A transmission device for a photosensitive drum includes a sleeve having at least one guiding groove, a transmission unit having a shaft disposed in the sleeve and capable of moving and rotating at the same time, an elastic member, and a gear member receiving the sleeve and the elastic member so that the elastic member exerts elastic force on the shaft of the transmission unit. The transmission unit has two engagement blocks and a receiving space between them. Each engagement block has an inclined outer surface, an inner surface, an inclined top surface and an engagement concave connecting the inner and outer surfaces. The engagement concaves are opened toward opposite directions for engagement with two pillars of a drive member of an electronic image forming apparatus respectively. As a result, the transmission device can be connected with and separated from the drive member smoothly.
|
26. A transmission device for a photosensitive drum, comprising:
(a) a gear member for engaging with the photosensitive drum, having a housing and a sleeve disposed in the housing, wherein the sleeve has a main body having a sidewall along an axis, an axial hole defined through by the sidewall of the main body along an the axis, and at least one guiding groove formed on the sidewall of the main body and being through the sidewall of the main body and communicated with the axial hole, and is coupled with the gear member unrotatably around the axis;
(b) an elastic member being disposed in the axial hole of the sleeve; and
(c) a transmission unit, comprising:
a shaft having a first end, an opposing second end, and at least one protrusion extending along a radial direction of the shaft; and
an engagement structure having a base extending from the first end of the shaft, at least one engagement block helically extending from a side of the base toward a first direction,
wherein the shaft is disposed in the axial hole of the sleeve, such that two ends of the elastic member are respectively abutted against a bottom wall of the gear member and the second end of the shaft, the shaft is rotatable and movable axially, and the at least one protrusion of the shaft is movably retained in and being guided through the at least one guiding groove.
25. A transmission device for a photosensitive drum, comprising:
(a) a shaft having a first end, an opposing second end, and at least one protrusion extending along a radial direction of the shaft;
(b) an engagement portion having a base extending from the first end of the shaft, at least one engagement block helically extending from a side of the base toward a first direction, and a receiving space formed therein;
(c) a sleeve having a main body having a sidewall along the imaginary axis, an axial hole defined through by the sidewall of the main body along an axis, and at least one guiding groove formed on the sidewall of the main body and being through the sidewall of the main body and communicated with the axial hole, wherein when the shaft is disposed in the axial hole, the shaft is rotatable and movable axially, and the at least one protrusion of the shaft is movably retained in and being guided through the at least one guiding groove;
(d) a gear member for engaging with the photosensitive drum, having a housing formed for receiving the main body of the sleeve axially such that the sleeve is coupled with the gear member unrotatably around the axial axis; and
(e) an elastic member being disposed in the axial hole of the sleeve and having two ends abutted against a bottom wall of the gear member and the second end of the shaft, respectively.
1. A transmission device for a photosensitive drum, which is adapted for engagement with a drive member of an electronic image forming apparatus provided with two pillars, the transmission device comprising:
(a) a transmission unit comprising:
a shaft extending along an imaginary axis and having a first end facing toward a first direction, a second end facing toward a second direction opposite to the first direction, and at least one protrusion extending along a radial direction of the shaft; and
an engagement structure having a base extending from the first end of the shaft, two engagement blocks helically extending from two opposite sides of the base toward the first direction, and a receiving space defined between the engagement blocks for receiving the drive member;
(b) a sleeve having a main body having a sidewall along the imaginary axis, an axial hole defined through by the sidewall of the main body along the imaginary axis, and at least one guiding groove formed on the sidewall of the main body and being through the sidewall of the main body and communicated with the axial hole, the shaft of the transmission unit being disposed in the axial hole and capable of rotating and moving axially, and the at least one protrusion of the shaft being movably retained in and being guided through the at least one guiding groove;
(c) a gear member for engaging with the photosensitive drum, having a housing defined along the imaginary axis for receiving the main body of the sleeve so that the sleeve is coupled with the gear member unrotatably around the imaginary axis; and
(d) an elastic member being disposed in the axial hole of the sleeve and having two ends abutted against a bottom wall of the gear member and the second end of the shaft of the transmission unit, respectively.
2. The transmission device as claimed in
3. The transmission device as claimed in
4. The transmission device as claimed in
5. The transmission device as claimed in
6. The transmission device as claimed in
7. The transmission device as claimed in
8. The transmission device as claimed in
9. The transmission device as claimed in
10. The transmission device as claimed in
11. The transmission device as claimed in
12. The transmission device as claimed in
13. The transmission device as claimed in
14. The transmission device as claimed in
15. The transmission device as claimed in
16. The transmission device as claimed in
17. The transmission device as claimed in
18. The transmission device as claimed in
19. The transmission device as claimed in
20. The transmission device as claimed in
21. The transmission device as claimed in
22. The transmission device as claimed in
23. The transmission device as claimed in
24. The transmission device as claimed in
|
having a sidewall 32S along the imaginary axis L, an axial hole 322 defined through by the sidewall 32S of the main body 32 along the imaginary axis L, two guiding grooves 324 formed on the sidewall 32S of the main body 32 and being through the sidewall 32S of the main body 32, communicated with the axial hole 322, and two pillars 34 protruding from the sidewall 32S of the main body 32. Only one of the guiding grooves 324 is shown in the figures, and the other groove 324 is located opposite to the groove 324 shown in the figures.
As shown in
According to the invention, as assembled, the shaft 70 of the transmission unit 20 is disposed in the axial hole 322 and capable of rotating and moving axially. The pin 40 is inserted into the opening 73 of the transmission unit 20 in such a way that the shaft 70 of the transmission unit 20 has two protrusions 75 extending along the shaft's radial direction, as shown in
It should be appreciated to one skilled in the art that the opening 73 of the transmission unit 20 can also be provided without penetrating the shaft 70. For example, the shaft 70 of the transmission unit 20 may have only one protrusion 75 and the sleeve 30 only needs to be provided with one guiding groove 324. Besides, the protrusion 75 of the shaft 70 is not limited to be formed by the pin 40 inserted into the opening 73. For example, the protrusion 75 can be protruded from the shaft body 74 integrally; in that condition, the guiding groove 324 should have an open end so that the protrusion 75 can enter the guiding groove 324 through its open end, and the open end of the guiding groove 324 should be capped by an annular cap provided at, but not limited to, the shaft 70.
Referring to
In certain embodiments, the gear member 60 has an installation slot formed on the top wall 64, and two limiting recesses communicated with each other. The housing 61 extends along the imaginary axis L and opened on the top wall 64. The installation slot extends from the housing 61 toward the two opposite radial directions of the housing 61 and opened on the top wall 64. The limiting recesses are located adjacent to the installation slot, extending parallel to the imaginary axis L and not opened on the top wall 64. The sleeve 30 may further have two pillars 34 protruding from the main body 32. In assembly, the two pillars 34 of the sleeve 30 are inserted into the housing 61 through the installation slot, and then the sleeve 30 is turned to cause the pillars 34 to enter the limiting recesses so that the sleeve 30 is limited in the gear member 60. The details of such embodiments are disclosed in the pending U.S. patent application Ser. No. 13/965,856, which is hereby incorporated herein in its entirety by reference, and not repeated herein.
According to the invention, the assembly process of the transmission device is very simple. First, the elastic member 50 is disposed in the axial hole 322 of the sleeve 30, as shown in
When the transmission device 100 is used, the gear member 60 is fastened to a photosensitive drum which is adapted for installation in a toner cartridge (not shown), and the engagement structure 80 of the transmission unit 20 sticks out of an end of the toner cartridge. When the user puts the toner cartridge into a housing of an electronic image forming apparatus (not shown), the engagement structure 80 of the transmission unit 20 will be engaged with a drive member 90 (shown in
As shown in
The foregoing process is equivalent to the process of which the drive member 90 pushes the transmission unit 20 toward the gear member 60, i.e., toward the second direction D2, to make the transmission unit 20 rotates clockwise and move inwards along the axial hole 322 of the sleeve 30, and the protrusions 75 are guided by the guiding grooves 324 of the sleeve 30 to cause the transmission unit 20 to rotate so that one of the pillars 92 of the drive member 90 slides along the inclined top surface 822 of the first engagement block 82A, and passes over the vertex 821 of the first engagement block 82A. After that, the transmission unit 20 is no longer pushed by the drive member 90 so as to be forced by the elastic rebound force generated by the relatively smaller radius section 52 to move outwards along the axial hole 322 of the sleeve 30, i.e., toward the first direction D1, and rotate at the same time. Then, the engagement concaves 823 are engaged with the pillars 92 of the drive member 90 respectively.
As a result, when the drive member 90 rotates counterclockwise, the pillars 92 will push the engagement blocks 82A and 82B respectively to drive the transmission device 100 rotate counterclockwise, too. At this time, the engagement between the engagement concaves 823 and the pillars 92 causes the rotating transmission unit 20 unable to move inwards along the axial hole 322 of the sleeve 30, i.e., toward the second direction D2 so the drive member 90 will drive the transmission device 100 to rotate continuously. It should be appreciated to one skilled in the art that the pillars 92 of the drive member 90 abut against the recesses 823a of the engagement concaves 823 in
As shown in
As shown in
According to the present invention, the transmission device 100 for a photosensitive drum is simpler in structure than the conventional ones, and the way that the transmission device 100 is connected with and separated from the drive member 90 of an electronic image forming apparatus is different from the conventional ones. By the feature that the transmission unit 20 can move along the imaginary axis L and rotate about the imaginary axis L at the same time and the specially designed shape of the engagement blocks 82 of the transmission unit 20, no matter what angle the transmission device 100 is presented when entering or exiting the housing of the electronic imaging device, the transmission unit 20 will be connected with the drive member 90 firmly and separated from the drive member 90 smoothly.
The processes of how the transmission device 100 is connected with and separated from the drive member 90 are only possible ones of many conditions. For example, when the transmission device 100 is going to be connected with the drive member 90, the drive member 90 might first touch one of the engagement blocks 82 at its inner surface 824, or at its outer surface 825, as the condition illustrated before. In addition, the transmission device provided by the present invention can also be provided with the guiding block formed on the engagement block 82, the drive member 90 might touch the guiding bevel of one of the guiding blocks (not shown) at first; in that condition, the guiding bevel helps guiding the drive member 90 to enter the receiving space 86. However, the transmission device provided by the present invention can also be provided with more than two engagement blocks 82. Besides, the shape of the engagement concave 823 of each engagement block 82 is not limited to that provided in this embodiment, as long as the engagement concave 823 can be engaged with the pillar 92 of the drive member 90, and at the same time the pillar 92 can be hooked by a part of the engagement concave 823, e.g., the limiting surface 823b in the embodiment, to cause the transmission unit 20 unable to move toward the second direction D2 when the transmission unit 20 is driven to rotate.
Furthermore, the way that the sleeve 30 and the elastic member 50 are mounted in the gear member 60 is not limited to that provided in the embodiment. For example, the pillars 34 of the sleeve 30 and the limiting recesses of the gear member 60 can be replaced by recesses and protrusions, respectively. In another example, the bottom wall 65 of the gear member 60 can be mounted to the bottom potion 68 detachably so that the transmission unit 20 and the sleeve 30 coupled together and the elastic member 50 can be installed into the gear member 60 from its bottom; in this condition, the gear member 60 can be provided without the installation slot 62. The way that the sleeve 30 and the elastic member 50 are mounted in the gear member 60 also can be the design provided in the following embodiments.
The elastic member 250 is also different from of the transmission device 100. In this exemplary embodiment, the elastic member 250 has a relatively larger radius section 251 and a relatively smaller radius section 252 extending from the relatively larger radius section. The relatively larger radius section 251 is disposed in the housing 261 of the gear member 260 and has two ends abutted against the bottom wall 265 of the gear member 260 and the sleeve 30, respectively. The relatively smaller radius section 252 is disposed in the axial hole 322 of the sleeve 30 and has an end abutted against the second end 72 of the shaft 70 of the transmission unit 20.
The main body 332 of the sleeve 330 has a bottom end 325 and a plurality of slots 326 concaved from the bottom end 325. There is an elastic block 327 formed between every two adjacent slots 326, and the sleeve 330 further has a plurality of convexities 336 protruding from some of the elastic blocks 327.
The gear member 360 has a top portion 366, a gear portion 367 extending from the top portion 366 along the imaginary axis L toward the second direction D2, a bottom portion 368 extending from the gear portion 367 along the imaginary axis L toward the second direction D2, a top wall 364 located at the side of the top portion 366, and a bottom wall 365 located at the side of the bottom portion 368. The bottom wall 365 of the gear member 360 is detachably mounted to the bottom portion 368 of the gear member 360. The gear member 360 further has a coupling portion 367 protruding from the bottom wall 365 toward the top wall 364 of the gear member 360. The coupling portion 367 is annular member having a coupling concave 671 at the center. Besides, the coupling portion 367 has a top end 672 and a plurality of slots 673 concaved from the top end 672 toward the bottom wall 365. There is an elastic block 674 formed between every two adjacent slots 673, and there is a through groove 675 located at each elastic block 674 and extending along the imaginary axis L. In this embodiment, the bottom portion 368 of the gear member 360 has two fitting slots 662, as shown in
By the elasticity of the elastic blocks 327 and 674, the sleeve 330 is mounted in the coupling concave 671, and the convexities 336 are inserted into the through grooves 675 and movable along the through grooves 675 so that the sleeve 330 is unrotatable relative to the gear member 360.
Referring to
The main body 432 of the sleeve 430 has a relatively larger radius section 328 and a relatively smaller radius section 329 connected with the relatively larger radius section 328. The relatively larger radius section 328 is provided with a plurality of protrusions 328a protruded from the outer surfaces of the relatively larger radius section 328. The guiding grooves 324 are located at the relatively smaller radius section 329. The top wall 464 of the gear member 460 has a plurality of slots 642 communicated with the receiving hole (i.e., housing) 461. There is an elastic block 644 formed between every two adjacent slots 642, and each elastic block 644 has a stair 646. There are further a plurality of limiting grooves (not shown) formed in the wall of the receiving hole 461. The plurality of protrusions 328a in the relatively larger radius section 328 is corresponding to the plurality of limiting grooves in the wall of the receiving hole 461. The amounts of the protrusions 328a and the limiting grooves 468 are unlimited as long as their amounts are the same. By the elasticity of the elastic blocks 644, the relatively larger radius section 328 of the sleeve 430 is inserted into the receiving hole 461 and limited in the receiving hole 461 by the stairs 646, and the protrusions 328a are disposed in the limiting grooves, respectively. As a result, the sleeve 430 is unrotatable relative to the gear member 460. In addition, this exemplary embodiment is very simple in structure. The stairs 646 also can be the bottom edges of the elastic blocks 644 which are not stair-shaped.
In addition, the way that the sleeve 430 is mounted in the gear member 60 is not limited to that provided in the embodiment. For example, the relatively larger radius section 328 of the sleeve 430 is provided with a limiting groove, the wall of the housing 461 is provided with a limiting block protruded in the housing 461. As assembled, the relatively larger radius section 328 of the sleeve 430 is limited in the housing 461 by the stairs 646, and the limiting block is disposed in the limiting groove 328a. Accordingly, the sleeve 430 is unrotatable relative to the gear member 460.
In one embodiment, the transmission device includes a shaft having a first end, an opposing second end, and at least one protrusion extending along a radial direction of the shaft; an engagement portion having a base extending from the first end of the shaft, at least one engagement block helically extending from a side of the base toward a first direction, and a receiving space formed therein; a sleeve having a main body, an axial hole defined through the main body along an axis, and at least one guiding groove formed on the main body and communicated with the axial hole, wherein when the shaft is disposed in the axial hole, the shaft is rotatable and movable axially, and the at least one protrusion of the shaft is movably retained in the at least one guiding groove; a gear member for engaging with the photosensitive drum, having a housing formed for receiving the main body of the sleeve axially such that the sleeve is coupled with the gear member unrotatably around the axial axis; and an elastic member being disposed in the axial hole of the sleeve and having two ends abutted against a bottom wall of the gear member and the second end of the shaft, respectively.
In another embodiment, the transmission device includes a gear member for engaging with the photosensitive drum, having a housing and a sleeve disposed in the housing, wherein the sleeve has a main body, an axial hole defined through the main body along an axis, and at least one guiding groove formed on the main body and communicated with the axial hole, and is coupled with the gear member unrotatably around the axis; an elastic member being disposed in the axial hole of the sleeve; and a transmission unit comprising a shaft having a first end, an opposing second end, and at least one protrusion extending along a radial direction of the shaft; and an engagement structure having a base extending from the first end of the shaft, at least one engagement block helically extending from a side of the base toward a first direction. The shaft is disposed in the axial hole of the sleeve, such that two ends of the elastic member are respectively abutted against a bottom wall of the gear member and the second end of the shaft, the shaft is rotatable and movable axially, and the at least one protrusion of the shaft is movably retained in the at least one guiding groove.
The foregoing description of the exemplary embodiments of the invention has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the invention and their practical application so as to activate others skilled in the art to utilize the invention and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its spirit and scope. Accordingly, the scope of the present invention is defined by the appended claims rather than the foregoing description and the exemplary embodiments described therein.
Patent | Priority | Assignee | Title |
10295038, | Aug 29 2016 | MIHUMIS TECHNOLOGY CO., LTD. | Push-type transmission mechanism |
Patent | Priority | Assignee | Title |
4829335, | Jun 24 1986 | Canon Kabushiki Kaisha | Process cartridge and image forming apparatus using same |
5210574, | Mar 08 1991 | Mita Industrial Co., Ltd. | Photosensitive drum body-mounting mechanism including a drive coupling member with a coupling protrusion adapted to bite into the inner surface of the mechanism's photosensitive drum |
5845175, | Mar 27 1998 | Xerox Corporation | Rigid interference gear mount for enhanced motion quality |
5903803, | Mar 27 1995 | Canon Kabushiki Kaisha | Process cartridge, electrophotographic image forming apparatus, driving force transmission part, and electrophotographic photosensitive drum |
8270876, | Jun 20 2008 | Canon Kabushiki Kaisha | Process cartridge and electrophotographic photosensitive drum unit |
8295734, | Dec 22 2006 | Canon Kabushiki Kaisha | Rotational force transmitting parts |
8615184, | Oct 27 2009 | PRINT-RITE UNICORN IMAGE PRODUCTS CO , LTD OF ZHUHAI | Driving component, photosensitive drum and process cartridge having the driving component |
20060153587, | |||
20080193156, | |||
20110182619, | |||
20110217073, | |||
20110255900, | |||
20120251175, | |||
20120294649, | |||
20130322923, | |||
20140294499, | |||
20150030353, | |||
CN201532527, | |||
DE202014100621, | |||
WO2012113289, | |||
WO2012113299, | |||
WO2012152203, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 04 2015 | General Plastic Industrial Co., LTD. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 07 2019 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 27 2023 | REM: Maintenance Fee Reminder Mailed. |
Sep 11 2023 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 22 2021 | 4 years fee payment window open |
Nov 22 2021 | 6 months grace period start (w surcharge) |
May 22 2022 | patent expiry (for year 4) |
May 22 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 22 2025 | 8 years fee payment window open |
Nov 22 2025 | 6 months grace period start (w surcharge) |
May 22 2026 | patent expiry (for year 8) |
May 22 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 22 2029 | 12 years fee payment window open |
Nov 22 2029 | 6 months grace period start (w surcharge) |
May 22 2030 | patent expiry (for year 12) |
May 22 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |