) 7.15

It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims.

Hsu, Po-Lun, Tsai, Tsung-Han, Chou, Ming-Ta

Patent Priority Assignee Title
10274707, Jun 05 2017 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
10698175, Jun 08 2018 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
10989899, Jun 08 2018 Genius Electronic Optical (Xiamen) Co., Ltd. Optical imaging lens
9964740, Dec 14 2016 AAC OPTICS SOLUTIONS PTE LTD Optical camera lens
Patent Priority Assignee Title
6111703, Dec 17 1997 Olympus Corporation Image pickup optical system
6236522, Dec 02 1997 Olympus Corporation Photographic optical system
7443610, Sep 06 2007 Hon Hai Precision Industry Co., Ltd. Lens system
7480105, Apr 05 2006 JIANGXI OFILM OPTICAL CO , LTD Imaging lens and imaging apparatus
7502181, Mar 28 2006 JIANGXI OFILM OPTICAL CO , LTD Imaging lens
7515351, Jul 05 2007 Largan Precision Co., Ltd. Inverse telephoto with correction lenses
7710665, Nov 08 2007 Samsung Electro-Mechanics Co., Ltd. Imaging optical system
7826151, Dec 01 2008 Largan Precision Co., Ltd. Optical lens system for taking image
7864454, Aug 11 2009 Largan Precision Co., Ltd. Imaging lens system
7911711, Apr 23 2010 Largan Precision Co., Ltd. Photographing optical lens assembly
7965454, Aug 28 2008 Konica Minolta Opto, Inc. Imaging lens and small-size image pickup apparatus using the same
7969664, Sep 30 2009 Largan Precision Co., Ltd. Imaging lens assembly
8000030, Apr 20 2009 Largan Precision Co., Ltd. Imaging lens assembly
8000031, Jun 10 2010 Largan Precision Co., Ltd. Imaging optical lens assembly
8035723, Aug 25 2008 Konica Minolta Opto, Inc Image pickup lens, image pickup apparatus and mobile terminal
8072695, Jul 09 2010 Genius Electronic Optical Co., Ltd. Imaging lens
8174777, Feb 23 2010 Largan Precision Co., Ltd. Zoom lens assembly
8179613, Jul 08 2009 Konica Minolta Opto, Inc Image pickup lens, image pickup apparatus and portable terminal
8179614, Jan 03 2011 Largan Precision Co. Image pickup optical lens assembly
8179615, Jan 07 2011 LARGAN PRECISION CO , LTD Image pickup optical lens assembly
8179618, Dec 24 2009 Sony Corporation Optical unit and image pickup apparatus
8189273, Jun 12 2009 Largan Precision Co., Ltd. Imaging lens assembly
8203796, Feb 25 2009 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
8233224, Jul 14 2009 Largan Precision Co., Ltd. Imaging lens system
8248713, Jan 19 2010 Largan Precision Co., Ltd. Optical photographing lens assembly
8264784, Jun 17 2010 Samsung Electro-Mechanics Co., Ltd. Optical system
8269878, Aug 25 2008 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and mobile terminal
8279537, Jan 06 2010 Tamron Co., Ltd. Imaging lens, camera module, and imaging apparatus
8284291, Nov 01 2010 Largan Precision Co., Ltd. Photographing optical lens assembly
8305697, May 24 2011 Largan Precision Co., Ltd. Image capturing lens assembly
8310768, Sep 16 2010 Largan Precision Co., Ltd. Optical imaging lens system
8325429, Dec 23 2010 Largan Precision Co., Ltd. Photographing optical lens assembly
8325430, Sep 01 2011 NEWMAX TECHNOLOGY CO., LTD. Five-piece imaging lens module
8334922, Apr 07 2009 JIANGXI OFILM OPTICAL CO , LTD Imaging lens, imaging apparatus and portable terminal device
8335043, Apr 22 2011 Largan Precision Co. Image taking optical system
8339718, Jun 09 2011 Largan Precision Co., Ltd. Image capturing optical lens system
8345358, Jun 01 2011 LARGEN PRECISION CO., LTD. Image-capturing optical lens assembly
8351132, Mar 18 2010 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
8358474, Dec 14 2009 LG Innotek Co., Ltd. Imaging lens and camera module
8363337, Apr 08 2010 Largan Precision Co., Ltd. Imaging lens assembly
8369027, May 11 2011 Largan Precision Co., Ltd. Image capturing optical lens system
8369029, Feb 22 2011 Largan Precision Co., Ltd. Image capturing lens assembly
8379324, May 26 2011 Largan Precision Co. Optical imaging lens assembly
8379325, Jul 22 2011 Largan Precision Co., Ltd. Photographing optical lens assembly
8390940, Aug 05 2011 Largan Precision Co., Ltd. Photographing optical lens assembly
8390941, Apr 07 2009 JIANGXI OFILM OPTICAL CO , LTD Imaging lens, imaging apparatus and portable terminal device
8390945, Jul 28 2011 Hon Hai Precision Industry Co., Ltd. Lens module having nebulized portions
8395851, Oct 06 2010 Largan Precision Co., Ltd. Optical lens system
8395852, Oct 15 2010 Largan Precision Co., Ltd. Optical imaging lens assembly
8395853, Mar 09 2011 Largan Precision Co. Image pick-up optical system
8400716, Dec 21 2009 LG INNOTEK CO , LTD Imaging lens
8411374, Jun 22 2010 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
8411376, Dec 25 2008 KANTATSU CO , LTD Imaging lens
8422145, Mar 31 2009 KANTATSU CO , LTD Image pickup lens for solid-state image pickup element
8427569, Feb 27 2009 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus, and mobile terminal
8437092, Dec 24 2009 Sony Corporation Optical unit and image pickup apparatus
8451545, Jul 06 2011 Largan Precision Co., Ltd. Image capturing optical system
8456757, Jun 22 2011 Largan Precision Co., Ltd. Image capturing optical lens assembly
8456758, Dec 28 2011 Largan Precision Co., Ltd. Image capturing lens system
8462257, Aug 25 2008 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and mobile terminal
8462446, Oct 15 2010 Largan Precision, Co., Ltd. Optical imaging lens assembly
8467137, Feb 28 2011 TOKYO VISIONARY OPTICS CO , LTD Imaging lens unit
8477432, Dec 09 2011 Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd.; Hon Hai Precision Industry Co., Ltd. Image lens with low chromatic aberration and high resolution
8482863, Dec 15 2010 Largan Precision Co. Imagery optical system
8488255, Dec 09 2010 Largan Precision Co. Image pickup optical system
8488258, Jun 07 2011 NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD Enhanced depth of field based on uniform relative illumination via lens with large distortion
8488259, Jul 19 2011 Largan Precision Co., Ltd. Optical image capturing lens system
8498061, Jun 30 2011 KONICA MINOLTA ADVANCED LAYERS, INC Image pickup lens
8502906, Aug 25 2008 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and mobile terminal
8502907, Aug 25 2008 Konica Minolta Opto, Inc. Image pickup lens, image pickup apparatus and mobile terminal
8503111, Aug 11 2009 LG INNOTEK CO , LTD Imaging lens
8508649, Feb 14 2011 NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD Compact distorted zoom lens for small angle of view
8508836, Feb 25 2009 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
8508859, Jan 20 2011 Largan Precision Co. Image pickup optical lens assembly
8508860, Oct 06 2010 Largan Precision Co., Ltd. Optical lens system
8508861, Oct 27 2011 Largan Precision Co., Ltd Image lens assembly
8514501, Sep 28 2011 Largan Precision Co., Ltd. Optical image lens system
8514502, Jul 14 2009 Largan Precision Co., Ltd. Imaging lens system
8520124, Aug 18 2009 Konica Minolta Opto, Inc Image pickup lens, image pickup apparatus, and mobile terminal
8520322, Jan 28 2011 Largan Precision Co., Ltd. Lens system
8520324, Jul 14 2009 Largan Precision Co., Ltd. Imaging lens system
8531784, Mar 30 2011 TOKYO VISIONARY OPTICS CO , LTD Imaging lens
8531786, Jul 19 2011 Largan Precision Co. Optical system for imaging pickup
8537472, Oct 25 2011 Largan Precision Co., Ltd. Photographing optical lens system
8547649, Dec 28 2011 NEWMAX TECHNOLOGY CO., LTD. Five-piece optical lens system
8547650, Jun 12 2009 Largan Precision Co., Ltd. Imaging lens assembly
8559118, Nov 18 2009 NAN CHANG O-FILM OPTOELECTRONICS TECHNOLOGY LTD Fixed focal length optical lens architecture providing a customized depth of focus optical system
8576497, May 11 2011 Largan Precision Co., Ltd. Image capturing lens assembly
8576498, Jun 28 2011 Largan Precision Co. Optical imaging lens assembly
8593737, Sep 02 2011 Largan Precision Co., Ltd. Photographing optical lens assembly
8599498, Apr 08 2011 Largan Precision Co. Optical lens assembly for image taking
8605367, Aug 04 2011 Largan Precision Co. Optical lens assembly for imaging pickup
8611023, Aug 12 2011 Largan Precision Co., Ltd. Photographing optical lens assembly
8625208, Jun 14 2010 Olympus Corporation Image pickup optical system and image pickup apparatus using the same
8649112, Jan 05 2012 Largan Precision Co., Ltd. Image lens assembly
8654242, Sep 02 2009 Konica Minolta Opto, Inc Single-focus optical system, image pickup device, and digital apparatus
8654458, Sep 20 2010 Largan Precision Co., Ltd. Wide-angle imaging lens assembly
8659838, Jun 08 2009 Konica Minolta Opto, Inc Image pickup lens, image pickup device provided with image pickup lens, and mobile terminal provided with image pickup device
8670190, Jul 14 2009 Largan Precision Co., Ltd. Imaging lens system
8670191, Jul 14 2009 Largan Precision Co., Ltd. Imaging lens system
8675288, Jun 12 2012 Samsung Electro-Mechanics Co., Ltd. Lens module
8687293, Nov 19 2010 Largan Precision Co., Ltd. Optical imaging system
8693111, Jul 14 2009 Largan Precision Co., Ltd. Imaging lens system
8717687, Aug 26 2011 Largan Precision Co., Ltd. Image lens assembly
8736977, Sep 01 2011 Largan Precision Co., Ltd. Image capturing optical lens assembly
8736981, Jul 14 2009 Largan Precision Co., Ltd. Imaging lens system
8736983, Oct 21 2011 Samsung Electro-Mechanics Co., Ltd. Imaging lens
8743478, Jul 11 2011 Largan Precision Co. Optical lens for image pickup
8743485, Jun 28 2010 LARGEN PRECISION CO., LTD. Wide-viewing-angle imaging lens assembly
8767298, Dec 28 2010 TOKYO VISIONARY OPTICS CO , LTD Imaging lens
8773768, Jun 12 2012 Samsung Electro-Mechanics Co., Ltd. Lens module
8773769, Jun 12 2012 Samsung Electro-Mechanics Co., Ltd. Lens module
8773770, Jun 12 2012 Samsung Electro-Mechanics Co., Ltd. Lens module
8773780, Oct 10 2011 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
8773781, Oct 21 2011 Samsung Electro-Mechanics Co., Ltd. Imaging lens
8780458, Jan 13 2010 KONICA MINOLTA ADVANCED LAYERS, INC Imaging lens, image pickup apparatus, and portable terminal
8780465, Apr 30 2012 Samsung Electro-Mechanics Co., Ltd. Optical system for camera
8786962, Nov 07 2011 Largan Precision Co., Ltd. Photographing system
8786966, Oct 10 2011 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
8804253, Sep 06 2011 Largan Precision Co., Ltd. Image lens system
8810929, Oct 10 2011 Samsung Electro-Mechanics Co., Ltd. Imaging lens unit
8830596, Oct 21 2011 Samsung Electro-Mechanics Co., Ltd. Imaging lens
8842377, Oct 30 2009 TOKYO VISIONARY OPTICS CO , LTD Imaging lens
8867150, Apr 13 2010 KONICA MINOLTA ADVANCED LAYERS, INC Image pickup lens
8885270, Mar 26 2010 KONICA MINOLTA ADVANCED LAYERS, INC Imaging lens system, imaging optical device, and digital appliance
8917457, Mar 26 2010 KONICA MINOLTA ADVANCED LAYERS, INC Imaging lens, imaging optical device, and digital equipment
8917458, Aug 04 2011 Largan Precision Co., Ltd. Image capturing optical lens assembly
9001438, Jun 28 2010 Sony Corporation Imaging lens and imaging device
9042034, Sep 02 2011 Largan Precision Co., Ltd. Photographing optical lens assembly
9091836, Jun 12 2012 Samsung Electro-Mechanics Co., Ltd. Lens module
20030117722,
20040196571,
20070229984,
20070298572,
20090061153,
20090294527,
20090294528,
20100008562,
20100026434,
20100048996,
20100220229,
20100253829,
20100254029,
20100256608,
20100282000,
20110013069,
20110085733,
20110134305,
20110138175,
20110164327,
20110181963,
20110188131,
20110209352,
20110209554,
20110227362,
20110249346,
20110249349,
20110257447,
20110273611,
20120081595,
20120087019,
20120087020,
20120105704,
20120140104,
20120262806,
20120314301,
20130010181,
20130027788,
20130050847,
20130070346,
20130088788,
20130093938,
20130093942,
20130094098,
20130100542,
20130114151,
20130120858,
20130170048,
20130201568,
20130208174,
20130271642,
20130286488,
20130301147,
20130314803,
20130329307,
20130335622,
20130342919,
20140015991,
20140036378,
20140085736,
20140104704,
20140139935,
20140146215,
20140146402,
20140218812,
20140254030,
20140285907,
20140293455,
20140307149,
20140320986,
20140368928,
20140368929,
20140368930,
20140368932,
20150022701,
CN101710207,
CN201594156,
JP2003131136,
JP2003161879,
JP2003185917,
JP2005266771,
JP2006293042,
JP2007298572,
JP2009294528,
JP2010256608,
JP2010262218,
JP2011039091,
JP2011085733,
JP2011138175,
JP2011141396,
JP2011158508,
JP2011209554,
JP2011237750,
JP2011257448,
JP2012008164,
JP2012073642,
JP2013011710,
JP2013054099,
JP9211320,
KR100407422,
KR100835108,
KR20070097369,
KR20090027330,
KR20090055115,
KR20090100814,
KR20090131805,
KR20100000132,
KR20100001525,
KR20100043667,
KR20100067515,
KR20110042382,
KR20110042697,
KR20110057625,
KR20110071554,
KR20110140040,
KR20120018573,
KR20120033866,
TW201022714,
TW201038966,
TW201248187,
TW201326884,
TW201333517,
TW201341840,
TW201348732,
TW268360,
TW313246,
TW313781,
TW332199,
TW416090,
WO2010024198,
WO2011021271,
WO2011027690,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 02 2015Largan Precision Co., Ltd.(assignment on the face of the patent)
Date Maintenance Fee Events
May 02 2021M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Mar 06 20214 years fee payment window open
Sep 06 20216 months grace period start (w surcharge)
Mar 06 2022patent expiry (for year 4)
Mar 06 20242 years to revive unintentionally abandoned end. (for year 4)
Mar 06 20258 years fee payment window open
Sep 06 20256 months grace period start (w surcharge)
Mar 06 2026patent expiry (for year 8)
Mar 06 20282 years to revive unintentionally abandoned end. (for year 8)
Mar 06 202912 years fee payment window open
Sep 06 20296 months grace period start (w surcharge)
Mar 06 2030patent expiry (for year 12)
Mar 06 20322 years to revive unintentionally abandoned end. (for year 12)