A method of bridging from a wound dressing to a wound port for negative pressure wound therapy includes positioning an elongate wick between a wound and a remote location with respect to the wound. The elongate wick includes a three-dimensional spacer fabric having an upper fabric layer spaced from a lower fabric layer by an intermediate layer of pile threads. The elongate wick is covered with a flexible wick cover such that an enclosure is formed around the elongate wick. A substantially fluid-tight seal is established between a first end of the elongate wick cover and the wound dressing such that a reservoir is defined over the wound in which a negative pressure may be maintained. A substantially fluid-tight seal is established between a second end of the elongate wick cover and a fluid port configured for connection to a source of negative pressure.
|
0. 27. A negative pressure wound therapy apparatus comprising:
a wound dressing comprising a cover layer having an aperture; and
an elongate bridge having a first end and a second end, the first end configured to be positioned over the aperture in the wound dressing and the second end configured to be disposed at a remote location away from the wound dressing, wherein the elongate bridge comprises:
an upper film layer,
an elongate wick comprising a three-dimensional fabric material positioned beneath the upper film layer, the elongate wick configured to be positioned over the aperture in the wound dressing at the first end of the elongate bridge; and
a lower film layer positioned beneath the elongate wick and secured to the upper film layer;
wherein at least the elongate wick extends from the aperture in the wound dressing to the remote location;
wherein the elongate wick is in contact with the upper film layer and the lower film layer along an entire length of the elongate wick;
wherein the first end of the elongate bridge is provided with an adhesive coating configured to establish a substantially fluid tight seal over the aperture in the wound dressing and that adheres the first end of the elongate bridge to the cover layer; and
wherein the lower film layer has an adhesive coating for establishing a substantially fluid tight seal with a skin surface disposed remotely from the wound dressing.
0. 17. A negative pressure wound therapy apparatus comprising:
a main wound dressing portion comprising a cover layer for defining a vacuum reservoir over a wound in which negative pressure may be maintained; and
a bridging dressing portion configured to provide fluid communication between the vacuum reservoir and a remote location from the main wound dressing portion, the bridging dressing portion comprising:
a lower film layer having a first width between two elongate edges of the lower film layer;
an elongate wick having a second width between two elongate edges of the elongate wick, the elongate wick configured to be positioned over the lower film layer and having a length that spans a distance between the main wound dressing portion and the remote location, wherein the elongate wick is configured to be in fluid communication with the vacuum reservoir of the main wound dressing portion; and
an upper film layer having a third width between two elongate edges of the upper film layer, the upper film layer configured to be positioned over the elongate wick and configured to be partially over the cover layer of the main wound dressing portion;
wherein the second width is less than a width of the main dressing portion;
wherein the elongate wick is in contact with the upper film layer and the lower film layer along an entire length of the elongate wick; and
wherein at least one of the upper film layer and the lower film layer has an adhesive coating provided thereon at the remote location and establishing a substantially fluid tight seal with a skin surface disposed at the remote location from the main wound dressing portion.
9. A negative pressure wound therapy apparatus, comprising:
a cover layer disposed over for defining a reservoir in over a wound in which a negative pressure may be maintained;
an elongate wick having a first end and a second end, wherein the first end is configured to be in fluid communication with the reservoir, and the second end is configured to be at a location disposed remotely from the wound, the elongate wick comprising a three-dimensional spacer fabric such that the elongate wick only partially extends over the cover layer and a portion of the elongate wick is not above the cover layer;
a wick cover disposed over the elongate wick and configured for extending partially over the cover layer, the wick cover having a first end configured to be positioned over an aperture in the cover layer and a second end configured to be disposed at the location disposed remotely from the wound and the cover layer such that the wick cover and the cover layer do not have substantially similar dimensions, the wick cover extending between the first end configured to be positioned over the aperture in the cover layer and the second end configured to be disposed at the location remote from the wound cover, the first end of the wick cover configured for forming a substantially fluid tight seal with over the aperture in the cover layer, the second end of the wick cover including an aperture in fluid communication with the elongate wick,
an adhesive coating for the wick cover to establish a provided along a length of the wick cover, the adhesive coating for establishing the substantially fluid tight seal over the aperture in the cover layer and with the a skin surface at the location disposed remotely from the wound; and
a vacuum source configured to be in fluid communication with the reservoir.
1. A composite wound dressing apparatus comprising:
a cover layer for defining a reservoir over a wound in which a negative pressure may be maintained by forming a substantially fluid-tight seal around the wound, the cover layer including an aperture therein through which fluids may be extracted from the reservoir;
an elongate wick having a first end and a second end, wherein the first end is configured to be in fluid communication with the reservoir through the aperture in the cover layer, and the second end is configured to be disposed remotely with respect to the aperture in the cover layer, the elongate wick comprising a three-dimensional spacer fabric such that the elongate wick only partially extends over the cover layer and a portion of the elongate wick is not above the cover layer;
a flexible wick cover extending over the elongate wick and configured for extending partially over the cover layer, the wick cover having a first end configured to be positioned over the aperture in the cover layer and a second end configured to be disposed at a location remote from the wound and the cover layer such that the wick cover and the cover layer do not have substantially similar dimensions, the wick cover extending between the first end configured to be positioned over the aperture in the cover layer and the second end configured to be disposed at the location remote from the wound, the first end of the wick cover configured for forming a substantially fluid tight seal over the aperture in the cover layer, the second end of the wick cover cover including an aperture therein through which fluids may be extracted from the elongate wick, the wick cover having an adhesive coating for along a length of the wick cover extending between the first and second ends, the adhesive coating for establishing a the substantially fluid tight seal over the aperture in the cover layer and with the a skin surface disposed remotely at the location remote from the wound cover; and
a fluid port coupled to the wick cover and in fluid communication with the second end of the elongate wick through the aperture in the wick cover.
2. The apparatus according to
3. The apparatus according to
4. The apparatus according to
5. The apparatus according to
6. The apparatus according to
7. The apparatus according to
8. The apparatus according to
10. The apparatus according to
11. The apparatus according to
12. The apparatus according to
13. The apparatus according to
14. The apparatus according to
16. The apparatus according to
0. 18. The apparatus according to claim 17, wherein the cover layer includes an aperture therein through which negative pressure may be applied to the vacuum reservoir.
0. 19. The apparatus according to claim 18, wherein the bridging dressing portion is positioned partially over the cover layer.
0. 20. The apparatus according to claim 19, wherein the upper film layer has an adhesive coating for establishing a substantially fluid tight seal over the aperture in the cover layer.
0. 21. The apparatus according to claim 17, wherein the main wound dressing portion comprises a contact layer configured to be positioned over the wound and a filler between the contact layer and the cover layer.
0. 22. The apparatus according to claim 17, further comprising a fluid port coupled to the upper film layer.
0. 23. The apparatus according to claim 17, wherein the elongate wick comprises a three-dimensional spacer fabric.
0. 24. The apparatus according to claim 17, wherein the upper film layer is secured to the lower film layer forming an enclosure between the upper film layer and the lower film layer substantially enclosing the elongate wick.
0. 25. The apparatus according to claim 17, wherein the second width is less than the first width or the third width.
0. 26. The apparatus according to claim 17, wherein the cover layer of the main portion and the upper film layer of the bridging portion comprise the same material.
0. 28. The apparatus according to claim 27, wherein the lower film layer is secured to the upper film layer forming an enclosure between the upper film layer and the lower film layer substantially enclosing the elongate wick.
0. 29. The apparatus according to claim 27, wherein the three-dimensional spacer fabric comprises:
a lower fabric layer;
an intermediate layer of upright pile threads; and
an upper fabric layer spaced from the lower fabric layer by the intermediate layer of upright pile threads.
0. 30. The apparatus according to claim 29, wherein one or both of the lower fabric layer and the upper fabric layer comprises a knit or weave pattern.
0. 31. The apparatus according to claim 27, wherein the elongate wick comprises hydrophobic fibers.
0. 32. The apparatus according to claim 27, wherein the elongate wick comprises a plurality of fibers that are crimped, bulked or lofted.
0. 33. The apparatus according to claim 27, wherein the lower film layer has a first width, the elongate wick has a second width, and the upper film layer has a third width, wherein the second width is less than the first width or the third width.
0. 34. The apparatus according to claim 27, further comprising a fluid port at the second end of the elongate bridge for removal of fluids from the elongate bridge.
0. 35. The apparatus according to claim 34, further comprising an aperture in the upper film layer, wherein the fluid port is sealed to the upper film layer over the aperture in the upper film layer.
0. 36. The apparatus according to claim 27, wherein the wound dressing comprises a contact layer and a filler positioned between the contact layer and the cover layer.
0. 37. The apparatus according to claim 27, further comprising a fluid conduit for connecting the second end of the elongate bridge to a vacuum source.
0. 38. The apparatus according to claim 27, further comprising a vacuum source configured to apply vacuum to the elongate bridge.
0. 39. The apparatus according to claim 27, further comprising a collection canister for containing wound fluids removed from a wound through the elongate bridge.
0. 40. The apparatus according to claim 1, wherein the elongate wick comprises a three dimensional spacer fabric.
|
1. Technical Field
The present disclosure relates generally to treating a wound with negative or reduced pressure. In particular, the disclosure relates to a dressing for transporting fluids from a wound site to a fluid port in a remote location, and also a method for applying the dressing.
2. Background of Related Art
Various techniques to promote healing of a wound involve providing suction to the wound. For example, a vacuum source may serve to carry wound exudates away from the wound, which may otherwise harbor bacteria that inhibit the body's natural healing process. One particular technique for promoting the body's natural healing process may be described as negative pressure wound therapy (NPWT). This technique involves the application of a reduced pressure, e.g. sub-atmospheric, to a localized reservoir over a wound. Sub-atmospheric pressure has been found to assist in closing the wound by promoting blood flow to the area, thereby stimulating the formation of granulation tissue and the migration of healthy tissue over the wound. This technique has proven effective for chronic or non-healing wounds, but has also been used for other purposes such as post-operative wound care.
The general NPWT protocol provides for covering the wound with a flexible cover layer such as a polymeric film, for example, to establish a vacuum reservoir over the wound where a reduced pressure may be applied by individual or cyclic evacuation procedures. To allow the reduced pressure to be maintained over time, the cover layer may include an adhesive periphery that forms a substantially fluid tight seal with the healthy skin surrounding the wound.
Although some procedures may employ a micro-pump contained within the vacuum reservoir, most NPWT treatments apply a reduced pressure using an external vacuum source. Fluid communication must therefore be established between the reservoir and the vacuum source. To this end, a fluid port is often coupled to the cover layer to provide an interface for a fluid conduit extending from the external vacuum source. The fluid port typically exhibits a degree of rigidity, which provides for a convenient reception of the fluid conduit. The fluid port also may project somewhat from the surrounding skin, and may thus tend to cause discomfort for patients as the fluid port is inadvertently pressed into the wound. This tendency is particularly evident when a fluid port is used on wounds on a patient's back, heel or other locations where pressure points develop as the patient reclines or sits. Accordingly, it may be advantageous to position the fluid port at a location remote from the wound, and to draw fluid from the wound to the remotely positioned fluid port.
A method of bridging from a wound dressing to a wound port for negative pressure wound therapy includes positioning an elongate wick between a wound and a remote location with respect to the wound wherein the elongate wick includes a three-dimensional spacer fabric. The three-dimensional spacer fabric defines an upper fabric layer and a lower fabric layer, wherein the upper fabric layer and the lower fabric layer are spaced from one another by an intermediate layer of pile threads. The elongate wick is covered with a flexible wick cover such that an enclosure is formed around the elongate wick. A substantially fluid-tight seal is established between a first end of the elongate wick cover and the wound dressing such that a reservoir is defined over the wound in which a negative pressure may be maintained. A substantially fluid-tight seal is established between a second end of the elongate wick cover and at least one of a fluid port, a fluid conduit and a source of negative pressure.
The method may also include positioning a skin covering between the wound and the remote location to substantially minimize contact of fluids with a skin surface adjacent the wound. The elongate skin covering may define a width of about 2 inches, the elongate wick may define a width of about 1 inch, and the wick cover may define a width of about 3 inches.
The method may also include the step of applying heat to the spacer fabric to conform the spacer fabric to a particular body contour. Also, the method may include the step of drawing fluids through the elongate wick.
According to another aspect of the disclosure, a composite wound dressing apparatus includes a cover layer for defining a reservoir over a wound in which a negative pressure may be maintained by forming a substantially fluid-tight seal around the wound. The cover layer includes an aperture therein through which fluids may be extracted from the reservoir. An elongate wick includes a first end in fluid communication with the reservoir through the aperture in the cover layer, and a second end disposed remotely with respect to the aperture in the cover layer. The elongate wick includes a three-dimensional spacer fabric. A flexible wick cover extends over the elongate wick. The wick cover has a first end configured for forming a substantially fluid tight seal over the aperture in the cover layer, and a second end including an aperture therein through which fluids may be extracted from the elongate wick. A fluid port is coupled to the wick cover and in fluid communication with the second end of the elongate wick through the aperture in the wick cover.
The apparatus may include a skin covering positioned beneath at least a portion of the elongate wick to substantially minimize contact of fluids with a skin surface adjacent the wound. The skin covering may define a first width, the wick cover may define a second width and the elongate wick may define a third width, wherein the third width of the wick cover is substantially greater than the first width of the skin covering. The first width may be about 2 inches, the second width may be about one inch, and the third width may be about 3 inches.
The fluid port may be configured to receive a fluid conduit, and may include a flange coupled to an underside of the wick cover. The elongate wick may be treated with an antimicrobial agent, and the antimicrobial agent may be polyhexamethylene biguanide.
According to another aspect of the disclosure, a negative pressure wound therapy apparatus includes a cover layer for defining a reservoir over a wound in which a negative pressure may be maintained by forming a substantially fluid-tight seal around the wound. The cover layer includes an aperture therein through which fluids may be extracted from the reservoir. The apparatus also includes an elongate wick having a first end and a second end, wherein the first end is in fluid communication with the reservoir through the aperture in the cover layer, and the second end is disposed remotely with respect to the aperture in the cover layer. The elongate wick includes a three-dimensional spacer fabric. Also, a flexible wick cover extends over the elongate wick and has a first end and a second end. The first end of the wick cover is configured for forming a substantially fluid tight seal over the aperture in the cover layer, and the second end includes an aperture through which fluids may be extracted from the elongate wick. A vacuum source is in fluid communication with the reservoir, and is suitable for generating the negative pressure in the reservoir.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present disclosure and, together with the detailed description of the embodiments given below, serve to explain the principles of the disclosure.
Referring initially to
Wound dressing 12 includes a contact layer 18 positioned in direct contact with the bed of wound “w” and may be formed from perforated film material. An appropriate perforated material permits the negative pressure applied to the reservoir to penetrate into the wound “w,” and also permits exudates to be drawn through the contact layer 18. Passage of wound fluid through the contact layer 18 is preferably unidirectional such that exudates do not flow back into the wound bed. Unidirectional flow may be encouraged by conical or directional apertures formed in the contact layer 18, or a lamination of materials having absorption properties differing from those of contact layer 18. A non-adherent material may be selected such that contact layer 18 does not tend to cling to the wound “w” or surrounding tissue when it is removed. One exemplary material that may be used as a contact layer 18 is sold under the trademark XEROFORM®, CURITY®, and VENTEX® by Tyco Healthcare Group LP (d/b/a Covidien).
Wound filler 20 is positioned in the wound “w” over the contact layer 18 and is intended to allow wound dressing 12 to absorb, capture and/or wick wound exudates. Wound filler 20 is cut to a shape that is conformable to the shape of wound “w,” and may be packed up to the level of healthy skin “s,” or alternatively, wound filler 20 may overfill the wound “w.” An absorbent material such as non-woven gauze, reticulated foam, or alginate fibers may be used for filler 20 to transfer any exudate that migrates through contact layer 18 away from the wound “w”. An antimicrobial dressing sold under the trademark KERLIX® AMD by Tyco Healthcare Group LP (d/b/a Covidien), may be suitable for use as filler 20.
Wound dressing 12 also includes a cover layer 22. Cover layer 22 may be positioned over the wound “w” to form a substantially fluid-tight seal with the surrounding skin “s.” Thus, cover layer 22 may act as both a microbial barrier to prevent contaminants from entering the wound “w,” and also a fluid barrier maintaining the integrity of vacuum reservoir 14. Cover layer 22 is preferably formed from a moisture vapor permeable membrane to promote the exchange of oxygen and moisture between the wound “w” and the atmosphere, and is preferably transparent permit a visual assessment of wound conditions without requiring removal of the cover layer 22. A membrane that provides a sufficient moisture vapor transmission rate (MVTR) is a transparent membrane sold under the trade name POLYSKIN® II by Tyco Healthcare Group LP (d/b/a Covidien). Cover layer 22 includes an aperture 24 therein, through which wound fluids and atmospheric gasses may be removed from the dressing 12 under the influence of a reduced pressure.
A fluid port 30 having a flange 34 may also be included in wound dressing 12 to facilitate connection of the wound dressing 12 to fluid conduit 36. The fluid port 30 may be configured as a rigid or flexible, low-profile component, and may be adapted to receive a fluid conduit 36 in a releasable and fluid-tight manner. An adhesive on the underside of flange 34 may provide a mechanism for affixing the fluid port 30 to the dressing 12, or alternatively the flange 34 may be positioned within reservoir 14 (
Fluid conduit 36 extends from the fluid port 30 to provide fluid communication between the reservoir 14 and collection canister 40. Any suitable conduit may be used for fluid conduit 36 including those fabricated from flexible elastomeric or polymeric materials. Fluid conduit 36 may connect components of the NPWT apparatus by conventional air-tight means such as friction fit, bayonet coupling, or barbed connectors. The conduit connections may be made permanent, or alternatively a quick-disconnect or other releasable means may be used to provide some adjustment flexibility to the apparatus 10.
Collection canister 40 may comprise any container suitable for containing wound fluids. For example, a rigid bottle may be used as shown or alternatively a flexible polymeric pouch may be appropriate. Collection canister 40 may contain an absorbent material to consolidate or contain the wound drainage or debris. For example, super absorbent polymers (SAP), silica gel, sodium polyacrylate, potassium polyacrylamide or related compounds may be provided within canister 40. At least a portion of canister 40 may be transparent to assist in evaluating the color, quality or quantity of wound exudates. A transparent canister may thus assist in determining the remaining capacity of the canister or when the canister should be replaced.
Leading from collection canister 40 is another section of fluid conduit 36 providing fluid communication with vacuum source 50. Vacuum source 50 generates or otherwise provides a negative pressure to the NPWT apparatus 10. Vacuum source 50 may comprise a peristaltic pump, a diaphragmatic pump or other mechanism that draws fluids, e.g. atmospheric gasses and wound exudates, from the reservoir 14 appropriate to stimulate healing of the wound “w.” Preferably, the vacuum source 50 is adapted to produce a sub-atmospheric pressure in the reservoir 14 ranging between about 20 mmHg and about 500 mm Hg, about 75 mm Hg to about 125 mm Hg, or, more preferably, between about 40 mm HG and 80 mm Hg.
Referring now to
To provide fluid communication, or a “bridge,” between aperture 24 and the remote location “r,” a bridging dressing 102 is positioned partially over the cover layer 22 and partially over the healthy skin “s” to span the distance between the wound “w” and the remote location “r.” The remote location “r” may be an area of the healthy skin “s” where the fluid port 30 or the associated fluid conduit 36 will tend not to irritate the wound “w” or to cause discomfort for the patient. If the wound “w” is located on the back of a patient, the remote location “r” may be, for example, at the chest or shoulder of the patient. This permits the patient to lie comfortably without placing undue pressure on the fluid port 30. To provide this functionality, a bridging dressing 102 may exhibit a length in the range from about 4 inches to about 12 inches, or more.
The bridging dressing 102 includes a skin covering such as film or lining 103, an elongate wick 104, a wick cover 106, and the fluid port 30. The film or lining 103 will be placed in contact with skin, typically, the healthy skin along a portion of the “bridge.” The lining or film 103 may be any suitable film adapted for patient contact, and may or may not have an adhesive backing for securement to the skin. The film or lining 103 may overlap a peripheral portion of the cover 22. The film or lining 103 may or may not be adhesively coated, and, in some embodiments is a thin, transparent, polymeric membrane such as polyurethane, elastomeric polyester or polyethylene.
The film or lining 103 may serve to impede direct contact between the elongate wick 104 and the healthy skin “s.” The film or lining 103 may exhibit a first width “w1” between two elongate edges that is substantially greater than a second width “w2” defined by the elongate wick 104. For instance, a lining 103 having a first width “w1” of about 2 inches may provide a sufficient area to permit an elongate wick 104 having a second width “w2” of about 1 inch to rest entirely within the confines of the lining 103. The film or lining 103 may be applied to the skin “s” either prior to the application of the elongate wick 104 and the wick cover 106, or concurrently therewith.
The elongate wick 104 defines a longitudinal direction therealong between a first end 110 positioned near the aperture 24 in the cover layer 22, and a second end 112 near the remote location “r.” The elongate wick 104 is adapted for longitudinal transport of fluids therethrough. The elongate wick 104 may promote capillary action in a longitudinal direction to provide for the longitudinal transport of fluids. A cross section of individual fibers, or an arrangement of fibers may serve to transport fluids longitudinally. The elongate wick 104 may be constructed from materials suitable for use as wound filler 20. The elongate wick 104 may, for example, be constructed of hydrophobic fibers, such as continuous synthetic fibers, arranged as an elongate rope or cord. The fibers may be crimped, bulked or lofted to influence the absorptive, wicking or comfort characteristics of the elongate wick 104. U.S. Provisional Application No. 61/188,370, filed Aug. 8, 2008, the entire content of which is hereby incorporated by reference, describes various such processes and arrangements for fibers, which may be employed to construct the elongate wick 104 or the filler 20.
The elongate wick 104 may also be constructed from a three-dimensional spacer fabric. As depicted in
This multi-layer arrangement offers a structural versatility, which permits the elongate wick 104 to conform to the needs of a particular patient or wound. The upright pile threads may exhibit a variety of different constructions in terms of surface structure, elasticity, diameter, length, position, number and orientation. For example, the upright pile threads may be arranged at a steep angle to provide cushioning in the event the upper and lower layers 104u and 104l are compressed together. Also, the upper and lower layers 104u and 104i may assume any particular weave or knit pattern. A ribbed knit pattern may provide flexibility in an appropriate direction to permit the wick to conform to highly contoured body areas. A variety of thicknesses, densities, compression, air permeability and softness characteristics may be provided by selecting an appropriate material and arrangement of the individual layers 104u, 104i and 104u.
An appropriate three-dimensional spacer fabric for use in elongate wick 104 is marketed under the trade name AirX—Comfort, by Tytex, Inc. of Woonsocket, R.I. In addition to offering a high MVTR and friction resistance, this product may be constructed to include a visco-elastic plastic yielding a heat-moldable structure. A heat-moldable wick 104 may be subjected to heat prior to positioning the wick 104 over lining 103 or healthy skin “s” to pre-conform the wick 104 to a particular body contour. Alternatively, visco-elastic plastics may be provided that are responsive to body heat to provide a conformable wick 104.
Alternatively, elongate wick 104 may be constructed from staple fibers, and may be arranged as woven or kitted fabrics. The fibers may be treated with antibacterial agents such as polyhexamethylene biguanide (PHMB) to decrease the incidence of infection, or other medicaments to promote healing of the wound “w.” The fibers may also include combinations of materials or chemicals to tailor the wick for specific fluid transport, comfort or other specific requirements.
The wick cover 106 has a first end 114 positioned near the aperture 24 in the cover layer and beyond the first end 110 of the elongate wick 104. A second end 116 of the wick cover 106 is positioned near the remote location “r.” The first end 114 of wick cover 106 forms a substantially fluid-tight seal with the cover layer 22, and the second end 116 of the wick cover 106 forms a substantially fluid tight seal with the lining 103 or the skin in the absence of the lining 103. The second end 114 of wick cover 106 may contact or be secured to lining 103 thereby assisting in securement of the lining relative to the subject and optionally forming an enclosure 105 between the wick cover 106 and the lining 103 substantially enclosing the a portion of the elongated wick 103 preventing exudate from contacting the skin. In the absence of a lining 103, an enclosure may be formed between the wick cover 106 and the skin “s.”
Wick cover 106 may be constructed from any of the materials used to fabricate cover layer 22. For example, wick cover 106 may be constructed of an adhesively coated, thin, transparent, polymeric membrane such as polyurethane, elastomeric polyester or polyethylene. The thickness of the wick cover 106 may, for example, be in the range of about 0.8 mils to about 1.2 mils. Thicknesses in this range may permit wick cover 106 to conform comfortably to the contours of a patient's skin surrounding the elongate wick 104, and accommodate evacuation cycles associated with an NPWT procedure. The adhesive coating should provide firm, continuous adhesion to the lining 103, the skin “s” and/or the cover layer 22 such that leak paths are not readily formed as reservoir 14 is subjected to the evacuation cycles of an NPWT treatment. As seen in
An aperture 118 in the wick cover 106 facilitates fluid communication between fluid port 30 and the elongate wick 104. The fluid port 30 forms a substantially fluid tight seal with the wick cover 106 near the aperture 118 and receives fluid conduit 36. Fluid conduit 36 may be coupled to a vacuum source 50 as described above with reference to
In this manner, fluids such as wound exudates and atmospheric gasses may be drawn from the reservoir 14, through the aperture 24 in the cover layer 22, and into the first end 110 of the elongate wick 104. The fluids are transported longitudinally through the wick 104 under the influence of the reduced pressure and the fluid transport properties of the wick 104 to the second end 112 of the wick 104 near the remote location “r.” The fluids may then be removed from the bridging dressing 102 through the fluid port 30. Since the wick 104 and the wick cover 106 are generally more flexible and conformable to the contours of the patient's body, and also to the movements of the patient than fluid port 30, these components of bridging dressing 102 are typically more comfortable positioned adjacent to the wound “w.”
Referring now to
Referring now to
Although the foregoing disclosure has been described in some detail by way of illustration and example, for purposes of clarity or understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.
Patent | Priority | Assignee | Title |
11058588, | Dec 22 2009 | Smith & Nephew, Inc. | Apparatuses and methods for negative pressure wound therapy |
11247034, | Dec 22 2010 | Smith & Nephew, Inc. | Apparatuses and methods for negative pressure wound therapy |
11819386, | Jul 12 2018 | T.J.Smith and Nephew, Limited | Apparatuses and methods for negative pressure wound therapy |
Patent | Priority | Assignee | Title |
3367332, | |||
3486504, | |||
3568675, | |||
3572340, | |||
3712298, | |||
3809086, | |||
3874387, | |||
4080970, | Nov 17 1976 | Post-operative combination dressing and internal drain tube with external shield and tube connector | |
4112947, | Oct 01 1975 | C R BARD, INC , A CORP OF NJ | Combined irrigator and evacuator for closed wounds |
4112949, | Nov 15 1976 | HOWMEDICA, INC | Apparatus for collecting body fluid |
4136696, | Nov 19 1973 | C R BARD, INC , A CORP OF NJ | Self-contained, combined irrigator and evacuator for wounds |
4266545, | Apr 06 1979 | Portable suction device for collecting fluids from a closed wound | |
4382441, | Dec 06 1978 | Device for treating tissues, for example skin | |
4524064, | May 26 1982 | Nippon Oil Company, Limited | Wound-covering materials |
4605399, | Dec 04 1984 | Complex, Inc. | Transdermal infusion device |
4743232, | Oct 06 1986 | The Clinipad Corporation | Package assembly for plastic film bandage |
4921492, | May 31 1988 | INNOVATIVE SURGICAL TECHNOLOGIES, INC | End effector for surgical plume evacuator |
4969880, | Apr 03 1989 | KCI Licensing, Inc | Wound dressing and treatment method |
4990137, | Jun 29 1988 | Memorial Hospital for Cancer and Allied Diseases | Closed wound drainage system with clearing port and method for sterile clearing of closed wound drainage system |
4997438, | Apr 14 1989 | Constance Crane, Langmann | Pressure applicator for thoracic wounds |
5071409, | Jan 12 1990 | Vacuum device particularly useful for draining wounds | |
5100395, | Oct 06 1989 | Fluid drain for wounds | |
5100396, | Apr 03 1989 | KCI Licensing, Inc | Fluidic connection system and method |
5106629, | Oct 20 1989 | Conmed Corporation | Transparent hydrogel wound dressing |
5141503, | Jan 29 1991 | Wound suction drainage system | |
5149331, | May 03 1991 | Ariel, Ferdman | Method and device for wound closure |
5152757, | Dec 14 1989 | APPLIED TISSUE TECHNOLOGIES | System for diagnosis and treatment of wounds |
5160322, | Feb 28 1991 | GREENFIELD MEDICAL TECHNOLOGIES INC | Occlusive chest sealing valve |
5176663, | Dec 02 1987 | Principal AB; PHARMARK INNOVATIONS, LTD ; INNOVATIVE THERAPIES, INC | Dressing having pad with compressibility limiting elements |
5178157, | Jan 14 1992 | Phlebotomy device and method of use thereof | |
5180375, | May 02 1991 | Woven Surgical drain and woven surgical sponge | |
5195977, | Jun 09 1990 | Lohmann GmbH & Co. KG | Valve plaster for the emergency treatment of open thorax injuries |
5261893, | Apr 03 1989 | KCI Licensing, Inc | Fastening system and method |
5263922, | Aug 26 1991 | MICROTEK MEDICAL, INC | Valved bandage |
5437683, | Oct 31 1990 | Surgical closure | |
5484427, | Jan 18 1991 | Body vacuum | |
5527293, | May 14 1901 | KCI Licensing, Inc | Fastening system and method |
5536233, | Mar 30 1994 | Brava, LLC | Method and apparatus for soft tissue enlargement |
5549584, | Feb 14 1994 | Smith & Nephew, Inc | Apparatus for removing fluid from a wound |
5588958, | Sep 21 1994 | C. R. Bard, Inc. | Closed wound orthopaedic drainage and autotransfusion system |
5599289, | Jul 20 1993 | CONVATEC TECHNOLOGIES INC | Medical dressing with semi-peripheral delivery system |
5636643, | Nov 14 1991 | WAKE FOREST UNIVERSITY HEALTH SCIENCES | Wound treatment employing reduced pressure |
5645081, | Nov 14 1991 | WAKE FOREST UNIVERSITY HEALTH SCIENCES | Method of treating tissue damage and apparatus for same |
5678564, | Aug 07 1992 | CONVATEC TECHNOLOGIES INC | Liquid removal system |
5701917, | Mar 30 1994 | Brava, LLC | Method and apparatus for promoting soft tissue enlargement and wound healing |
5733305, | Dec 13 1993 | KCI Medical Resources | Process and device for stimulation of the formation of new tissues in extensive and deep wounds |
5795584, | Jan 27 1993 | United States Surgical Corporation | Post-surgical anti-adhesion device |
5840049, | Sep 07 1995 | Covidien AG | Medical pumping apparatus |
5911222, | Aug 07 1992 | CONVATEC TECHNOLOGIES INC | Liquid removal system |
5944703, | Oct 11 1994 | Research Medical Pty Ltd. | Wound drainage system |
6010524, | Dec 13 1993 | KCI Medical Resources | Process and device for stimulating the formation of new tissues in extensive and deep wounds |
6071267, | Feb 06 1998 | KCI Licensing, Inc | Medical patient fluid management interface system and method |
6117111, | Sep 20 1994 | KCI Medical Resources | Device for sealing an injury area |
6135116, | Jul 28 1997 | KCI Licensing, Inc | Therapeutic method for treating ulcers |
6142982, | Nov 14 1995 | KCI Licensing, Inc | Portable wound treatment apparatus |
6174306, | May 13 1995 | KCI Medical Resources | Device for vacuum-sealing an injury |
6203563, | May 26 1999 | Healing device applied to persistent wounds, fistulas, pancreatitis, varicose ulcers, and other medical or veterinary pathologies of a patient | |
6261276, | Mar 13 1995 | I.S.I. International, Inc. | Apparatus for draining surgical wounds |
6325788, | Sep 16 1998 | Treatment of wound or joint for relief of pain and promotion of healing | |
6345623, | Sep 12 1997 | KCI Licensing, Inc | Surgical drape and suction head for wound treatment |
6348423, | Sep 05 1996 | CONVATEC TECHNOLOGIES INC | Multilayered wound dressing |
6398767, | May 27 1997 | KCI Medical Resources | Process and device for application of active substances to a wound surface area |
6406447, | Jan 27 1995 | Board of Reagents, The University of Texas System | Self-sealed irrigation system |
6420622, | Aug 01 1997 | 3M Innovative Properties Company | Medical article having fluid control film |
6458109, | Aug 07 1998 | KCI Licensing, Inc | Wound treatment apparatus |
6488643, | Oct 08 1998 | Huntleigh Technology Limited | Wound healing foot wrap |
6500112, | Mar 30 1994 | BIO-MECANICA, INC | Vacuum dome with supporting rim and rim cushion |
6520982, | Jun 08 2000 | KCI Licensing, Inc.; KCI Licensing, Inc | Localized liquid therapy and thermotherapy device |
6553998, | Sep 12 1997 | KCI Licensing, Inc | Surgical drape and suction head for wound treatment |
6557704, | Sep 08 1999 | Huntleigh Technology Limited | Arrangement for portable pumping unit |
6607495, | Jun 18 1999 | University of Virginia Patent Foundation | Apparatus for fluid transport and related method thereof |
6626891, | Jul 03 1997 | Polymedics N.V. | Drainage system to be used with an open wound, an element which is used thereby for placing a drainage tube or hose, and a method of using said drainage system |
6648862, | Nov 20 2001 | KCI Licensing, Inc | Personally portable vacuum desiccator |
6685681, | Nov 29 2000 | KCI Licensing, Inc | Vacuum therapy and cleansing dressing for wounds |
6695823, | Apr 09 1999 | KCI Licensing, Inc | Wound therapy device |
6695824, | Apr 16 2001 | ARMY, UNITED STATES | Wound dressing system |
6752794, | Nov 29 2000 | KCI Licensing, Inc | Vacuum therapy and cleansing dressing for wounds |
6755807, | Nov 29 1999 | KCI Licensing, Inc | Wound treatment apparatus |
6764462, | Nov 29 2000 | KCI Licensing, Inc | Wound treatment apparatus |
6767334, | Dec 23 1998 | KCI Licensing, Inc | Method and apparatus for wound treatment |
6800074, | Nov 29 1999 | KCI Licensing, Inc | Wound treatment apparatus |
6814079, | Sep 12 1997 | KCI Licensing, Inc | Surgical drape and suction head for wound treatment |
6824533, | Nov 29 2000 | KCI Licensing, Inc | Wound treatment apparatus |
6855135, | Nov 29 2000 | KCI Licensing, Inc | Vacuum therapy and cleansing dressing for wounds |
6856821, | May 26 2000 | KCI Licensing, Inc | System for combined transcutaneous blood gas monitoring and vacuum assisted wound closure |
6887228, | Sep 16 1998 | Douglas William, McKay | Treatment of wound or joint for relief of pain and promotion of healing |
6887263, | Oct 18 2002 | ZOLL CIRCULATION, INC | Valved connector assembly and sterility barriers for heat exchange catheters and other closed loop catheters |
6936037, | Dec 31 2002 | KCI Licensing, Inc | Tissue closure treatment system, patient interface and method |
6942633, | Mar 22 2002 | Twin Star Medical, Inc | System for treating tissue swelling |
6942634, | Mar 22 2002 | Twin Star Medical, Inc | System for treating tissue swelling |
6951553, | Dec 31 2002 | 3M Innovative Properties Company | Tissue closure treatment system and method with externally-applied patient interface |
6960181, | Oct 22 2002 | AngioDynamics, Inc | Irrigation dressing with a tubular dam |
6979324, | Sep 13 2002 | CONVATEC, LTD | Closed wound drainage system |
6994702, | Apr 06 1999 | MORGAN STANLEY & CO , INCORPORATED | Vacuum assisted closure pad with adaptation for phototherapy |
7004915, | Aug 24 2001 | KCI Licensing, Inc | Negative pressure assisted tissue treatment system |
7022113, | Jul 12 2001 | KCI Licensing, Inc | Control of vacuum level rate of change |
7037254, | Oct 17 2000 | Controlled environment device | |
7052167, | Feb 25 2004 | Therapeutic devices and methods for applying therapy | |
7070584, | Feb 16 2001 | KCI Licensing, Inc | Biocompatible wound dressing |
7077832, | May 27 1997 | KCI Medical Resources | Process and device for application of active substances to a wound surface |
7108683, | Apr 30 2001 | ZAMPAT, L L C ; KCI Licensing, Inc | Wound therapy and tissue management system and method with fluid differentiation |
7117869, | Sep 12 1997 | KCI Licensing, Inc. | Surgical drape and suction head for wound treatment |
7128719, | Aug 03 2000 | MEDIWOUND LTD | System for enhanced chemical debridement |
7128735, | Jan 02 2004 | Smith & Nephew, Inc | Reduced pressure wound treatment appliance |
7144390, | Apr 02 1999 | Kinetic Concepts, Inc | Negative pressure treatment system with heating and cooling provision |
7169151, | Apr 10 2003 | KCI Licensing, Inc. | Bone regeneration device for long bones, and method of use |
7182758, | Nov 17 2003 | Apparatus and method for drainage | |
7195624, | Dec 26 2001 | 3M Innovative Properties Company | Vented vacuum bandage with irrigation for wound healing and method |
7198046, | Nov 14 1991 | WAKE FOREST UNIVERSITY HEALTH SCIENCES | Wound treatment employing reduced pressure |
7214202, | Jul 28 1997 | KCI Licensing, Inc | Therapeutic apparatus for treating ulcers |
7216651, | Nov 14 1991 | WAKE FOREST UNIVERSITY HEALTH SCIENCES | Wound treatment employing reduced pressure |
7273054, | Sep 12 1997 | KCI Licensing, Inc | Surgical drape and head for wound treatment |
7276051, | Aug 07 1998 | KCI Medical Resources Unlimited Company | Wound treatment apparatus |
7279612, | Apr 22 1999 | KCI Licensing, Inc | Wound treatment apparatus employing reduced pressure |
7316672, | Nov 14 1995 | KCI Licensing, Inc | Portable wound treatment apparatus |
7338482, | Feb 28 2002 | 3M Innovative Properties Company | External catheter access to vacuum bandage |
7351250, | Aug 21 2002 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Circumferential medical closure device and method |
7361184, | Sep 08 2003 | Microlin, LLC | Device and method for wound therapy |
7381211, | Aug 21 2002 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Medical closure screen device and method |
7381859, | May 09 2000 | KCI Licensing, Inc | Removable wound closure |
7396345, | Jun 30 2000 | Embro Corporation | Therapeutic device and system |
7410495, | Aug 21 2002 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Medical closure clip system and method |
7413570, | Aug 21 2002 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Medical closure screen installation systems and methods |
7413571, | Aug 21 2002 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Flexible medical closure screen and method |
7422576, | Jun 08 2000 | KCI Licensing, Inc. | Localized liquid therapy and thermotherapy device |
7438705, | Jul 14 2005 | Paul Hartmann AG | System for treating a wound with suction and method detecting loss of suction |
7485112, | Nov 08 2004 | Paul Hartmann AG | Tube attachment device for wound treatment |
7503910, | Feb 01 2006 | Suctioning system, method and kit | |
7531711, | Sep 17 2003 | OSSUR HF | Wound dressing and method for manufacturing the same |
7534927, | Dec 26 2001 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Vacuum bandage packing |
7569742, | Sep 06 2005 | Smith & Nephew, Inc | Self contained wound dressing with micropump |
7625362, | Sep 16 2003 | Paul Hartmann AG | Apparatus and method for suction-assisted wound healing |
7645269, | Apr 30 2001 | KCI Licensing, Inc.; KCI Licensing, Inc; ZAMPAT, L L C | Gradient wound treatment system and method |
7651484, | Feb 06 2006 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Systems and methods for improved connection to wound dressings in conjunction with reduced pressure wound treatment systems |
7670323, | May 13 1998 | KCI Licensing, Inc. | Portable wound treatment apparatus having pressure feedback capabilities |
7678102, | Nov 09 1999 | KCI Licensing, Inc | Wound suction device with multi lumen connector |
7686785, | Jul 13 2006 | Boehringer Laboratories, Incorporated | Medical suction control with isolation characteristics |
7794438, | Aug 07 1998 | KCI Licensing, Inc | Wound treatment apparatus |
7838717, | Sep 06 2005 | Smith & Nephew, Inc | Self contained wound dressing with micropump |
7862718, | Aug 11 2004 | BLUE FOOT MEMBRANES NV | Integrated permeate channel membrane |
7880050, | Feb 09 2007 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Breathable interface system for topical reduced pressure |
7942866, | Aug 28 2003 | Paul Hartmann AG | Device for treating a wound |
8021347, | Jul 21 2008 | Smith & Nephew, Inc | Thin film wound dressing |
8083712, | Mar 20 2007 | CONVATEC, LTD | Flat-hose assembly for wound drainage system |
8133211, | May 30 2008 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Reduced pressure, compression systems and apparatuses for use on joints |
8142419, | Oct 29 2008 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Reduced-pressure, wound-closure and treatment systems and methods |
8147468, | May 30 2008 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Reduced-pressure, linear-wound treatment systems |
8148595, | Feb 09 2007 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Breathable interface system for topical reduced pressure |
8152785, | Mar 13 2008 | Smith & Nephew, Inc | Vacuum port for vacuum wound therapy |
8158844, | Oct 08 2008 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Limited-access, reduced-pressure systems and methods |
8162907, | Jan 20 2009 | Smith & Nephew, Inc | Method and apparatus for bridging from a dressing in negative pressure wound therapy |
8168848, | Apr 10 2002 | KCI Licensing, Inc | Access openings in vacuum bandage |
8188331, | May 30 2008 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | See-through, reduced-pressure dressings and systems |
8202261, | May 30 2008 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Dressing assemblies for wound treatment using reduced pressure |
8241261, | May 30 2008 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Super-absorbent, reduced-pressure wound dressings and systems |
8246606, | Sep 18 2008 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Systems and methods for controlling inflammatory response |
8257327, | Oct 28 2003 | Smith & Nephew PLC | Wound cleansing apparatus with actives |
8267908, | Feb 09 2007 | SOLVENTUM INTELLECTUAL PROPERTIES COMPANY | Delivery tube, system, and method for storing liquid from a tissue site |
8298200, | Jun 01 2009 | Smith & Nephew, Inc | System for providing continual drainage in negative pressure wound therapy |
8376972, | Feb 15 2005 | T J SMITH AND NEPHEW,LIMITED | Wound treatment device |
8382731, | Apr 09 2008 | Molnlycke Health Care AB | Device for treatment of wound using reduced pressure |
8469915, | Apr 09 2008 | Molnlycke Health Care AB | Device for treatment of wounds using a wound pad and a method for manufacturing of wound pads |
8506554, | Jul 24 2005 | M E A C ENGINEERING LTD | Wound closure and drainage system |
8545466, | Jun 27 2007 | Molnlycke Health Care AB | Device for treatment of wounds with reduced pressure |
8734410, | Dec 06 2007 | Smith & Nephew PLC | Apparatus for topical negative pressure therapy |
9017302, | Jul 21 2008 | Smith & Nephew, Inc | Thin film wound dressing |
9033942, | Mar 07 2008 | Smith & Nephew, Inc | Wound dressing port and associated wound dressing |
9227000, | Sep 28 2006 | Smith & Nephew, Inc. | Portable wound therapy system |
9474654, | Aug 08 2008 | Smith & Nephew, Inc. | Wound dressing of continuous fibers |
20010020145, | |||
20010031943, | |||
20010043943, | |||
20020016577, | |||
20020143286, | |||
20020151836, | |||
20030093041, | |||
20030208149, | |||
20030212357, | |||
20030212359, | |||
20030219469, | |||
20040006319, | |||
20040030304, | |||
20040039415, | |||
20040064132, | |||
20040073151, | |||
20040093026, | |||
20040122434, | |||
20040193218, | |||
20040241213, | |||
20040243073, | |||
20050010153, | |||
20050020955, | |||
20050070835, | |||
20050070858, | |||
20050085795, | |||
20050101940, | |||
20050177190, | |||
20050182445, | |||
20050222527, | |||
20050222544, | |||
20050261642, | |||
20050261643, | |||
20060015087, | |||
20060025727, | |||
20060039742, | |||
20060041247, | |||
20060079852, | |||
20060100586, | |||
20060100594, | |||
20060116620, | |||
20070014837, | |||
20070021697, | |||
20070027414, | |||
20070032754, | |||
20070032755, | |||
20070032778, | |||
20070055209, | |||
20070066946, | |||
20070078366, | |||
20080082035, | |||
20080167593, | |||
20080195017, | |||
20090012501, | |||
20090124988, | |||
20090126103, | |||
20090131892, | |||
20090157016, | |||
20090227968, | |||
20090227969, | |||
20090234307, | |||
20090264837, | |||
20090293887, | |||
20090299249, | |||
20090299255, | |||
20090299256, | |||
20090299257, | |||
20090299303, | |||
20090299307, | |||
20090299308, | |||
20090299340, | |||
20090299341, | |||
20090299342, | |||
20090312728, | |||
20100069850, | |||
20100069885, | |||
20100160901, | |||
20110125113, | |||
20110130712, | |||
20120302976, | |||
20150073358, | |||
AU674837, | |||
D364679, | Aug 22 1994 | KCI LICENSING INC | Wound drainage disposable canister |
D434150, | May 11 1999 | Huntleigh Technology Limited | Portable medical pumping unit |
D469175, | Jan 16 2002 | KCI Licensing, Inc.; KCI Licensing | Fluid drainage canister and tube |
D469176, | Jan 16 2002 | KCI Licensing, Inc. | Pump housing for medical equipment |
D475134, | Jun 26 2002 | KCI Licensing, Inc. | Pump housing for medical equipment |
D478659, | Jan 16 2002 | KCI Licensing, Inc. | Fluid drainage canister |
D488558, | Feb 27 2003 | KCI Licensing, Inc.; KCI Licensing, Inc | Drainage canister |
D515701, | Nov 06 2001 | SAIM, SAID; HORHOTA, STEPHEN; RONDANO, LEIGH ANN; HARDY, MICHAEL | Adhesive patch |
D544092, | Dec 03 2004 | KCI Licensing, Inc | Wearable negative pressure wound care appliance |
D565177, | Apr 01 2007 | KCI Licensing, Inc | Reduced pressure treatment apparatus |
DE29504378, | |||
DE4111122, | |||
DE4306478, | |||
EP20662, | |||
EP358302, | |||
EP392640, | |||
EP441418, | |||
EP751757, | |||
EP777504, | |||
EP853950, | |||
EP982015, | |||
EP1169071, | |||
EP1487389, | |||
EP1578477, | |||
EP1660000, | |||
EP1905465, | |||
EP2051675, | |||
EP2319550, | |||
EP2413858, | |||
EP2490637, | |||
EP2545946, | |||
GB1549756, | |||
GB2195255, | |||
GB2235877, | |||
GB2307180, | |||
GB2336546, | |||
GB2344531, | |||
SU1762940, | |||
WO3057307, | |||
WO3101508, | |||
WO2005009488, | |||
WO2005016179, | |||
WO2005061025, | |||
WO2006015599, | |||
WO2007006306, | |||
WO2007016590, | |||
WO2007019038, | |||
WO2007041642, | |||
WO2007085396, | |||
WO2007092397, | |||
WO2007095180, | |||
WO2007106590, | |||
WO2007106591, | |||
WO2008008032, | |||
WO2008012278, | |||
WO2008027449, | |||
WO2008043067, | |||
WO2008100440, | |||
WO2008100446, | |||
WO2008131895, | |||
WO2008135997, | |||
WO2008141470, | |||
WO2009068665, | |||
WO2009086580, | |||
WO2009088925, | |||
WO2009111655, | |||
WO2009137194, | |||
WO2009140376, | |||
WO2009141820, | |||
WO2009145894, | |||
WO2010014177, | |||
WO2010033769, | |||
WO2010042240, | |||
WO2010051073, | |||
WO2010059730, | |||
WO2010078166, | |||
WO8001139, | |||
WO8002182, | |||
WO8401904, | |||
WO8905133, | |||
WO9011795, | |||
WO9219313, | |||
WO9605873, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 24 2014 | Smith & Nephew, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 10 2019 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 11 2023 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 08 2021 | 4 years fee payment window open |
Nov 08 2021 | 6 months grace period start (w surcharge) |
May 08 2022 | patent expiry (for year 4) |
May 08 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 08 2025 | 8 years fee payment window open |
Nov 08 2025 | 6 months grace period start (w surcharge) |
May 08 2026 | patent expiry (for year 8) |
May 08 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 08 2029 | 12 years fee payment window open |
Nov 08 2029 | 6 months grace period start (w surcharge) |
May 08 2030 | patent expiry (for year 12) |
May 08 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |