Provision of an intermediate shaft and a torque meter between a test product and a dynamometer in a transmission testing device in which the test product is set in an environmental chamber leads to a long axial length and thereby requires a large floor area for setting, and also causes a twisting of a shaft and leads to a poor rigidity. A hollow spacer is provided between a face plate of the environmental chamber and a test product attachment holder to which the test product is attached. A flange with an H-shape in side view is disposed in the hollow of the spacer. The flange has an end connected to an adaptor flange fixed to the test product, and another end connected to a rotating shaft of the dynamometer via the torque meter.
|
5. A transmission testing device for testing a test product at a temperature inside of an environmental chamber, wherein the test product is set in the environmental chamber and connected to an input shaft dynamometer through a torque meter arranged out of the environmental chamber, wherein:
the test product is arranged to face a hole formed in a face plate, and is fixed to the face plate;
a test product attachment holder is disposed outside of the environmental chamber, and is formed with a hole in a position facing a position of the test product, wherein the hole of test product attachment holder faces the hole of the face plate;
a hollow spacer is disposed between the hole of the test product face plate and the hole of the test product attachment holder, wherein the test product is attached to the test product attachment holder through the face plate; and
a flange is located in a hollow of the spacer, having an H-shape in side view, wherein the flange has a first end connected to an adapter flange fixed to the test product, and a second end connected to a rotating shaft of the input shaft dynamometer through the torque meter.
1. A transmission testing device for testing a test product at a temperature inside of an environmental chamber, wherein the test product is set in the environmental chamber and connected to an input shaft dynamometer through a torque meter arranged out of the environmental chamber, wherein:
the test product is arranged to face a hole formed in a face plate, and is fixed to the face plate, and is attached to a test product attachment holder through the face plate, wherein the test product attachment holder is disposed outside of the environmental chamber;
the test product attachment holder includes an opened side surface, and a second side surface opposite to the opened side surface, wherein the second side surface is formed with a hole having, such that the test product attachment holder is formed to have a box-shape;
attachment of the test product to the test product attachment holder is implemented by fixing the face plate under a condition where the hole of the face plate and the hole of the test product attachment holder face each other, and arranging a flange in a hollow formed in the test product attachment holder for connection between the test product and the input shaft dynamometer, and connecting a first end of the flange to an adapter flange of the test product, and connecting a second end of the flange to a rotating shaft of the input shaft dynamometer through the torque meter; and
a thermal insulation wall is provided at a test-product-fixing-side inner wall of the test product attachment holder, for suppressing thermal conduction from the environmental chamber.
2. The transmission testing device as claimed in
3. The transmission testing device as claimed in
the thermal insulation wall is composed of separate parts; and
the hole of the test product attachment holder is covered by an insulation plate after coupling between the test product and the flange.
4. The transmission testing device as claimed in
6. The transmission testing device as claimed in
7. The transmission testing device as claimed in
a constant temperature chamber provided in the hollow of the spacer between the thermal insulation wall and the torque meter; and
a temperature sensor disposed in the constant temperature chamber;
wherein temperature of the constant temperature chamber is controlled based on a sensing signal from the temperature sensor.
8. The transmission testing device as claimed in
9. The transmission testing device as claimed in
the thermal insulation wall is composed of separate parts; and
the hole of the test product attachment holder is covered by an insulation plate after coupling between the test product and the flange.
10. The transmission testing device as claimed in
11. The transmission testing device as claimed in
a constant temperature chamber provided in the hollow of the spacer between the thermal insulation wall and the torque meter; and
a temperature sensor disposed in the constant temperature chamber;
wherein temperature of the constant temperature chamber is controlled based on a sensing signal from the temperature sensor.
12. The transmission testing device as claimed in
|
The present invention relates to a transmission testing device, and particularly to a transmission testing device in which an intermediate shaft for connection between a dynamometer and a test product is removed, and a torque meter is protected accordingly.
For a transmission testing device, a test result about a torque converter which is an important component of a transmission has become important among automotive components. Such a transmission testing device is known in a patent document 1 and others.
A rotating shaft of the input shaft dynamometer Dy1 is connected to an end of an intermediate shaft S1 through a torque meter TM1. The other end of the intermediate shaft S1 is rotatably supported on an intermediate shaft bearing SB1 and extends through a wall of the environmental chamber 1 and projects into the environmental chamber 1. Each output shaft dynamometer Dy2, Dy3 is connected to the torque meter TM2, TM3 and intermediate shaft bearing SB2, SB3, and intermediate shaft S2, 53, and connected to an output shaft of the test product 10.
Patent Document 1: Japanese Patent No. 4010087
An environmental test is performed in the environmental chamber 1 in which the test product 10 is set, at low to high temperatures, for example, in a temperature range from −40° C. to 150° C. Accordingly, the difference in temperature between the side of dynamometer Dy1 and the environmental chamber 1 causes an error in the horizontal axis of the intermediate shaft S1. In order to prevent this error, a heater is attached to adjust the temperature to prevent the occurrence of an error in patent document 1.
In recent years, various transmission testing devices have been developed, and it is desired to enhance the functionality and accuracy in measurement in performance evaluation tests for a test product, and downsize the facility.
In consideration of the foregoing requests, it is an object of the present invention to provide a transmission testing device in which the accuracy of measurement can be enhanced, and the downsizing of the facility can be achieved.
According to one aspect of the present invention, a transmission testing device for testing a test product at a temperature inside of an environmental chamber, wherein the test product is set in the environmental chamber and connected to an input shaft dynamometer through a torque meter arranged out of the environmental chamber, wherein: the test product is arranged to face a hole formed in a face plate, and is fixed to the face plate, and is attached to a test product attachment holder through the face plate, wherein the test product attachment holder is disposed outside of the environmental chamber; the test product attachment holder includes an opened side surface, and a second side surface opposite to the opened side surface, wherein the second side surface is formed with a hole having a box-shape; attachment of the test product to the test product attachment holder is implemented by fixing the face plate under a condition where the hole of the face plate and the hole of the test product attachment holder face each other, and arranging a flange in a hollow formed in the test product attachment holder for connection between the test product and the input shaft dynamometer, and connecting a first end of the flange to an adapter flange of the test product, and connecting a second end of the flange to a rotating shaft of the input shaft dynamometer through the torque meter; and a thermal insulation wall is provided at a test-product-fixing-side inner wall of the test product attachment holder, for suppressing thermal conduction from the environmental chamber.
According to a further aspect of the present invention, the flange is provided with a thermal radiation flange at a shaft thereof, for preventing conduction of cold atmosphere and hot atmosphere from the environmental chamber to the torque meter through the flange.
According to another aspect of the present invention, the thermal insulation wall is composed of separate parts; and the hole of the test product attachment holder is covered by an insulation plate after coupling between the test product and the flange.
According to a further aspect of the present invention, the hollow of the test product attachment holder is connected to an air duct such that air is sent into the hollow through the air duct.
According to another aspect of the present invention, a transmission testing device for testing a test product at a temperature inside of an environmental chamber, wherein the test product is set in the environmental chamber and connected to an input shaft dynamometer through a torque meter arranged out of the environmental chamber, wherein: the test product is arranged to face a hole formed in a face plate, and is fixed to the face plate; a test product attachment holder is disposed outside of the environmental chamber, and is formed with a hole in a position facing a position of the test product, wherein the hole of test product attachment holder faces the hole of the face plate; a hollow spacer is disposed between the hole of the test product and the hole of the test product attachment holder, wherein the test product is attached to the test product attachment holder through the face plate; and a flange is located in a hollow of the spacer, having an H-shape in side view, wherein the flange has a first end connected to an adapter flange fixed to the test product, and a second end connected to a rotating shaft of the input shaft dynamometer through the torque meter.
According to a further aspect of the present invention, the transmission testing device further comprises a thermal insulation wall in the hollow of the spacer, for preventing conduction of cold atmosphere and hot atmosphere from the environmental chamber to the torque meter.
According to another aspect of the present invention, the transmission testing device further comprises: a constant temperature chamber provided in the hollow of the spacer between the thermal insulation wall and the torque meter; and a temperature sensor disposed in the constant temperature chamber; wherein temperature of the constant temperature chamber is controlled based on a sensing signal from the temperature sensor.
According to a further aspect of the present invention, the flange is provided with a thermal radiation flange at a shaft thereof, for preventing conduction of cold atmosphere and hot atmosphere from the environmental chamber to the torque meter through the flange.
According to another aspect of the present invention, the thermal insulation wall is composed of separate parts; and the hole of the test product attachment holder is covered by an insulation plate after coupling between the test product and the flange.
According to the present invention, in a testing device for testing a test product at a temperature inside of an environmental chamber, a hollow is defined between a face plate of the environmental chamber and a test product attachment holder to which the test product is attached. A flange is located in the hollow, having an H-shape in side view. The flange has a first end connected to an adapter flange fixed to the test product, and a second end connected to a rotating shaft of an input shaft dynamometer through a torque meter. As necessary, the hollow is provided therein with a thermal insulation wall, or a thermal insulation wall and a constant temperature chamber. The following describes the present invention with reference to embodiments.
A test product attachment holder 5 is formed with an opening 5a at a position facing the opening 4a of the face plate 4. Cold or hot atmosphere is exhausted from the environmental chamber through the opening 5a to the outside of the device. A torque meter 7 includes a signal-receiving part (henceforth referred to as stator part) 7a at a fixed portion, wherein the signal-receiving part 7a receives a sensed torque signal. A spacer 6 has a hollow having a larger diameter than the opening 4a of the face plate 4 and a predetermined length, and is disposed between the face plate 4 and the test product attachment holder 5. A flange 8 for adaption to the environmental chamber has an H-shape in side view, and has a length substantially equal to the length of the spacer 6, and has a first end fixed to the adapter flange 2, and a second end fixed to a rotor part 7b of the torque meter 7. The other end of the rotor part 7b is connected to a rotating shaft of the input shaft dynamometer Dy1 through a coupling 9.
In the configuration described above, the inside of the environmental chamber 1 is set under a predetermined environment, and the dynamometer is driven instead of an engine, a torque is transmitted to the torque converter 11 through the coupling 9, the rotor part 7b of the torque meter, the flange 8, the adapter flange 2, and the drive plate 3. A test is performed for evaluating the performance and endurance of the torque converter under a specific condition. In this configuration, the dynamometer and the torque converter are connected to each other only by the flange 8 and the coupling 9, with no intermediate shaft as in the conventional configuration.
According to this embodiment, an intermediate shaft S2 of an output shaft dynamometer Dy2 can be also shortened, because the intermediate shaft for connection between the test product in the environmental chamber 1 and the input shaft dynamometer as in the conventional configuration is removed. This allows to significantly reduce the size of the entire testing device in the lateral axis direction and thereby reduce the area where the testing device is set. Moreover, the removal of the intermediate shaft serves to prevent the occurrence of a twisting of the connection shaft between the test product and the dynamometer and thereby enhance the rigidity, and heighten the resonance frequency and thereby enhance the responsiveness. In order to perform a vibration control of the input torque, it is necessary to enhance the rigidity. The resonance frequency is conventionally about 200 Hz, but is raised by the present invention to about 290-320 Hz which was confirmed experimentally.
Incidentally, it is conceivable that the removal of the conventional intermediate shaft causes the position of the torque meter to become close to the environmental chamber, and may cause the torque meter to be damaged thermally. However, in this embodiment, the position of the torque meter 7 is between the flange 8 and the coupling 9 coupling the input shaft dynamometer, and is at the opening 5a of the test product attachment holder 5 wherein the opening 5a is located in a space in contact with air in an ordinary temperature space. Accordingly, even without the intermediate shaft, the temperature of the torque meter 7 is relatively little influenced by the temperature in the environmental chamber 1, and is suppressed from rising.
In the second embodiment shown in
According to this embodiment, in addition to the effects described with respect to the first embodiment, it is further possible to protect the torque meter and prevent the occurrence of an error in the sensing value due to temperature. Thermal expansion of the flange 8, the coupling 9, and others, is prevented, so that axis deviation of those components at the coupling point is prevented and the occurrence of a vibration is suppressed.
The constant temperature chamber 30 is configured to surround the flange 8 and the thermal radiation flange 8a, and is connected to an air duct 31, and is formed with an air exhaust opening. A temperature sensor 32 and a heater 33 are provided at arbitrary positions in the constant temperature chamber 30, and the air duct 31 is connected to a blower. A temperature signal obtained by the temperature sensor 32 is sent to an operation board not shown, and a control signal is outputted to the heater 33 and the blower.
In general, the torque meter 7 is provided therein with a temperature sensor, which is used to control the blower or an air conditioner. In such a case, the temperature sensor may be omitted, or the temperature sensor shown in
In the present embodiment, when the test product 10 is tested at high temperature, hot atmosphere heated through the cover 13 is blocked by the thermal insulation wall 20 as indicated by an arrow in
When the environmental test is performed at high temperature, the blower is driven. The amount of heat exchange at a heat dissipation area of each heat exchange area is calculated beforehand, and the amount of suction of air is controlled based on the temperature signal obtained by the temperature sensor 32. This allows to control the temperature of the constant temperature chamber 30 at an arbitrary set temperature. When the environmental test is performed at low temperature, the temperature of the constant temperature chamber 30 can be controlled to rise to an arbitrary set temperature by controlling the heater 33 based on the sensing signal obtained by the temperature sensor 32.
According to the present embodiment, it is possible to control the temperature of the neighborhood of the torque meter within a predetermined temperature range, so that protection of the torque meter is further ensured and accurate measurement of the torque can be achieved.
Assembling of the testing device configured as described above is implemented by attaching the adapter flange 2 to the test product 10, and fixing the flange 8 to the adapter flange 2, and thereafter attaching the thermal insulation wall 20. At that time, it is necessary to study the attachment of the thermal insulation wall 20 that is set in the hollow of the spacer for preventing thermal conduction of cold or hot atmosphere to the torque meter 7. Moreover, it is desired to simply attach the thermal insulation wall 20.
According to the present invention, since the flange 8 is used while the conventional intermediate shaft is removed, flange portions are formed at ends of the shaft of the flange 8, and have larger diameters than the shaft. In
According to the present embodiment, it is possible to make the assembling easy, and allow the diameter of the hole formed substantially at the central position of the thermal insulation wall 20 (and the diameter of the hole formed substantially at the central position of the constant temperature chamber 30, if any) to be only slightly larger than the diameter of the shaft of the rotating shaft of the flange 8, and suppress thermal conduction of cold or hot atmosphere, and protect the torque meter, and prevent the occurrence of an error in the sensed temperature value, and thereby perform accurate torque sensing.
In the fifth embodiment shown in
According to this embodiment, in addition to the effects described with respect to the first embodiment, it is further possible to protect the torque meter and prevent the occurrence of an error in the sensing value due to temperature. Thermal expansion of the flange 8, the coupling 9, and others, is prevented, so that axis deviation of those components at the coupling point is prevented and the occurrence of a vibration is suppressed.
In the constant temperature chamber section 30, an air exhaust path is formed at a position between the thermal insulation wall 20 and the fixed side including the signal-receiving part 7a of the torque meter. However, the constant temperature chamber section 30 may be configured to surround the flange 8 and the thermal radiation flange 8a and connected to the air duct 31, and part of the constant temperature chamber section 30 may be formed with an air exhaust outlet. The other configuration is the same as in the fifth embodiment shown in
Air is blown to the constant temperature chamber section 30 through the air duct 31. The temperature sensor 32 is provided at an arbitrary position in the constant temperature chamber 30. A temperature signal obtained by the temperature sensor 32 is sent to an operation board not shown, and is used to output a control signal to the air conditioner.
In the present embodiment, when the test product 10 is tested at high temperature, hot atmosphere heated through the cover 13 is blocked by the thermal insulation wall 20 as indicated by an arrow in
According to the present embodiment, it is possible to control the temperature of the neighborhood of the torque meter within a predetermined temperature range, so that protection of the torque meter is further ensured and accurate measurement of the torque can be achieved.
Assembling of the testing device configured as described above is implemented by attaching the adapter flange 2 to the test product 10, and fixing to the adapter flange 2 the flange 8 having the H-shape in side view, and thereafter attaching the thermal insulation wall 20. At that time, it is necessary to study the attachment of the thermal insulation wall 20 that is set in the hollow of the test product attachment holder 5 for preventing thermal conduction of cold or hot atmosphere to the torque meter 7. Moreover, it is desired to simply attach the thermal insulation wall 20.
According to the present invention, since the flange 8 is used while the conventional intermediate shaft is removed, flange portions are formed at ends of the shaft of the flange 8, and have larger diameters than the shaft. In
According to the present embodiment, it is possible to make the assembling easy, and allow the diameter of the hole formed substantially at the central position of the thermal insulation wall 20 (and the diameter of the hole formed substantially at the central position of the constant temperature chamber 30, if any) to be only slightly larger than the diameter of the shaft of the rotating shaft of the flange 8, and suppress thermal conduction of cold or hot atmosphere, and protect the torque meter, and prevent the occurrence of an error in the sensed temperature value, and thereby perform accurate torque sensing.
In
The rear side of the test product attachment holder 50 is opened, where the torque meter 7 is set along the horizontal axis of the flange 8. The side face of the test product attachment holder 50 is formed with an opening to which a connection box 31c of the air duct 31 is attached. The air duct 31 includes a hose 31a connected to an air blowing device and a hose 31b connected to a hot wind generating device, and provides a wind through the connection box 31c into the box shape of the test product attachment holder 50 serving as a constant temperature chamber. A windshield plate 52 blocks cold or hot atmosphere from the environmental chamber, and a windshield plate 53 is provided for the torque meter.
In the present embodiment, assembling is performed as follows. The torque meter 7 and the windshield plate 52 are attached to the test product attachment holder 50 beforehand. Under this condition, as shown in
According to the present embodiment, it is possible to make the assembling easy, and suppress thermal conduction of cold or hot atmosphere, and protect the torque meter, and prevent the occurrence of an error in the sensed temperature value, and thereby perform accurate torque sensing.
As described above, according to the present invention, the removal of the conventional intermediate shaft serves to reduce the setting area, and prevent a twisting of the connection shaft between the test product and the dynamometer, and enhance the rigidity, and enhance the responsiveness. The provision of the thermal insulation wall or the thermal insulation wall and the constant temperature chamber section in the hollow of the spacer, serves to protect the torque meter, and suppress the temperature error and thereby achieve accurate torque sensing, during environmental testing.
Patent | Priority | Assignee | Title |
10852204, | Apr 26 2017 | Meidensha Corporation | Dynamometer device |
Patent | Priority | Assignee | Title |
4403504, | Aug 13 1981 | General Motors Corporation | Engine testing microwave transmission device |
5085071, | Nov 14 1988 | Kabushiki Kaisha Meidensha | Driving power source unit for automotive power transmission testing apparatus employing motor |
5086271, | Jan 12 1990 | Reliability Incorporated | Driver system and distributed transmission line network for driving devices under test |
6612163, | Jun 27 2000 | Kabushiki Kaisha Meidensha | Device for testing transaxle |
20030167143, | |||
20060154759, | |||
JP2001221717, | |||
JP2002214081, | |||
JP20025791, | |||
JP2007333475, | |||
JP200846006, | |||
JP201218137, | |||
JP38743, | |||
JP4010087, | |||
JP651854, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 13 2016 | Meidensha Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 28 2018 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 29 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 13 2021 | 4 years fee payment window open |
Sep 13 2021 | 6 months grace period start (w surcharge) |
Mar 13 2022 | patent expiry (for year 4) |
Mar 13 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 13 2025 | 8 years fee payment window open |
Sep 13 2025 | 6 months grace period start (w surcharge) |
Mar 13 2026 | patent expiry (for year 8) |
Mar 13 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 13 2029 | 12 years fee payment window open |
Sep 13 2029 | 6 months grace period start (w surcharge) |
Mar 13 2030 | patent expiry (for year 12) |
Mar 13 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |