A spray control method employs a spray vehicle including a material tank, a pump communicating with the tank, and nozzles of a spray boom communicating with the pump. A GNSS receiver mounted on the vehicle and interfaced to a controller tracks its position in relation to stored position coordinates of field boundaries separating spray zones from spray exclusion zones. The tank is activated and deactivated by the controller to retain spray of the material within the spray zones and to prevent spray of the material in the exclusion zones, by processing an offset of the spray nozzles from the receiver, the spray range of the nozzles, spray turn-on and turn-off lag times, and the velocity of the spray vehicle, all in relation to the field boundaries. An alternative embodiment individually controls spray from the nozzles by using associated valves interfaced to the controller.

Patent
   RE47101
Priority
Mar 20 2003
Filed
Jan 21 2016
Issued
Oct 30 2018
Expiry
Mar 19 2024
Assg.orig
Entity
Large
1
591
currently ok
0. 17. A control system for controlling spraying of a material from a vehicle or from an implement hitched to the vehicle, the vehicle or implement including a tank storing the material, a pump communicating with the tank, and a receiver outputting position data, the control system comprising:
a processor; and
memory storing one or more stored sequences of instructions which, when executed by the processor, cause the processor to:
activate the pump to cause the material to spray to a spray range distance from a nozzle communicating with the pump;
store data identifying a spray zone for a field which is to receive the material;
store data identifying an exclusion zone for the field which is not to receive the material;
store data identifying a turn-on lag time between activation of the pump and said material reaching the spray range;
store data identifying a turn-off lag time between deactivation of the pump and termination of emission of the material from the nozzle;
store data identifying an offset distance between the receiver and the nozzle;
monitor a vehicle velocity;
identify the vehicle entering the spray zone; and
activate the pump when a position of the receiver in the spray zone is at least equal to a sum of the offset distance plus the spray range distance minus a product of the vehicle velocity times the turn-on lag time.
5. A spray control method for controlling spraying of a material from a vehicle on a spray zone of a field that also including has an exclusion zone which is not to receive said material; said method employing a spray vehicle including a material tank storing said material, a pump communicating with said tank, a GNSS receiver outputting position data representing a position thereof, and a controller interfaced between said receiver and said pump, said controller selectively activating said pump and having data representing boundaries of said spray zone relative to said exclusion zone stored therein, and, said method comprising the steps of:
(a) moving said vehicle in said exclusion zone toward said spray zone;
(b) communicating receiving, by a controller, position data from said a receiver to said controller to track the a position of said receiver;
(c) activating said a pump by said controller when said receiver detects a the position of said receiver is detected within said spray zone at which spray of said material is retained within said spray zone;
(d) moving detecting movement of said vehicle in said spray zone toward said exclusion zone;
(e) deactivating said pump by said controller when said receiver detects a the position of said receiver is within said exclusion zone at which spray of said material within said exclusion zone is prevented;
(f) storing data identifying a turn-on boundary separating said spray zone from said exclusion zone by a spray turn-on boundary when passing from said exclusion zone to said spray zone;
(g) activating said pump causing said material to spray to a spray range from a nozzle communicating with said pump and positioned at an offset distance from said receiver,;
storing a measurement of a turn-on lag time being required between activation of said pump and said material reaching said spray range;
(h) moving detecting movement of said vehicle toward said turn-on boundary at a vehicle velocity; and
(i) activating said pump by when said controller when said receiver detects a position of said receiver within said spray zone beyond said turn-on boundary substantially equal to the a sum of said offset distance plus said spray range minus the a product of said vehicle velocity times said turn-on lag time.
11. A spray control method for controlling spraying of a material on a spray zone of a field also including an exclusion zone which is not to receive said material; said method employing a spray vehicle including a material tank storing said material, a pump communicating with said tank, a GNSS receiver outputting position data representing a position thereof, and a controller interfaced between said receiver and said pump, said controller selectively activating said pump and having data representing boundaries of said spray zone relative to said exclusion zone stored therein, and said method comprising the steps of:
(a) moving said vehicle in said exclusion zone toward said spray zone;
(b) communicating position data from said receiver to said controller to track the position of said receiver;
(c) activating said pump by said controller when said receiver detects a position of said receiver within said spray zone at which spray of said material is retained within said spray zone;
(d) moving said vehicle in said spray zone toward said exclusion zone;
(e) deactivating said pump by said controller when said receiver detects a position of said receiver within said exclusion zone at which spray of said material within said exclusion zone is prevented;
(f) storing data in the controller identifying a turn-off boundary separating said spray zone from said exclusion zone by a spray turn-off boundary when passing from said spray zone to said exclusion zone;
(g) said vehicle including a nozzle positioned storing data in the controller identifying an offset distance of a nozzel from said receiver and communicating with said pump;
(h) storing data in the controller identifying a turn-off lag time elapsing between deactivation of said pump and cessation of material being sprayed from said nozzle;
(i) moving monitoring said vehicle moving in said spray zone toward said turn-off boundary at a vehicle velocity; and
(j) deactivating said pump by said controller when said receiver detects a position of said receiver within said exclusion zone beyond said turn-off boundary is at least equal to said offset distance minus the product of said vehicle velocity times said turn-off lag time.
1. A spray control method for controlling spraying of a material on a spray zone of a field also including an exclusion zone which is not to receive said material, said spray zone being separated from said exclusion zone by a spray turn-on boundary when passing from said exclusion zone to said spray zone and by a spray turn-off boundary when passing from said spray zone to said exclusion zone; said method employing a spray vehicle including a material tank storing said material, a pump communicating with said tank, and a nozzle communicating with said pump, said pump when activated causing said material to be sprayed from said nozzle to a spray range from said nozzle and requiring a turn-on lag time between activation of said pump and said material reaching said spray range and a turn-off lag time between deactivation of said pump and cessation of said material being sprayed from said nozzle, said vehicle having a GNSS receiver mounted thereon at an offset distance from said nozzle and outputting position data representing a position of said thereof, and a controller interfaced between said receiver, said receiver being interfaced to a controller which is interfaced to and said pump, said controller selectively activating said pump and having data representing said turn-on boundary and said turn-off boundary boundaries of said spray zone relative to said exclusion zone stored therein, and said method comprising the steps of:
(a) moving said vehicle in said exclusion zone toward said turn-on boundary at a vehicle velocity spray zone;
(b) communicating position data from said receiver to said controller to track the position of said receiver;
(c) activating said pump by said controller when said receiver detects a position of said receiver within said spray zone at a spray turn-on distance beyond said turn-on boundary equal to the sum of said offset distance plus said spray range minus the product of said vehicle velocity times said turn-on lag time which spray of said material is retained within said spray zone;
(d) moving said vehicle in said spray zone toward said turn-off boundary exclusion zone; and
(e) deactivating said pump by said controller when said receiver detects a position of said receiver within said exclusion zone at a which spray turn-off distance beyond said turn-off boundary equal to said offset distance minus the product of said vehicle velocity times said turn-off lag time of said material within said exclusion zone is prevented;
storing data identifying a spray turn-on boundary separating said spray zone from said exclusion zone when passing from said exclusion zone to said spray zone;
activating said pump causing said material to spray to a spray range from a nozzle communicating with said pump and positioned at an offset distance from said receiver, a turn-on lag time being required between activation of said pump and said material reaching said spray range;
moving said vehicle toward said spray turn-on boundary at a vehicle velocity; and
activating said pump by said controller when said receiver detects a position of said receiver within said spray zone beyond said spray turn-on boundary equal to the sum of said offset distance plus said spray range minus the product of said vehicle velocity times said turn-on lag time.
12. A spray control method for controlling spraying of a material on a spray zone of a field also including an exclusion zone which is not to receive said material, said spray zone being separated from said exclusion zone by a spray turn-on boundary when passing from said exclusion zone to said spray zone and by a spray turn-off boundary when passing from said spray zone to said exclusion zone; said method employing a spray vehicle including a material tank storing said material, a pump communicating with said tank, a GNSS receiver outputting position data representing a position thereof, and a controller interfaced between said receiver and said pump, said controller selectively activating said pump and having data representing said turn-on boundary and said turn-off boundary stored therein, and said method comprising the steps of:
(a) moving said vehicle in said exclusion zone toward said turn-on boundary;
(b) communicating position data from said receiver to said controller to track the position of said receiver;
(c) activating said pump by said controller when said receiver detects a position of said receiver within said spray zone beyond said turn-on boundary at which spray of said material is retained within said spray zone;
(d) moving said vehicle in said spray zone toward said turn-off boundary;
(e) deactivating said pump by said controller when said receiver detects a position of said receiver within said exclusion zone beyond said turn-off boundary at which spray of said material within said exclusion zone is prevented;
(f) said vehicle including a nozzle positioned storing data identifying an offset distance of a nozzle from said receiver and, said nozzle communicating with said pump;
(g) storing data identifying a turn-off lag time elapsing between deactivation of said pump and cessation of material being sprayed from said nozzle;
(h) moving said vehicle in said spray zone toward said turn-off boundary at a vehicle velocity; and
(i) deactivating said pump by said controller when said receiver detects a position of said receiver within said exclusion zone beyond said turn-off boundary equal to said offset distance minus the product of said vehicle velocity times said turn-off lag time.
2. A spray control method as set forth in claim 1 and including the steps of further comprising:
(a) mounting a transverse spray boom on said vehicle; and
(b) supporting said nozzle and a plurality thereof on said spray boom in transversely spaced relation and in communication with said pump.
3. A method as set forth in claim 1 and including a plurality of spray valves connecting said a plurality of nozzles respectively with said pump, said valves being interfaced to said controller, and said valves having a valve turn-on lag time and a valve turn-off lag time which are stored in said controller, and including the steps of:
(a) individually controlling each valve to open when said receiver detects a position of said receiver within said spray zone at a valve open distance beyond a portion of said turn-on boundary aligned with the nozzle associated with said valve equal to the sum of said offset distance plus said spray range minus the product of said vehicle velocity times said valve open turn-on lag time; and
(b) individually controlling each valve to close when said receiver detects a position of said receiver within said exclusion zone at a valve close distance beyond a portion of said turn-off boundary aligned with the nozzle associated with said valve equal to said offset distance minus the product of said vehicle velocity times said valve close turn-off lag time.
4. A spray control method as set forth in claim 1 wherein:
(a) said vehicle includes a tractor and a towed spray implement hitched to said tractor and having said tank and said pump mounted thereon.
6. A method as set forth in claim 5 wherein said spray zone is separated from said exclusion zone by a spray turn-on boundary when passing from said exclusion zone to said spray zone, and said method includes the steps of further comprising:
(a) moving detecting said vehicle moving toward said turn-on boundary; and
(b) activating said pump by when said controller when said receiver detects a position of said receiver within said spray zone is beyond said turn-on boundary at which spray of said material is retained within said spray zone.
7. A method as set forth in claim 5 wherein said spray zone is separated from said exclusion zone by a spray turn-off boundary when passing from said spray zone to said exclusion zone, and said method includes the steps of further comprising:
(a) moving detecting movement of said vehicle in said spray zone toward said a turn-off boundary separating the spray zone from the exclusion zone; and
(b) deactivating said pump by when said controller when said receiver detects a position of said receiver within said exclusion zone beyond said turn-off boundary at which spray of said material within said exclusion zone is prevented.
8. A method as set forth in claim 5 and including the steps of further comprising:
(a) mounting a transverse spray boom on said vehicle; and
(b) supporting said nozzle and a plurality thereof on said spray boom in transversely spaced relation and in communication with said pump.
9. A method as set forth in claim 8 and including a plurality of spray valves connecting said nozzles respectively with said pump, said valves being interfaced to said controller, and including the steps of further comprising:
(a) individually controlling each valve to open when said receiver controller detects a position of said vehicle within said spray zone at which spray of said material from the nozzle associated with said valve is retained within said spray zone; and
(b) individually controlling each valve to close when said receiver controller detects a position of said receiver within said exclusion zone at which spray of said material within said exclusion zone from the nozzle associated with said valve is prevented.
10. A method as set forth in claim 5 wherein:
(a) said vehicle includes a tractor and a towed spray implement hitched to said tractor and having said a tank and said pump mounted thereon.
13. A method as set forth in claim 12 wherein said spray zone is separated from said exclusion zone by a spray turn-on boundary when passing from said exclusion zone to said spray zone, activation of said pump causes said material to spray to a spray range from a said nozzle communicating with said pump and positioned at an offset distance from said receiver, and a turn-on lag time is required between activation of said pump and said material reaching said spray range, and said method includes the steps of further comprising:
(a) moving said vehicle toward said turn-on boundary at a vehicle velocity; and
(b) activating said pump by said controller when said receiver controller detects a position of said receiver within said spray zone beyond said turn-on boundary equal to the sum of said offset distance plus said spray range minus the product of said vehicle velocity times said turn-on lag time.
14. A method as set forth in claim 12 and including the steps of further comprising:
(a) mounting a transverse spray boom on said vehicle; and
(b) supporting a plurality of said nozzles on said spray boom in transversely spaced relation and in communication with said pump.
15. A method as set forth in claim 14 and including a plurality of spray valves connecting said nozzles respectively with said pump, said valves being interfaced to said controller, and including the steps of further comprising:
(a) individually controlling each valve to open when said receiver detects a position of said receiver within said spray zone beyond said turn-on boundary at which spray of said material from the nozzle associated with said valve is retained within said spray zone; and
(b) individually controlling each valve to close when said receiver detects a position of said receiver within said exclusion zone beyond said turn-off boundary at which spray of said material within said exclusion zone from the nozzle associated with said valve is prevented.
16. A method as set forth in claim 12 wherein:
(a) said vehicle includes a tractor and a towed spray implement hitched to said tractor and having said tank and said pump mounted thereon.
0. 18. The control system according to claim 17, including:
identifying the vehicle leaving the spray zone and entering the exclusion zone;
deactivating the pump when a location of the receiver in the exclusion zone is at least equal to the offset distance minus a product of the vehicle velocity times the turn-off lag time.
0. 19. The control system according to claim 17, wherein the nozzle is located on a transverse spray boom.
0. 20. A control system according to claim 19 wherein the spray boom is attached to the vehicle through an articulated joint.
0. 21. A control system according to claim 17, wherein the receiver is at least one of an inertial navigation system, an attitude heading reference system, or a global navigation satellite system (GNSS) receiver.
0. 22. A control system according to claim 17, wherein the receiver uses one or more antennas.


Where

T = 1 / n n θ . gyro

A two state Kalman filter is defined to have the gyro rate basis and scale factor error as states. The Kalman process model is a first-order Markov:

X k + 1 = [ 1 0 0 1 ] X k + [ σ A 0 0 σ B ] W k
where the state vector X=[A B]
Here σA and σB are noise amplitudes and W is white noise. This dictates what is known as a random walk of the state [A B]. The designer of the Kalman filter chooses σA and σB according to how rapidly the bias and scale factor errors are expected to vary (usually variations due to temperature dependencies of scale and bias in a low cost gyro). Typical variations, especially of the scale factor, are quite small (A and B are nearly constant), and σA and σB are chosen accordingly. Typical values for a low-cost gyroscope, using a time interval T are:

σ A = 0.02 T 1200 , σ B = T 1200
where T is expressed in seconds and 1200 means 1200 seconds. For example, here the random walk is chosen to cause a drift in scale factor of 0.02 in 1200 seconds. The Kalman measurement equation is:
y=Hx+v
Where
y={dot over (θ)}gyro T, H=[θtrue T] and v is measurement noise. The Kalman covariance propagation and gain calculation is designed according to well-known techniques.

Similar Kalman filters are deployed in both yaw and roll (and/or pitch) channels. The GNSS attitude devices 20 provides a reference yaw and roll that act as the Kalman measurements enabling the calibration of gyro rate basis and scale factor errors. The GNSS device provides heading and roll, even when the vehicle is stationary or traveling in reverse. This provides a significant advantage over single-antenna systems which provide a vehicle direction only when moving (i.e., a velocity vector). The multi-antenna attitude device 20 enables continuous calibration regardless of whether or not and in what direction the vehicle 10 is moving.

The calibrated gyros 430, 440 are highly advantageous in a vehicle steering control system. High precision heading and heading-rate produced by the calibrated yaw gyro is a very accurate and instantaneous feedback to the control of vehicle changes in direction. The angular rate produced by the gyro is at least an order of magnitude more accurate than the angular rate produced by pure GNSS systems, even those with multiple antennas. The system 402 is also very responsive. The feedback control needs such relatively high accuracy and responsiveness in heading and heading-rate to maintain control loop stability. It is well known that rate feedback in a control loop enhances stability. On a farm vehicle, where vehicle dynamics may not be fully known or modeled, this aspect is particularly important. The rate term allows a generic control system to be developed which is fairly insensitive to un-modeled vehicle dynamics. A relatively accurate heading and heading-rate-of-turn can be calculated for use in a vehicle automatic steering system.

Another advantage of the system 402 is that a gyro calibrated to measure tilt angle can provide the vehicle's tilt much more accurately than a system relying exclusively on GNSS positioning signals. This advantage is particularly important in high-precision autosteering, e.g., to the centimeter level. Errors in GNSS attitude are effectively increased by the ratio of the antenna spacing to the mounted height of the antennas above the ground, as illustrated in FIG. 8, which shows an attitude system 402 comprising a pair of antennas 405, 406 connected by a link 407, as described above. The system 402 is shown tilted through a tilt (roll) angle θR. An imaginary antenna height line perpendicular to the rigid link 407 is projected to the “true” ground position of the vehicle 10 in FIG. 8 and forms the roll angle with respect to the Z axis. The relative antenna height differential can be projected along the vertical Z axis to a ground intercept point and establishes a cross-track error (distance between the vehicle true ground position and the Z axis ground intercept point), whereby errors in the antenna height differential are amplified by the ratio of the rigid link 407 length to the antenna height. The spacing of the antennas 405, 406, which corresponds to the length of the rigid link 407, is typically limited by the width of the vehicle 10, which can be relatively tall, thereby resulting in a relatively large antenna height-to-spacing ratio, e.g., five-to-one. Furthermore, noise-induced errors present in GNSS relative antenna height differentials (e.g., carrier phase noise, etc.) will be multiplied by this ratio, which can cause steering errors, including steering oscillations, etc.

The GNSS attitude system 402 utilizes a roll gyro (e.g., 430) for measuring rate-of-change of the roll angle, rather than the absolute roll angle, which rate of change is integrated to compute absolute roll angle. The constant of integration can be initialized to the current GNSS-derived roll angle and then subsequently steered to the GNSS roll angle by filtering with a Hatch filter or similar filter used for smoothing the code phase against the carrier phase in the GNSS receivers. Relatively smooth vehicle roll estimates can thus be achieved with a gyro.

More specifically, in an exemplary embodiment, the filtering is supplemented by the equation:
θfilter(k)=Δgyro(k)+Gain*[θGNSS(k)−θfilter(k−1)−Δgyro(k)]
Δgyro(k)=θgyro(k)−θgyro(k−1)
Where θfilter (k) is the desired output roll angle (at time k) smoothed by gyro roll angle, but steered to GNSS roll angle. The GNSS roll (at time k) is θGNSS(k) while the raw gyro angular reading is θgyro(k) which is obtained by integrating gyro angular rate. The difference in gyro integrated rate over one time interval (k−1 to k) is denoted Δgyro(k). The filter bandwidth and weighting of the GNSS roll angle into the solution is set by the filter's gain (denoted Gain). One method to choose the gain is to assign Gain=T/τ where T is the time span from epoch to epoch and τ is a time-constant, typically much larger than T. The smaller the Gain, the less the GNSS roll angle is weighted into the solution. The gain is chosen to give a smooth filtered roll output, dominated by the low gyro noise characteristics, but also maintaining alignment with GNSS roll. Since the gyro is calibrated in terms of its scale and bias errors per the methods described earlier, the gain can be chosen to be very small (much less than 1) and still the filtered roll angle closely follows the GNSS roll angle, but without the noise of the GNSS derived roll angle. Similar schemes can be deployed for pitch and heading angles if needed, all with the benefit of improved steering if such angles are used in the steering control feedback.

FIGS. 9 and 10 show a GNSS and gyroscopic control system 502 comprising an alternative aspect of the present invention in a tractor and sprayer agricultural equipment application 504. The vehicle (e.g., a motive component or tractor) 10 is connected to a working component (e.g., a sprayer) 506 by an articulated connection 508, which can comprise a conventional tongue-and-hitch connection, or a powered, implement steering system or hitch, such as those shown in U.S. Pat. No. 6,865,465, No. 7,162,348 and No. 7,373,231, which are assigned to a common assignee herewith and are incorporated herein by reference.

The tractor 10 and the sprayer 506 mount respective tractor and sprayer GNSS antenna and gyroscope attitude subsystems 510, 512, which are similar to the system 402 described above and provide GNSS-derived position and attitude outputs, supplemented by gyro-derived rate of rotation outputs for integration by the control system 502. The sprayer 506 includes a spray boom 514 with multiple nozzles 516 providing spray patterns 518 as shown, which effectively cover a swath 520. The system 502 can be programmed for selectively controlling the nozzles 516. For example, a no-spray area 522 is shown in FIG. 9 and can comprise, for example, an area previously sprayed or an area requiring spray. Based on the location of the no-spray area 522 in relation to the spray boom 514, one or more of the nozzles 516 can be selectively turned on/off. Alternatively, selective controls can be provided for other equipment, such as agricultural planters wherein the seed boxes can be selectively turned on/off.

FIG. 10 shows some of the major components of the system 502, including the GNSS antenna and gyroscope attitude subsystems 510, 512 with antennas 405, 406 separated by rigid links 407, as described above, and inertial gyros 514. The tractor and implement 10, 506 can be equipped with comparable systems including DGNSS receivers 524, suitable microprocessors 526 and the inertial gyros 529. Additional sensors 528 can include wheel counters, wheel turn sensors, accelerometers, etc. The system components can be interconnected by a controller-area network or CAN connection 530. Alternatively, components can be wirelessly interconnected, e.g., with various types of RF transmitters and receivers or transceivers.

In operation, the functions described above can be implemented with the system 502, which has the additional advantage of providing GNSS and gyro-derived positioning and attitude signals independently from the tractor 10 and the implement 506. Such signals can be integrated by one or both of the microprocessors 526. The tractor 10 can be automatically steered accordingly whereby the implement 506 is maintained on course, with the additional feature of selective, automatic control of the nozzles 516. For example, FIG. 9 shows the course of the tractor 10 slightly offset to the course of the sprayer 516, which condition could be caused by a downward left-to-right field slope. Such sloping field conditions generate roll attitudes, which could also be compensated for as described above. For example, the system 502 can adjust the output from the spray nozzles 516 to compensate for such variable operating conditions as sloping terrain, turning rates, tire slippage, system responsiveness and field irregularities whereby the material is uniformly applied to the entire surface area of the field. Moreover, the GNSS-derived positioning and heading information can be compared to actual positioning and heading information derived from other sensors, including gyros, for further calibration.

IV. Multi-Antenna High Dynamic Roll Compensation and Rover L1 RTK

Another alternative aspect GNSS guidance system 602 is shown in FIGS. 11 and 12 and provides high dynamic roll compensation, heading and rate-of-turn (ROT) in an RTK system including a GNSS receiver 604 including an RF converter 606 connected to a multi-channel tracking device 608 and first and second antennas 610, 612, which can be mounted on top of a vehicle 10 in fixed relation defining a transverse (X axis) fixed baseline 614. The receiver 604 provides a GNSS data output to a guidance processor (CPU) 616, which includes a GUI/display 618, a microprocessor 620 and media (e.g., for data storage) 622. A steering valve block 624 includes autosteer logic 626, hydraulic valves 628 and steering linkage 630. A wheel sensor 632 is connected to the steering valve block 624, which in turn is connected to the guidance processor 616 by a suitable CAN bus 634.

GNSS positioning signals are received from a constellation of GNSS satellites and an RTK base transceiver 636, which includes a receiver 638 and a transmitter 640 for transmitting carrier phase signals to a rover RTK receiver, such as the receiver 604. By using GNSS positioning signals from the satellites and correctional signals from the RTK base transceiver 636, the guidance system 602 can calculate a relatively accurate position relative to the base transceiver 636, which can be located at a predetermined position, such as a benchmark. The guidance system 602 described thus far is an RTK system utilizing a dual frequency receiver and is capable of achieving sub-centimeter accuracy using the carrier phase signals.

Roll compensation, heading, and rate of turn can all be calculated using vector-based heading (yaw and roll) information derived from the rover GNSS receiver 604. High-dynamic vehicle roll is a problem with certain applications, such as agricultural vehicles, which traverse uneven terrain and tend to be relatively tall with antennas mounted three meters or more above ground level. Antenna arrays can swing significant distances from side to side with vehicle roll, as indicated by a roll arrow 644. Such deviations can be detrimental to precision farming, and require compensation. The fixed-baseline vehicle antennas 610, 612 provide the necessary dynamic vector outputs for processing and compensation by the steering valve block 624. For example, the microprocessor 620 can be preprogrammed to instantly respond to such roll errors by providing counteracting output signals via the CAN bus 634 to autosteer logic 626, which controls the hydraulic valves 628 of the steering valve block 624. A slight delay phase shift can be programmed into the microprocessor 620, thus reflecting the inherent lag between vehicle roll and the steering system reaction. The delay phase shift can be adjustable and calibrated for accommodating different equipment configurations. The GNSS receiver 604 output provides relatively accurate guidance at slow speeds, through turns and in reverse without relying on sensing vehicle motion via an inertial navigation system (INS), utilizing gyroscopes and/or accelerometers. Moreover, the guidance system 602 can eliminate the calibration procedures normally needed for INS-corrected systems.

The system 602 can likewise provide high dynamic yaw compensation for oscillation about the vertical Z axis using the two-antenna fixed baseline configuration of the receiver 604. Adding a third antenna would enable high dynamic compensation with respect to all three axes XYZ e.g., in a six-degrees-of-freedom mode of operation.

Providing multiple antennas 610, 612 on a rover vehicle 10 can significantly improve the ability to resolve integer ambiguities by first obtaining an attitude solution by solving for the locations of the rover antennas 610, 612 with respect each other. Then, using the non-relative locations and the known relative ambiguities, solving for the global ambiguities using observations taken at each antenna 610, 612. The number of observations is thus significantly increased over conventional RTK. Solving the global ambiguities enables locating the rover antennas 610, 612 in a global sense relative to a base station 636. Using multiple antennas in this manner enables using L1 single frequency receivers, which tend to be less expensive than dual frequency (L1 and L2) receivers, as in conventional RTK systems. An exemplary method consists of:

Example using a two-antenna rover system (e.g., 602):

At antenna 1 (e.g., 610) of the rover, we can write the equation
R1=[A]x1−N1,

Similarly, at antenna 2 (e.g., 612) we can write
R2=[A]x2−N2

Where R2 is a carrier phase observation vector at antenna 1, A is a design matrix, X2 is the location vector of antenna 2, and N2 is an ambiguity vector for antenna 2.

Note, that in this example, the design matrix A is taken to be the same in both antenna equations. But, this is true only if both antennas see the same satellites. A more general example would use separate A1 and A2 for the two equations.

Solving an attitude solution (for example, see U.S. Pat. No. 7,388,539), we find the relative antenna displacement V, and the relative ambiguity M where
V=x2−x1
and
M=N2−N1

Thus, combining the above equations, we have
R1=[A]x1−N1
R2=[A](x1+V)−(N1+M)

Rearranging gives
R1=[A]x1−N1
R2−[A]V+M=[A]x1−N1

And, combining into a single vector equations gives
R=[A]x1−N
Where
R=[R1,R2−[A]V+M]T and N=[N1,N1]T

Where ‘T’ denotes transpose

Referring to the above example, twice as many equations are obtained for the same number of unknowns (e.g. X1 and N1). Solving for the global integer ambiguity N1 is facilitated by the multiple available equations.

Multiple antennas can also be utilized at the base and would provide the advantage of canceling multipath signals. However, multiple antennas on the rover are generally preferred because they provide attitude for the rover 10, which is generally not of concern for the base 636.

V. Moving Baseline Vehicle/Implement Guidance Systems

Alternative embodiment multiple-antenna GNSS guidance systems are shown in FIGS. 13-18 and utilize a moving baseline between a vehicle-mounted antenna(s) and an implement-mounted antenna. Independent implement steering can be accomplished with a powered, implement steering system or hitch, such as those shown in U.S. Pat. No. 6,865,465, No. 7,162,348 and No. 7,373,231, which are assigned to a common assignee herewith and are incorporated herein by reference.

FIGS. 13-14 show a GNSS guidance system 726 comprising another modified embodiment of the present invention and including a vehicle 10 connected to an implement 728 by a hitch 730. The hitch 730 permits the implement 728 to move through three axes of movement relative to the vehicle 10 as the system 726 maneuvers and traverses ground with irregularities causing the vehicle 10 and the implement 728 to yaw, pitch, and roll somewhat independently of each other. A moving baseline 732 is defined between points on each, e.g., between a vehicle antenna 753 and an implement antenna 756. The moving baseline 732 is generally a 3D vector with variable length and direction, which can be derived from the differences between the vehicle antenna 753 location (X1, Y1, Z1) and the implement antenna location (X3, Y3, Z3), or other predetermined point locations on the vehicle 10 and the implement 728. The guidance system 726 includes a single GNSS receiver 734 (e.g., a single printed circuit board (PCB) receiver) receiving ranging data streams from the antennas 753, 756, which can include the normal front end RF down-converter components. Using the geodetic-defined position solutions for the antennas 753, 756, the moving baseline 732 is defined and used by a guidance CPU 736 in real-time for computing guidance solutions, which include steering command outputs to the steering valve block 738. The varying separation of the antennas 753, 756 occurs both at the start of attitude acquisition and during operation.

FIG. 15 shows another alternative aspect vehicle/implement GNSS guidance system 740 with first and second vehicle antennas 753, 754, which can include front end down converter RF components providing ranging signal outputs, along with the implement antenna 756, to the single GNSS receiver 734 as described above. The vehicle antennas 753, 754 define a fixed baseline 754 by their respective positions (X1, Y1, Z1), (X2, Y2, Z2), which function to provide vector heading and rate-of-turn (ROT) output information. Such positioning data is input to the guidance CPU 736 by measuring yaw and roll attitudes whereby such guidance and performance information can be determined solely on GNSS-defined ranging data utilizing the fixed-relationship mounting of the vehicle antennas 753, 754 on the vehicle 10. Such information can be processed in connection with the implement antenna 756 position information in order to provide more complete GNSS positioning and guidance solutions, including travel paths for the vehicle 10 and the implement 728.

FIG. 16 shows another modified aspect GNSS positioning system 752, which includes first and second vehicle antennas 753, 754 at GNSS-defined positions (X1, Y1, Z1), (X2, Y2, Z2) respectively, which positions define a vehicle fixed baseline 755. The implement 728 includes first and second implement antennas 756, 757 at GNSS-defined positions (X3, Y3, Z3), (X4, Y4, Z4) respectively, which define an implement fixed baseline 758 and from which the guidance CPU 736 determines heading and ROT for the implement 728 using similar vector techniques to those described above. A movable baseline 759 can be defined between a vehicle antenna 753 and an implement antenna 756 as shown, or between other corresponding antenna pairs, or other predetermined locations on the vehicle 10 and the implement 728. The system 752 utilizes a single GNSS receiver 734 receiving input ranging information from the four antennas 753, 754, 756, 757 and providing a single output stream to the guidance CPU 736. It will be appreciated that various other antenna/receiver combinations can be utilized. For example, a third vehicle and/or implement antenna can be provided for 3-axis attitude computation. INS components, such as gyroscopes and/or accelerometers, can also be utilized for additional guidance correction, although the systems described above can provide highly accurate guidance without such INS components, which have certain disadvantages.

FIG. 17 shows the 2+1 antenna system 740 operating in a guidance mode whereby a predetermined number of positions 790 at predetermined intervals are retained by the guidance CPU 736, thereby defining a multi-position “breadcrumb” tail 792 defining the most recent guidepath segment traversed by the vehicle 10 based on the locations of the vehicle antenna(s) 753 (754). Although the 2+1 antenna guidance system 740 is used as an example, the 1+1 antenna guidance system 726 and the 2+2 guidance system 752 can also be used in this mode and function in a similar manner, with more or less ranging signal sources. The guidance CPU 736 utilizes the retained tail “breadcrumb” positions 790 in conjunction with the GNSS-derived antenna locations for computing a crosstrack error representing implement 728 deviation from a desired guidepath 794, and the necessary steering signals for correcting the vehicle 10 course to maintain the implement 728 on track. Still further, in a multi-position tail 792 operating mode the high dynamic roll compensation function described above can be utilized to compensate for vehicle and/or implement roll using the fixed baseline(s) 746, 755, 758 for further guidance solution accuracy based solely on GNSS ranging information.

With the systems 726, 740 and 752, a single receiver can be used for achieving carrier phase relative accuracy, even without differential correction. A single clock associated with the receiver facilitates ambiguity resolution, as compared to dual receiver and dual clock systems. Direct connections among the components further enhance accuracy and facilitate high dynamic roll corrections, as described above. Continuous base and rover ranging data are available for positioning and control. With the 2+1 and the 2+2 configurations, the fixed baseline(s) provide heading and ROT guidance for the vehicle and/or the implement. Steering control for the vehicle is derived from crosstrack error computations utilizing the multi position tail 792.

FIG. 18 is a schematic block diagram showing the components of the GNSS guidance systems 726, 740 and 752. The vehicle 10 components include a GNSS receiver 734 including a first vehicle antenna 753, an optional second vehicle antenna 754, an RF down converter 764, a tracking device 766 and an optional rover RTK receiver 768. A guidance processor CPU 736 includes a GUI display 772, a microprocessor 774 and a media storage device 776. Vehicle steering 778 is connected to the guidance processor CPU 736 and receives steering commands therefrom. GNSS-derived data is transferred from the GNSS receiver 734 to the guidance processor CPU 736. The implement 728 mounts an implement positioning system 780 including a first implement antenna 756 and an optional second implement antenna 757, which are connected to the vehicle GNSS receiver 734 and provide GNSS data thereto. An implement steering subsystem 784 receives steering commands from the guidance processor CPU 736 via a CAN bus 786. The implement 728 is mechanically connected to the vehicle 10 by a hitch 788, which can be power-driven for active implement positioning in response to implement steering commands, or a conventional mechanical linkage. The hitch 788 can be provided with sensors for determining relative attitudes and orientations between the vehicle 10 and the implement 728.

VI. Multi-Vehicle GNSS Tracking Method

FIG. 19 shows a multi-vehicle GNSS tracking system 802 adapted for tracking primary and secondary rover vehicles 804, 806, which can comprise, for example, a combine and an offloading truck. Other exemplary multi-vehicle combinations include crop picking and harvesting equipment, snowplows, aircraft engaged in mid-air refueling, etc. Data transfer among the vehicles 804, 806 and a base transceiver 808 can be accomplished with short-range radio links, such as Bluetooth and Wi-Fi wireless technologies. For example, the base transceiver 808 can transmit corrections to the rovers 804, 806 at predetermined intervals of one second (i.e., 1 Hz).

Between the base transmissions the primary rover 804 can transmit its identifying information (ID) and GNSS-derived position and timing information to the secondary rover 806. The secondary rover 806 thus receives both differential corrections and the primary rover data over the same radio link, or through an additional radio link. Such data can comprise a multi-position tail 810 as described above and against which the secondary rover 806 can guide. For example, the secondary rover 806 can directly follow the primary rover 804 at a predetermined distance by aligning its travel path with the multi-position tail 810 at a predetermined following distance, or it can offset its own parallel travel path a predetermined offset distance, as shown in FIG. 19. The secondary rover 806 can position itself relative to the primary rover 804 based on either a predetermined time interval or a predetermined separation distance. As discussed above, the multi-position tail 810 can automatically update whereby only a predetermined number of detected positions are stored, which can correspond to a predetermined time duration or distance behind the primary rover 804.

FIG. 20 shows a schematic block diagram of components comprising the multi-vehicle tracking system 802. The onboard systems for the primary rover 804 and the secondary rover 806 can be similar to the vehicle-based GNSS guidance systems described above, with the addition of an inter-rover radio link 812.

VII. Alternative Embodiment Multi-Antenna System 902

FIG. 21 shows a multi-antenna, GNSS-based guidance system 902 installed on a motive component 904, herein exemplified by a tractor, towing a working component 906, herein exemplified by a towed implement, and collectively comprising a vehicle 907. Without limitation, the vehicle 907 is configured for agricultural operations. However, the system 902 could also be used for guiding and controlling a wide range of vehicles, equipment and machines. For example, the system 902 could be applied to earth-moving equipment, examples of which are shown in U.S. patent application Ser. No. 12/857, 298, which is assigned to a common assignee here with and is incorporated herein by reference. The motive and working components can be interconnected, articulated components of a piece of equipment, such as the base vehicle and boom assembly components of an excavator. Also shown are the three axes X, Y, and Z, and the positive directions of rotation about those axes, i.e., roll, pitch, and yaw respectively. Using three antennas 952, 954, 956, the GNSS guidance system 902 can track the motive component 904 and working component 906 in all six degrees of freedom and in relation to each other. The motive component 904 includes a motive component antenna 952, and the working component 906 includes first and second working component antennae 954, 956, i.e. a “1+2” configuration. Other tractor/implement antenna combinations could also be used, such as 2+2. This transfers not only positional information to a GNSS guidance computer 910, but also data on the slope of the earth below the vehicle 907 and whether the working component 906 is traveling laterally (“offset”) compared with the motive component 904, indicating a sliding motion and crosstrack displacement. In FIGS. 21 and 22 the antennas 952, 954, 956 are shown in “normal” positions with the working component 906 aligned with and positioned directly behind the motive component 904. The distances between the working component antennas and the motive component antenna can vary depending on the relative orientations of either the motive component 904 or the working component 906, or both.

FIG. 22 shows the motive component 904 towing the working component 906 with an articulated hitch 914 and a tongue 915, and the various attached sensors and systems which create an embodiment of the guidance path memory system 902. The GNSS system includes the antennas 952, 954, 956, a GNSS receiver 908, a guidance computer 910 including a microprocessor/CPU 909, a working component computer 913 including a microprocessor/CPU 923 and a graphical user interface (GUI) 911. This embodiment of the present invention uses differential GNSS (DGNSS) by using a base station 922 located generally in the vicinity of the work to be performed (FIG. 24). The base station 922 includes an antenna 924, a base receiver 926 and a base transmitter 927. The base and rover configuration is similar to other differential (DGNSS) guidance systems, such as the Outback S Series produced by Hemisphere GPS LLC of Calgary, Canada. The GNSS components are preferably configured to use carrier phase GNSS signals with a base-and-rover receiver combination, which is generally referred to as real-time kinematic (RTK). See U.S. Pat. No. 6,469,663, which is incorporated herein by reference. The guidance system 902 will track the three-dimensional position of the motive component 904 and the working component 906, along with the roll, pitch, and yaw (collectively attitude) of the motive component 904 and the working component 906, both independently and relative to each other. Additionally, the GNSS system 902 will determine the heading of the motive component 904, and will detect when the working component 906 is facing a different heading from the motive component 904 or if the working component 906 is moving laterally compared with the motive component 904, inferring that the working component 906 may have become misaligned due to a bump in the path or because the path is along a slope.

Also shown in FIGS. 22, 24 and 25 are several sensor devices for detecting other vehicle parameter values. These sensors include various vehicle sensors 912, a wheel compaction PSI sensor 916, a hitch feedback sensor 920, and various working component sensors 918. The various vehicle sensors 912 include a motive component wheel angle sensor 935, ground speed sensor 936, fuel sensor 937, RPM sensor 938, and various other optional sensors that detect variables of vehicle performance and may enhance the information received about the terrain being driven over. The various working component sensors 918 include a ground speed sensor 988, a working component wheel angle sensor 989, and compression sensors 990 for determining the amount of soil being compressed similar to the wheel compaction PSI sensor 916. The information harvested from these various sensors is taken and combined with the positional data received by the GNSS system 902, and finally computed by the guidance computer 910. The information is output to an external computer 934, as shown in FIG. 25, where it can be analyzed and future pre-planned paths can be designed based on the data gathered during the field pass.

Alternatively, the guidance computer 910 could calculate and modify its own stored, pre-planned path based on the gathered data and programmed functions for dealing with different field conditions. The guidance computer 910 can be pre-programmed to adapt to field conditions in different ways depending on the circumstances. For example, the microprocessor 909 can be programmed to instruct an articulated hitch 914 that is included with an optional motorized component, such as the device covered by previously mentioned and incorporated U.S. Pat. No. 7,162,348, to adjust the position of the working component 906 relative to the motive component 904 depending on the severity of the slope as the vehicle 907 is traversing that slope. The computer 910 will update commands to the hitch 914 as data is reported by working component and motive component gyro sensors 921, 919 and other relevant sensors for detecting a change in pitch or roll. All of this can be performed in real time as data is reported to the guidance computer 910. The concept of real-time, pre-planned path modification for the present invention follows similar techniques as described in U.S. Patent Publication No. 2007/0021913, which is assigned to a common assignee herewith and incorporated herein by reference.

Also located on the motive component 904 is a steering controller 917 receiving steering commands from the guidance computer 910 and applying them to the motive component 904, steering it around the field. The guidance computer 910 also controls the power settings of the motive component 904, reducing or increasing speed, and optionally controls other vehicle 907 operations, e.g., adjusting the stiffness of shock absorbing components via adjustable hydraulic shock absorbers 958. A controller for controlling the amount of shock absorbed by the hydraulic shock absorbers 958 can be connected directly to and controlled by the guidance computer 910. This will allow the vehicle to increase the resistance of the shock absorbers 958 prior to the vehicle traversing a particularly rough terrain, or decrease their resistance for softer terrain, depending on performance desired from the vehicle 907. Similarly, other elements of the vehicle can be controlled in this way, which will lead to increased vehicle performance and control.

The use of a moving baseline 998 between at least three antennas 952, 954, 956, with two antennas located on the working component 906 and at least one on the motive component 904, allows the guidance system 902 to track the position of the working component relative to the motive component. The working component 906 may actually roll in one direction while the motive component 904 rolls in the opposite direction. Including additional data provided by a motive component inertial measurement unit (IMU) 919 and a working component IMU 921 allows the guidance computer 910 to distinguish yaw, pitch, and roll movement of the working component 906 relative to yaw, pitch, and roll movement of the motive component 904. Because the working component 906 is doing the actual work in a field, it is important to ensure that the working component 904 is being properly guided and aligned relative to the motive component 906. The use of an optional motorized hitch 914, as mentioned above, allows the guidance computer 910 to readjust and realign the working component 906 if the guidance system detects that it is no longer properly aligned. This optional aspect is further discussed in the previously mentioned and referenced U.S. Patent Publication No. 2009/0164067.

FIG. 23A demonstrates the relationship among the three antennas' 952, 954, 956 positions. Using basic trigonometric equations, unknown distances between antenna pairs can be solved and used by the guidance computer 910 to recalculate driving directions. The motive component antenna 952 location is denoted by A. The working component antennas B (954) and C (956) are located a fixed distance BC away from each other. The point where the hitch 914 pivots, allowing the working component 906 to rotate independent from the motive component 904, is at point F. The pivot arm is alternatively labeled the tongue 915. A point-of-interest (POI) directly below the motive component-mounted antenna. Point E is a point directly between the two working component-mounted antennas 954, 956.

The known distances include the distance between the working component-mounted antennas (BC) and the height (H) of the motive component-mounted antenna 952 above the working component-mounted antennas 954, 956. When the working component is directly behind the motive component, as depicted in FIG. 23A, and points B and C are at approximately the elevation of the point of interest (POI), several right-isosceles triangles are formed and the distances among the antennas can be computed.

FIGS. 23B and 23C show the trigonometric relationship changes when the working component 906 rotates about point F (hitch 914) via the tongue 915. The working component will shift in a direction along the X-Y plane, changing the moving baseline relationship AB and AC.

FIG. 23C demonstrates the positional relationship between the motive component-mounted antenna 952 at A and the working component-mounted antenna 956 at C as it moves from the starting position shown in FIG. 23A and moves to the ending position shown in FIG. 23B. The height ‘h’ is known, and the X, Y, and Z coordinates of both point A and point C are known. The coordinates of the Point of Interest (POI) are:
(X1,Y1,Z1.1)=(X1,Y1,Z1−h)

Because point C and POI are at the same elevation, Z1.1=Z3. Thus, the distances d and d.1 can be calculated:
d=√[(X3−X1)2+(Y3−Y1)2]
d.1=√[(X3.1−X1)2+(Y3.1−Y1)2]
And therefore:
Tan θ=h/d
Tan θ.1=h/d.1
AC=h/Sin θ
AC.1=h/Sin θ.1
Alternatively:
AC=√[(X3−X1)2+(Y3−Y1)2+(Z3−Z1)2]
AC.1=√[(X3.1−X1)2+(Y3.1−Y1)2+(Z3−Z1)2]
Sin θ=h/AC
Sin θ.1=h/AC.1
This alternative formula can be used because the three-dimensional points A and C can be determined by their actual GNSS positions as determined by GNSS satellite signals received by the various antennas 952, 954, 956.

This same method can be used as long as points B, C, and POI are at the same elevation; e.g. ZB=ZC=ZPOI, leaving Φ to equal 90°. The distances AB and AC will vary as the working component 906 is rotated about point F as shown in FIG. 22C. Using the formulas above, the distances AB and AC can always be determined as long as ZB=ZC=ZPOI.

The working component 906 and the motive component 904 can independently roll (X-axis), pitch (Y-axis) and yaw (Z-axis) relative to each other. For example, rolling and pitching will alter the elevation of points B, C, and POI relative to each other because the motive component 904 and the working component 906 will not be coplanar. The above-mentioned equations will not be able to solve the distances AB and AC. Also, the angle Φ has changed to Φ′, which is no longer a right angle. In such an instance, the height h will not change, however, and the distances between points can still be calculated using AB=√[(XB−XA)2+(YB−YA)2+(ZB−ZA)2] or AC=√[(XC−XA)2+(YC−YA)2+(ZC−ZA)2]. The various angles can then be calculated using the law of cosines:

Cos Φ = h 2 - AC 2 - d 2 - 2 ( AC * d )

Knowing the lengths of at least two sides and a known angle Φ allows calculation of the other side and angles. This will allow the guidance computer 910 to calculate the distance between the antennas 952, 954, 956 no matter what the three-dimensional orientation of the working component is with respect to the motive component. The roll, pitch, or yaw difference between the motive component 904 and the working component 906 can be determined by including IMUs 919, 921 and measuring the differences recorded by those IMUs. The IMU measurements will provide additional values for unknown distances necessary to solve the relative position of the working component 906 in relation to the motive component 904.

FIG. 25 is a block diagram showing the relationship between the various sensors and the GNSS guidance system. The working component 906 contains its own CPU 913, which collects data from both the working component sensors 918 and the hitch feedback sensor 920. These elements are separate to allow the working component 906 to move itself relative to the vehicle 4 by maneuvering the mechanical hitch 914, which will realign the working component being towed by the vehicle, as explained in further detail in U.S. Pat. No. 7,292,186, which is incorporated herein by reference. The guidance computer 910, on the other hand, is directly connected to the GNSS receiver 8, the vehicle sensors 912, and the wheel compaction sensor 916. A controller area network (CAN) cable 932 connects the working computer 913 with the guidance computer 910 located in the vehicle 904. Alternatively, the two computers may communicate over a local wireless network. The wireless network may be located somewhere on the vehicle 907 or may be located elsewhere in the vicinity. Such a network typically requires a wireless router and a wireless communication device connected to each computer.

Communication between the two computers 910, 913 compares data received from the various sensors and the GNSS guidance system and results in problem solving for future pre-planned paths. Problem solving can either be done in real-time, as mentioned above, or used in generating future, pre-planned paths off-site. This may be performed by uploading gathered data onto an external PC 934 or using the guidance computer 910 directly to calculate a new path. Field data that has been gathered by the various sensors can include, without limitation: the slope of the field at various point locations; the speed at which the vehicle previously navigated the field; and the GNSS positional data recorded as the vehicle traversed the field, including locations where the working component 906 and/or the motive component 904 were no longer in line with the previous pre-planned path. The user may interpret the data and create a new pre-planned program based on it, or an optional computer program can take the data and generate a pre-planned path based on programmed configurations for dealing with different field conditions.

It should be noted that the components of the system 902 can be combined in various ways and will function in a similar manner. For example, a commonly used component is a combination receiver and antenna unit, sometimes referred to as a “smart antenna.” Other components may also optionally be combined, such as the various base station components. A common example of such a combination antenna is the A-220 “Smart Antenna” manufactured by Hemisphere GPS LLC of Calgary, Canada, which are typically combined with Hemisphere GPS receivers and other components, as described in U.S. Patent Application Ser. No. 61/377,355, which is assigned to a common assignee herewith and incorporated herein by reference.

As mentioned above, a motorized hitch 914 connects the working component 6 to the motive component 904. This motorized hitch contains a feedback sensor 920 which communicates with the working component computer 913, which in turn communicates with the guidance computer 910. This allows commands to be sent to the motorized hitch 914 from the guidance computer 910 regarding positioning of the working component 906, and feedback data to then be reported to the guidance computer 910 for recording and additional guidance commands. Stresses on the hitch 914 from holding the working component 906 along a slope and relative position to the motive component 904 are among the variables reported to the guidance computer 910 by the hitch feedback sensor 920.

FIG. 25 is a block diagram dividing the separate subsystems of the system 902. FIG. 25 shows the flow of information from the sensors and GNSS positional system to a finished form of field output data 928 as it is gathered by the various sensors located on the motive component 904 and the working component 906 and communicated between the working component computer 913 and the guidance computer 910. The various sensors including the vehicle sensors 912, wheel compaction psi sensor 916, working component sensors 918, and hitch feedback sensor 920 feed into the guidance computer 910. Additionally, the antennas 952, 954, 956 receive satellite positional information and transmit that information to the GNSS receiver 908 which is directly connected to the guidance computer 910. The guidance computer 910 is connected to the GUI 911 which both displays information to the user and allows for user input via an interface device, such as a touchscreen display or other interface device. Finally, the field output data 928 is created by combining the entirety of the recorded data and relating it to the layout of the field or piece of land that has been worked. This will allow for a more efficient and accurate pre-planned path the next time a vehicle 904 is to work the field in question by combining the data and configuring an automatic steering program focused on guiding the vehicle while addressing the landscape concerns. Knowing where field irregularities are located is the easiest way to ensure the vehicle 907 correctly navigates these irregularities.

The guidance computer 910 can interface with an external computer (e.g., PC) 934 which can receive recorded field data, edit that data, and turn that data into a pre-planned guidance path. Input field data 930 is data includes pre-planned path and controller data. This data is installed in the guidance computer 910 and actively and automatically guides and controls the vehicle through interaction with the steering controller 917. The steering controller 917 will take guidance commands, steering commands, and other commands to control various vehicle functions and will physically perform those functions. Thus a preplanned path based on earlier field data will know to slow down when the motive component is approaching a particularly sharp curve or may instruct the motorized hitch 914 to adjust the position of the working component 906 prior to entering a sloped area.

Output to an external computer 934, such as a personal computer (PC), can be performed in a number of ways. Field data output 928 can be delivered over a direct connection established between the onboard computer 910 and the external computer 934, or field data output 928 can be offloaded onto a portable storage device and then connected to the external computer 934. Similarly, input data 930 can be generated by an external (e.g., offsite) computer 934 and stored onto a portable storage device, and later uploaded to the CPU 910. Such input data 930 may include a pre-planned driving path for an initial field test, or an updated planned path based on previous data collection.

The vehicle sensor suite 912 can also include a camera 939, or other suitable optical device. For example, U.S. Patent Publication No. 2009/0204281, which is assigned to a common assignee herewith, shows a video input system for autosteering control of an agricultural vehicle and other machines. U.S. patent application Ser. No. 12/504,779, which is also assigned to a common assignee herewith, shows an optical tracking vehicle control system and method. Both of these applications are incorporated herein by reference. The camera 939 can be directed at the projected guide path of the tractor 904, towards crop rows on either side, along vehicle tracks or towards any area of interest relative to the tractor 904 or the implement 906. Optical input from the camera 939 can be used by the guidance computer 910 for guiding the vehicle 907 using video input. Alternatively, the camera 939 can be used for recording, observing and archiving the path of the vehicle 907 for purposes of record-keeping or future guidance. For example, in a “match tracks” mode, it may be desirable for the vehicle 907 to accurately retrace previous guide paths, which may be optically observable. Still further, such optical data can be useful for observing the crop plants (typically in rows) whereby the operator and/or the guidance computer 910 can avoid driving over crops and can monitor and record their growth. Still further, the camera 939 can be user-controlled and adjustable for visually observing the vehicle 907 guide path or the crops close-up, for example, on the GUI 911 in the cab.

FIG. 26 shows a plan view of a field with a border 940 and a vehicle 907 traversing a pre-planned path 942. The field contains several irregularities, including a severely sloped section 944, a section of soft earth 946 where water or soil type will cause the vehicle and working component wheels to slightly sink into the ground, an uneven area 948 which may be rocky or otherwise uneven. The various sensors attached to the motive component and working component will record data as the vehicle 907 traverses the areas of irregularity. For instance; as the motive component approaches the uneven area 948, the wheel sensors 916 may detect compression psi differences if the ground contains rocks. Likewise, there may be a sensor attached to the shock absorbers of the motive component to determine the stress levels on said shocks when traversing such an uneven area. The GNSS guidance system 902 will detect whether the vehicle 904 or working component 906 rolls or pitches to a side, or if the heading is altered due to a bump. If the effects of the uneven ground result in the vehicle 907 being deflected off course, the guidance CPU can record this information and instruct the vehicle to slow down in that location at a future date.

The measurement of the varying distance of the three GNSS antennas 952, 954, 956 from one another, a plurality of satellites, and the base station 922 along with heading, attitude, motive component speed, motive component gearing, power, fuel consumption, working component load, stress loads, and other factors which may affect vehicle progression through a field will result in providing knowledge to an extreme detail of the field or piece of land being driven. Once all measurements are taken, the end-user will be able zoom in on any particular spot in a field map and view near topographic details of any location. Knowing where rocks, slopes, and obstacles are and controlling the vehicle according to this knowledge will result in greater efficiency, less wear on the vehicle and working component, and lower costs on vehicle fuel as well as seeds, chemicals, and other products being distributed.

Recording field conditions in a variety of weather types and a variety of soil types can also increase efficiency and safety. For instance; if the field needs to be worked while it is raining, preplanned path data can be fed to the guidance computer 910 from a previous field pass from when it was raining This will present a completely customizable method of vehicle guidance and control which can be optimized depending on weather type, vehicle type, soil condition, and other factors.

A preferred embodiment of the present invention will result in better positioning of the motive component 904 for improved working component 906 position, attitude, and track. The hitch feedback sensor 920 will provide feedback regarding working component attitude and will aid in adjusting a skewed heading. Real time and post analysis of motive component and working component stress areas in the field will result in resolving those areas with additional field preparation or alternations to the motive component's tires, speed, or power. Generation of data based off of stressed field conditions will allow future passes to supply guidance changes to preempt working component track distortions in difficult field conditions. Applying the preferred embodiment to a system using adjustable variable rate controllers for applying chemical, seed, or other material to a field will result in a guidance system with unparalleled accuracy.

FIG. 27 is a flowchart demonstrating an embodiment of a method of practicing the present invention. This embodiment does not contain all possible sensor data, but instead represents an example of an embodiment of the present invention. The method of practicing the memory system 902 starts at 960. The guidance computer 910 is loaded with a pre-planned vehicle guidance path at 962. All vehicle sensors are initiated and record mode begins at 964. From there, the vehicle is automatically guided around the selected field at 966. This is either done using automatic steering or by directing a driver using a light track bar or other typical guidance method. Alternatively, the vehicle 907 may be driven manually around the field with the sensors recording data, without the need of a preplanned path or vehicle guidance process.

The various vehicle and working component sensors are constantly checking the various systems of the vehicle 907. Simultaneously, the GNSS guidance subsystem is recording position and orientation data of the vehicle as it travels upon the pre-planned path. When one of the various sensors detects a change in the field at 968, the system 902 stores data to a storage device such as a hard drive connected to the guidance CPU 910 in the form of a reference point at 970. This reference point data includes vehicle speed, vehicle position, vehicle orientation, power output, and any other base system sensor desired to be recorded by the end user. This reference data is important for calculating what has occurred at the particular point in the field where a sensor has picked up a change in the field layout according to the pre-planned path.

At 972 is a check to determine whether the sensors have determined if the working component has moved off of the guide-line 942 by an amount pre-set by the user. If the response to this check is “yes,” the system 902 records the distance the working component has moved off of the guideline at 974. From there, the system 902 can optionally re-align the working component via the connected motorized hitch 914 at 976. The user may wish not to re-align and determine the full effect of the field irregularity on the pre-planned guidance path, in which case the optional step at 976 can be ignored. The method will then loop back to the guidance step at 966, where sensor checks will continue.

If, at 972, the sensors do not determine the working component has drifted off of the guide-line 942, then the method proceeds to the next check-step. This step involves the wheel PSI compaction sensor at 978, wherein the wheel compaction sensors of the working component, the motive component, or both determine that the soil beneath the tire has changed in some fundamental way. If the answer to this check is a “yes,” then the compaction data is recorded at 980 in reference to positional data and orientation data. From there, the system 902 can optionally slow the vehicle at 982 in order to compensate for the irregular soil type and ensure a smoother and more accurate ride by the vehicle 907. From here, the method loops back to the guidance step at 966, where sensor checks will continue.

A constant “vehicle shutoff” check is present in the loop at 984. If the vehicle or system is ever shutoff, it will result in the system ending at 986.

The guidance computer 910 of the present invention can use guidance algorithms in common with U.S. Patent Publication No. 2009/0164067 (incorporated herein by reference) for position determination in a multiple antenna moving-baseline guidance system. Position and guidance algorithms used by the processors of the present invention are well known and documented in the prior art.

VIII. Alternative Embodiment Multi-Antenna System 1002

A guidance system 1002 comprising an alternative embodiment of the present invention is shown in FIG. 28 and includes a motive component (e.g., tractor) 904 substantially as described above. Without limitation on the generality of articulated working components adapted for use with the present invention, an articulated implement 1006 is shown with first and second implement sections 1006A and 1006B, which are adapted for rotating relative to each other around a hinge line 1009 extending generally parallel to the X axis. Alternatively, various other working components, such as machines, earthworking equipment, articulated excavator booms, motor graders and agricultural implements can be utilized with the system 1002. For example, a wide range of tillage, cultivating, harvesting, seeding, and spraying implements can be controlled with the system 1002. Such implements include side-by-side and front-and-back components, which can be pivotably connected by hinges and other articulated connections, such as hitches.

As shown in FIG. 28, the implement sections 1006A, 1006B can accommodate field conditions requiring independent rotation. For example, implement section 1006A can be positioned on a sloping ground surface, such as a terrace, while the other implement section 1006B can be relatively flat.

The guidance system 1002 can utilize multiple antennas for independently monitoring positional and attitude (orientation) data from the tractor 904 and the implement sections 1006A, 1006B. For example: the tractor 904 can be provided with an antenna 952; the first implement section 1006A can be provided with antennas 1054, 1055; and the second implement section 1006B can be provided with antennas 1056, 1057. Respective XYZ GNSS-based coordinates can be read from each antenna for computing their respective positions, either on an absolute or relative basis. The first implement section antennas 1054, 1055 define a first fixed baseline 1096A and the second implement section antennas 1056, 1057 define a second fixed baseline 1096B. Variable baselines 1098 are defined between the tractor antenna 952 and the implement antennas 1054-57. Although specific antenna configurations are shown, they are not limiting and the present invention generally contemplates the use of multiple antennas in various suitable multiples, distributions and configurations.

The position/attitude determining algorithms used by the guidance computer 910 can be programmed for the baseline constant and variable factors for use in computing position/attitude solutions. For example, the guidance computer 910 can include a switching function for switching among the antennas in order to optimize the available GNSS ranging information. See, U.S. Patent Publication No. 2004/0212533, which is incorporated herein by reference. The availability of ranging information from multiple antennas can be important in compensating for GNSS signal blockage, for example, when equipment or environment obstructions prevent individual antennas from “seeing” enough satellites. Interference, multipath and other error sources can lead to position dilution of precision (“PDOP”). These conditions can be compensated for by the multi-antenna configuration shown in FIG. 28. Of course, the tractor 904 can also be equipped with multiple antennas defining additional fixed and variable baselines. Multiple antennas are also useful for computing “Vector” guidance solutions comprising object attitude or orientation, direction of travel (heading) and velocity.

XI. Spray Control System and Method 1120

Referring to FIGS. 29, 29a-c and 30, elements of a spray control system and method 1120 are illustrated. The spray control system 1120 can be applied to any kind of field spraying but has particularly advantageous application in environmental spraying in which the application of certain materials 1122 is restricted by regulation to designated areas to avoid or minimize adverse environmental impacts. Areas in which spray of the material 1122 is allowed are referred to as spray zones 1124, while areas in which spray of the material 1122 is required to be avoided are referred to as exclusion zones 1126. The spray zones 1124 are separated from the exclusion zones 1126 by field boundaries 1128.

The method 1120 makes use of a spray vehicle 1130 which is illustrated in FIGS. 29 and 29a-c as a tanker truck 1132 having a tank 1134 holding a quantity of the material 1122 to be sprayed, such as waste water from oil, gas, and water drilling operations, or the like. A pump 1136 is connected to the tank 1134 and is activated to pump the material 1122 to nozzles 1138 transversely spaced along a transverse spray boom 1140. A GNSS antenna 1142 is mounted on the spray vehicle 1130 and is interfaced to a GNSS receiver (e.g., 24a, 524, 604, 734 or 908 described above, or any other suitable GNSS receiver), which is connected to a controller or control computer 1144, which is interfaced by way of suitable drivers and/or relays with the pump 1136 to thereby activate and deactivate the pump 1136. The controller 1144 may be a conventional type of computer, including one or more central processing units (CPUs), memory, mass storage, user interface devices, and input/output (I/O) ports (not detailed) which are widely available.

The field boundaries 1128 are surveyed and position coordinates of the boundaries, as determined by a GNSS receiver or other position coordinate detecting system, are recorded for entry into the controller 1144. The boundaries may be surveyed by a vehicle (not shown) other than the spray vehicle 1130. A longitudinal nozzle/receiver or boom offset distance “b” is measured between the GNSS receiver 1142 and the spray boom 1140. The illustrated nozzles 1138 are aimed to spray the material 1122 generally to the rear of the spray vehicle 1130. When the pump 1136 is at a steady state of operation spraying the material 1122 from the nozzles 1138, the material 1122 is sprayed to an average spray range “r” behind the spray boom 1140. However, there is a spray turn-on lag time “ton” between activation of the pump 1136 and the material 1122 reaching the average spray range. Similarly, there is a spray turn-off lag time “toff” that occurs between deactivation of the pump 1136 and the cessation of emission of the material 1122 from the nozzles 1138.

In the spray control method 1120, the GNSS receiver generally tracks the position of antenna 1142, which it communicates to the controller 1144. When the spray vehicle 1130 is traveling in an exclusion zone 1126 toward a spray zone 1124, the 1120 turns on when the antenna 1142 reaches a spray turn-on boundary 1146. Conversely, when the spray vehicle 1130 is traveling in a spray zone 1124 toward an exclusion zone 1126, the system 1120 turns off when the antenna 1142 reaches a spray turn-off boundary 1148. In general, when the spray vehicle 1130 is approaching a turn-on boundary 1146, the controller 1144 causes the pump 1136 to activate when the GNSS receiver detects that it is at a distance beyond the turn-on boundary 1146 at which spray of the material 1122 will be retained within the spray zone 1124. Similarly, when the spray vehicle 1130 is approaching a turn-off boundary 1146, the controller 1144 causes the pump 1136 to deactivate when the vehicle 1130 is at a distance beyond the turn-off boundary 1146 at which deposition of the material 1122 within the exclusion zone 1126 is prevented.

In an embodiment of the method 1120, when the spray vehicle 1130 is traveling within an exclusion zone 1126 approaching a spray zone 1124, the controller 1144 causes the pump 1136 to activate within the spray zone 1124 when the system 1120 detects that the vehicle 1130 is at a turn-on distance “Don” beyond the turn-on boundary 1146 equal to the sum of the nozzle/receiver offset distance plus the spray range minus the product of the spray vehicle velocity “v” times spray turn-on lag time. The turn-on distance can be expressed as:
Don=(b+r)−v*ton
When the spray vehicle 1130 is traveling in a spray zone 1124 approaching an exclusion zone 1126, the controller 1144 causes the pump 1136 to deactivate when the system 1120 detects that it is at a turn-off distance “Doff” beyond the turn-off boundary 1148 equal to the nozzle/receiver offset minus the product of the spray vehicle velocity times the spray turn-off lag time. The turn-off distance can be expressed as:
Doff=b−v*toff
It is foreseen that the turn-on and turn-off distances may need to be adjusted to insure that the material 1122 is not sprayed onto the exclusion zone 1126. Thus, the turn-on distance may need to be increased somewhat and the turn-off distance decreased somewhat to avoid any spraying onto the exclusion zone 1126.

Referring to FIG. 30, the illustrated spray vehicle 1150 includes a towing vehicle or tractor 1150 and a towed vehicle or spray implement 1152, which is hitched to the tractor 1150, which are similar in many respects to the tractor 10 and the spray implement 506 shown in FIG. 9. The illustrated spray implement 1152 includes a tank 1154 holding the material 1122 to be sprayed and a transverse spray boom 156 having a plurality of nozzles 158 transversely spaced therealong and communicating with a pump 1136, which is controlled by a controller 1144. While the illustrated spray patterns of the nozzles 1158 suggest a downward spray direction, it is foreseen that the nozzles 1158 could also be arranged to have spray patterns similar to the spray nozzles 1138. The illustrated tractor 1150 has the GNSS antenna 1142 mounted thereon at a nozzle/receiver offset distance from the spray boom 1156 and interfaced to the controller. The spray control method 1120 may be operated with the spray vehicle 1130 formed by the tractor 1150 and spray implement 1152 in a manner substantially similar to operation using the spray truck 1132.

In surveying the field boundaries 1128 for environmental spraying, it is desirable to simplify the shape of the boundaries, with any error adjustment being in the direction of avoiding applying the material 1122 to an exclusion zone. It is foreseen that the field boundaries 1128 may not always be straight-lined and that the direction of travel of the spray vehicle 1130 may not always be perpendicular to a field boundary 1128.

X. Optional Spray Control Valves

The spray control system and method 1120 can optionally include valves 11621 through 1162n by the controller 1144 to control the flow of material 1122 from the pump 1136 to the nozzles 11581 through 1158n. There is a valve open lag time which occurs between opening of a valve 1162 and the material 1122 reaching the average spray range behind the spray boom 1156. The valve open lag time may be different from the spray lag time described above and it may vary depending on whether or not the pump 1136 is being activated simultaneously. Additionally, the valve open lag time may vary depending on the number of valves 1162 which are currently open or are being opened. Similarly, there is a valve close lag time between closure of a valve 1162 and the cessation of material 1122 being emitted from the associated nozzle 1156, which may vary for reasons similar to variation in the valve open lag time. The variations in the valve open and close lag times can be measured and entered into the controller 1144 along with the sets of conditions which are to be processed in selecting a given valve lag time. In the alternative spray control embodiment 1160, each valve 1162 is controlled in relation to a segment or portion of the upcoming field boundary 1128 that is aligned with the valve 1160 and its spray pattern. Although the spray truck 1132 is not illustrated with individual valves for its nozzles 1138, it is foreseen that the spray truck 1132 could also be provided with individual spray valves for use in the alternative spray control method 1160.

When the spray vehicle 1130 is traveling within an exclusion zone 1126 and approaching a spray zone 1124, the controller 1144 causes each valve 1162 to be opened within the spray zone 1124 when the system 1120 detects that it is at a valve open distance beyond the portion of the turn-on boundary 1146 aligned with that particular valve 1162 which is equal to the sum of the nozzle/receiver offset distance plus the spray range minus the product of the spray vehicle velocity times the valve turn-on lag time, which is selected according to the conditions described above. When the spray vehicle 1130 is traveling in a spray zone 1124 approaching an exclusion zone 1126, the controller 1144 causes each valve 1162 to be closed when the GNSS receiver 1142 detects that it is at a valve close distance beyond a portion of the turn-off boundary 1148 aligned with that particular valve 1162 which is equal to the nozzle/receiver offset minus the product of the spray vehicle velocity times the valve close lag time, also selected according to the conditions described above. It is foreseen that, in an environmental spraying operation, the valve open and close distances may need to be adjusted somewhat to insure that the material 1122 is not applied to any exclusion zones 1126.

The spray control method 1120, as described, generally assumes that the truck 1132 and the tractor 1150 are driven by human operators, with the method 1120 causing automatic turn-on and turn-off of spraying equipments based on the locations detected by the GNSS receivers. It is also foreseen that the truck 1132 or tractor 1150 could be operated in fully automatic navigation modes using apparatus and techniques described above, in cooperation with the spray control method 1120.

While the description has been made with reference to exemplary embodiments, it will be understood by those of ordinary skill in the pertinent art that various changes may be made and equivalents may be substituted for the elements thereof without departing from the scope of the disclosure. In addition, numerous modifications may be made to adapt the teachings of the disclosure to a particular object or situation without departing from the essential scope thereof. Therefore, it is intended that the claims not be limited to the particular embodiments disclosed as the currently preferred best modes contemplated for carrying out the teachings herein, but that the claims shall cover all embodiments falling within the true scope and spirit of the disclosure.

McClure, John A., Stichter, Aaron C.

Patent Priority Assignee Title
10822031, May 09 2018 BLUE LEAF I P , INC Turn control system for a work vehicle
Patent Priority Assignee Title
3585537,
3596228,
3727710,
3815272,
3899028,
3987456, Aug 01 1974 Lignes Telegraphiques et Telephoniques Wide relative frequency band and reduced size-to-wavelength ratio antenna
4132272, Jun 30 1977 Case Corporation Tractor hitch position control system
4170776, Dec 21 1977 System for near real-time crustal deformation monitoring
4180133, Jan 12 1978 Iowa State University Research Foundation, Inc. Guidance system for towed vehicles
4398162, Oct 22 1980 NGK Spark Plug Co., Ltd. Ladder-type piezoelectric filters
4453614, Mar 19 1982 Deere & Company Steering arrangement for an off-highway articulated vehicle
4529990, Oct 22 1979 Daimler-Benz Aktiengesellschaft Antenna system for a jamming transmitter
4637474, Jul 18 1974 Tractor and towed implement with elevation control system for implement including pressure responsive valve actuator
4667203, Mar 01 1982 WESTERN ATLAS INTERNATIONAL, INC , A CORP OF DE Method and system for determining position using signals from satellites
4689556, Oct 12 1984 Daymarc Corporation; DAYMARC CORPORATION, A CORP OF MASSACHUSETTS Broad band contactor assembly for testing integrated circuit devices
4694264, Mar 05 1986 GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE UNITED STATES DEPARTMENT OF ENERGY Radio frequency coaxial feedthrough device
4701760, Mar 07 1984 Commissariat a l'Energie Atomique Method for positioning moving vehicles and exchanging communications between the vehicles and a central station
4710775, Sep 30 1985 The Boeing Company Parasitically coupled, complementary slot-dipole antenna element
4714435, Nov 14 1985 Molex Incorporated Connection for flexible apparatus
4739448, Jun 25 1984 Magnavox Electronic Systems Company Microwave multiport multilayered integrated circuit chip carrier
4751512, Jan 21 1986 HILL, JACK O Differential navigation system for remote mobile users
4769700, Nov 20 1981 LMI TECHNOLOGIES INC Robot tractors
4785463, Sep 03 1985 MOTOROLA, INC , A CORP OF DELAWARE Digital global positioning system receiver
4802545, Oct 15 1986 CNH America LLC; BLUE LEAF I P , INC Steering control system for articulated vehicle
4803626, Sep 15 1987 U S BANK NATIONAL ASSOCIATION Universal controller for material distribution device
4812991, May 01 1986 Hughes Electronics Corporation; HE HOLDINGS INC , DBA HUGHES ELECTRONICS Method for precision dynamic differential positioning
4858132, Sep 11 1987 NATIONSBANK OF NORTH CAROLINA, N A Optical navigation system for an automatic guided vehicle, and method
4864320, May 06 1988 BALL CORPORATION, AN IN CORP Monopole/L-shaped parasitic elements for circularly/elliptically polarized wave transceiving
4894662, Mar 01 1982 WESTERN ATLAS INTERNATIONAL, INC , A CORP OF DE Method and system for determining position on a moving platform, such as a ship, using signals from GPS satellites
4916577, Dec 20 1988 Grumman Aerospace Corporation Method of mounting removable modules
4918607, Sep 09 1988 FMC Corporation Vehicle guidance system
4963889, Sep 26 1989 Hughes Electronics Corporation; HE HOLDINGS INC , DBA HUGHES ELECTRONICS Method and apparatus for precision attitude determination and kinematic positioning
5021792, Jan 12 1990 Rockwell International Corporation System for determining direction or attitude using GPS satellite signals
5031704, May 10 1988 Fleischer Manufacturing, Inc. Guidance control apparatus for agricultural implement
5100229, Aug 17 1990 ARC SECOND, INC Spatial positioning system
5134407, Apr 10 1991 Mitac International Corp Global positioning system receiver digital processing technique
5144317, Apr 07 1990 Rheinbraun Aktiengesellschaft Method of determining mining progress in open cast mining by means of satellite geodesy
5144767, Jun 20 1989 The Minister for Agriculture & Rural Affairs for the State of New South Controller for agricultural sprays
5148179, Jun 27 1991 Trimble Navigation Limited Differential position determination using satellites
5152347, Apr 05 1991 Deere & Company Interface system for a towed implement
5155490, Oct 15 1990 GPS TECHNOLOGY CORP , A CORP OF TX Geodetic surveying system using multiple GPS base stations
5155493, Aug 28 1990 The United States of America as represented by the Secretary of the Air Tape type microstrip patch antenna
5156219, Jun 04 1990 A I L , INC A CORP OF NEBRASKA Positioning apparatus for drawn implement
5165109, Jan 19 1989 Trimble Navigation Limited Microwave communication antenna
5173715, Dec 04 1989 Trimble Navigation Limited Antenna with curved dipole elements
5177489, Sep 26 1989 Hughes Electronics Corporation; HE HOLDINGS INC , DBA HUGHES ELECTRONICS Pseudolite-aided method for precision kinematic positioning
5185610, Aug 20 1990 Texas Instruments Incorporated GPS system and method for deriving pointing or attitude from a single GPS receiver
5191351, Dec 29 1989 RAYTHEON COMPANY, A CORPORATION OF DELAWARE Folded broadband antenna with a symmetrical pattern
5194851, Feb 21 1991 CNH America LLC; BLUE LEAF I P , INC Steering controller
5202829, Jun 10 1991 Trimble Navigation Limited Exploration system and method for high-accuracy and high-confidence level relative position and velocity determinations
5207239, Jul 30 1991 Aura Systems, Inc. Variable gain servo assist
5239669, Feb 04 1992 Trimble Navigation Limited Coupler for eliminating a hardwire connection between a handheld global positioning system (GPS) receiver and a stationary remote antenna
5246164, Dec 16 1991 IDAHO RESEARCH FOUNDATION, INC Method and apparatus for variable application of irrigation water and chemicals
5255756, Apr 22 1992 KONGSKILDE INDUSTRIES, INC Caddy with guidance system for agricultural implements
5260875, Aug 20 1991 MICRO-TRAK SYSTEM, INC Networked agricultural monitoring and control system
5268695, Oct 06 1992 Trimble Navigation Limited Differential phase measurement through antenna multiplexing
5293170, Apr 10 1991 Mitac International Corp Global positioning system receiver digital processing technique
5294970, Dec 31 1990 ARC SECOND, INC Spatial positioning system
5296861, Nov 13 1992 Trimble Navigation Limited Method and apparatus for maximum likelihood estimation direct integer search in differential carrier phase attitude determination systems
5311149, Mar 12 1993 Trimble Navigation Limited Integrated phase locked loop local oscillator
5323322, Mar 05 1992 Trimble Navigation Limited Networked differential GPS system
5334987, Apr 01 1993 Trimble Navigation Limited Agricultural aircraft control system using the global positioning system
5343209, May 07 1992 Navigation receiver with coupled signal-tracking channels
5344105, Sep 21 1992 Raytheon Company Relative guidance using the global positioning system
5345245, Jul 01 1992 KDDI Corporation Differential data signal transmission technique
5359332, Dec 31 1992 Trimble Navigation Limited Determination of phase ambiguities in satellite ranges
5361212, Nov 02 1992 Honeywell Inc. Differential GPS landing assistance system
5365447, Sep 20 1991 GPS and satelite navigation system
5369589, Sep 15 1993 Trimble Navigation Limited Plural information display for navigation
5375059, Feb 05 1990 Caterpillar Inc. Vehicle position determination system and method
5389934, Jun 21 1993 KASS, CAROLE Portable locating system
5390124, Dec 01 1992 Caterpillar Inc. Method and apparatus for improving the accuracy of position estimates in a satellite based navigation system
5390125, Feb 05 1990 Caterpillar Inc. Vehicle position determination system and method
5390207, Nov 28 1990 NOVATEL INC Pseudorandom noise ranging receiver which compensates for multipath distortion by dynamically adjusting the time delay spacing between early and late correlators
5404661, May 10 1994 Caterpillar Inc Method and apparatus for determining the location of a work implement
5416712, May 28 1993 Trimble Navigation Limited Position and velocity estimation system for adaptive weighting of GPS and dead-reckoning information
5430654, Dec 01 1992 Caterpillar Inc. Method and apparatus for improving the accuracy of position estimates in a satellite based navigation system
5442363, Aug 04 1994 U.S. Army Corps of Engineers as Represented by the Secretary of the Army Kinematic global positioning system of an on-the-fly apparatus for centimeter-level positioning for static or moving applications
5444453, Feb 02 1993 Ball Aerospace & Technologies Corp Microstrip antenna structure having an air gap and method of constructing same
5451964, Jul 29 1994 Del Norte Technology, Inc.; DEL NORTE TECHNOLOGY, INC Method and system for resolving double difference GPS carrier phase integer ambiguity utilizing decentralized Kalman filters
5467282, Sep 20 1991 GPS and satellite navigation system
5471217, Feb 01 1993 Hughes Electronics Corporation; HE HOLDINGS INC , DBA HUGHES ELECTRONICS Method and apparatus for smoothing code measurements in a global positioning system receiver
5476147, Mar 19 1993 Guidance system for an agricultural implement
5477228, Apr 13 1993 Trimble Navigation Limited Differential global positioning system using radio data system
5477458, Jan 03 1994 Trimble Navigation Limited Network for carrier phase differential GPS corrections
5490073, Apr 05 1993 Caterpillar Inc. Differential system and method for a satellite based navigation
5491636, Apr 19 1994 ROBERTSON, GLEN E Anchorless boat positioning employing global positioning system
5495257, Jul 19 1994 Trimble Navigation Limited Inverse differential corrections for SATPS mobile stations
5504482, Jun 11 1993 CSR TECHNOLOGY INC Automobile navigation guidance, control and safety system
5511623, Sep 12 1994 TEXTRON FINANCIAL CORPORATION Quick hitch guidance device
5519620, Feb 18 1994 Trimble Navigation Limited Centimeter accurate global positioning system receiver for on-the-fly real-time kinematic measurement and control
5521610, Sep 17 1993 Trimble Navigation Limited Curved dipole antenna with center-post amplifier
5523761, Jan 12 1993 Trimble Navigation Limited Differential GPS smart antenna device
5534875, Jun 18 1993 ADROIT SYSTEMS, INC Attitude determining system for use with global positioning system
5539398, Jan 07 1994 GARRISON LOAN AGENCY SERVICES LLC GPS-based traffic control preemption system
5543804, Sep 13 1994 Northrop Grumman Systems Corporation Navagation apparatus with improved attitude determination
5546093, Jan 04 1994 Caterpillar Inc. System and method for providing navigation signals to an earthmoving or construction machine
5548293, Mar 24 1993 BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE System and method for generating attitude determinations using GPS
5561432, May 12 1995 Trimble Navigation Out of plane antenna vector system and method
5563786, Feb 16 1994 Fuji Jukogyo Kabushiki Kaisha Autonomous running control system for vehicle and the method thereof
5564632, Dec 27 1994 ALSTOM POWER INC Secondary air nozzle and starting burner furnace apparatus
5568152, Feb 04 1994 Trimble Navigation Limited Integrated image transfer for remote target location
5568162, Aug 08 1994 Trimble Navigation Limited GPS navigation and differential-correction beacon antenna combination
5583513, Mar 24 1993 BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE System and method for generating precise code based and carrier phase position determinations
5589835, Dec 20 1994 Trimble Navigation Limited Differential GPS receiver system linked by infrared signals
5592382, Mar 10 1995 CSR TECHNOLOGY INC Directional steering and navigation indicator
5596328, Aug 23 1994 Honeywell INC Fail-safe/fail-operational differential GPS ground station system
5600670, Dec 21 1994 Trimble Navigation, Ltd. Dynamic channel allocation for GPS receivers
5604506, Dec 13 1994 Trimble Navigation Limited Dual frequency vertical antenna
5608393, Mar 07 1995 Honeywell Inc. Differential ground station repeater
5610522, Sep 30 1993 Commissariat a l'Energie Atomique Open magnetic structure including pole pieces forming a V-shape threbetween for high homogeneity in an NMR device
5610616, Aug 23 1994 Honeywell Inc. Differential GPS ground station system
5610845, Aug 30 1994 United Technologies Corporation Multi-parameter air data sensing technique
5612864, Jun 20 1995 Caterpillar Inc. Apparatus and method for determining the position of a work implement
5612883, Feb 05 1990 Caterpillar Inc. System and method for detecting obstacles in the path of a vehicle
5615116, Feb 05 1990 Caterpillar Inc. Apparatus and method for autonomous vehicle navigation using path data
5617100, Apr 07 1994 Matsushita Electric Industrial Co., Ltd. Accurate position measuring system
5617317, Jan 24 1995 Honeywell Inc.; Honeywell INC True north heading estimator utilizing GPS output information and inertial sensor system output information
5621646, Jan 17 1995 Stanford University Wide area differential GPS reference system and method
5638077, May 04 1995 CSR TECHNOLOGY INC Differential GPS for fleet base stations with vector processing mechanization
5640323, Feb 05 1990 Caterpillar Inc. System and method for operating an autonomous navigation system
5644139, Mar 02 1995 Hewlett-Packard Company; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P ; Agilent Technologies, Inc Navigation technique for detecting movement of navigation sensors relative to an object
5646630, May 20 1996 Trimble Navigation Limited Network of equivalent ground transmitters
5653389, Sep 15 1995 CAPSTAN, INC Independent flow rate and droplet size control system and method for sprayer
5663879, Nov 20 1987 U S PHILIPS CORPORATION Method and apparatus for smooth control of a vehicle with automatic recovery for interference
5664632, Sep 12 1994 TEXTRON FINANCIAL CORPORATION Quick hitch guidance device
5673491, Oct 20 1995 Crane level indicator device
5680140, Jul 19 1994 Trimble Navigation Limited Post-processing of inverse differential corrections for SATPS mobile stations
5684476, Dec 30 1993 CNH America LLC; BLUE LEAF I P , INC Field navigation system
5684696, Feb 05 1990 Caterpillar Inc. System and method for enabling an autonomous vehicle to track a desired path
5702070, Sep 20 1995 RAYTHEON COMPANY, A CORP OF DELAWARE Apparatus and method using relative GPS positioning for aircraft precision approach and landing
5704546, Sep 15 1995 CAPSTAN INC , A CORP OF KANSAS Position-responsive control system and method for sprayer
5706015, Mar 20 1995 FUBA AUTOMOTIVE GMBH & CO KG Flat-top antenna apparatus including at least one mobile radio antenna and a GPS antenna
5717593, Sep 01 1995 Lane guidance system
5725230, Jun 17 1996 Self steering tandem hitch
5731786, Dec 29 1994 Trimble Navigation Limited Compaction of SATPS information for subsequent signal processing
5739785, Mar 04 1993 Trimble Navigation Limited Location and generation of high accuracy survey control marks using satellites
5757316, Feb 01 1997 Northrop Grumman Systems Corporation Attitude determination utilizing an inertial measurement unit and a plurality of satellite transmitters
5765123, Aug 07 1993 Aisin AW Co., Ltd. Navigation system
5777578, Feb 10 1997 National Science Council Global positioning system (GPS) Compass
5810095, Jul 25 1996 CNH America LLC; BLUE LEAF I P , INC System for controlling the position of an implement attached to a work vehicle
5821900, May 27 1996 Nikon Corporation GPS survey instrument
5828336, Mar 29 1996 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, DEPARTMENT OF, UNITED STATES OF AMERICA, THE Robust real-time wide-area differential GPS navigation
5838562, Feb 05 1990 Caterpillar Inc. System and a method for enabling a vehicle to track a preset path
5854987, Mar 23 1995 Honda Giken Kogyo Kabushiki Kaisha Vehicle steering control system using navigation system
5862501, Aug 18 1995 Trimble Navigation Limited Guidance control system for movable machinery
5864315, Apr 07 1997 General Electric Company Very low power high accuracy time and frequency circuits in GPS based tracking units
5864318, Apr 24 1997 Dorne & Margolin, Inc. Composite antenna for cellular and gps communications
5875408, Jul 17 1995 IMRA America, Inc Automated vehicle guidance system and method for automatically guiding a vehicle
5877725, Mar 06 1997 Trimble Navigation Limited Wide augmentation system retrofit receiver
5884224, Mar 07 1997 J.R. Simplot Company Mobile mounted remote sensing/application apparatus for interacting with selected areas of interest within a field
5890091, Feb 18 1994 Trimble Navigation Ltd. Centimeter accurate global positioning system receiver for on-the-fly real-time kinematic measurement and control
5899957, Jan 03 1994 Trimble Navigation, Ltd. Carrier phase differential GPS corrections network
5903235, Apr 15 1997 Trimble Navigation Limited Handheld surveying device and method
5906645, Dec 04 1995 Toyota Jidosha Kabushiki Kaisha Auto-drive control unit for vehicles
5912798, Jul 02 1997 Landsten Chu Dielectric ceramic filter
5914685, Apr 25 1997 Mitac International Corp Relative position measuring techniques using both GPS and GLONASS carrier phase measurements
5917448, Aug 07 1997 TELEDYNE SCIENTIFIC & IMAGING, LLC Attitude determination system with sequencing antenna inputs
5918558, Dec 01 1997 CNH America LLC; BLUE LEAF I P , INC Dual-pump, flow-isolated hydraulic circuit for an agricultural tractor
5919242, May 14 1992 Agri-line Innovations, Inc. Method and apparatus for prescription application of products to an agricultural field
5923270, May 13 1994 Konecranes Finland Oy Automatic steering system for an unmanned vehicle
5924239, Oct 25 1994 Rees Equipment Pty Ltd. Controller for agricultural sprayers
5926079, Dec 05 1996 CTS Corporation Ceramic waveguide filter with extracted pole
5927603, Sep 30 1997 J. R. Simplot Company Closed loop control system, sensing apparatus and fluid application system for a precision irrigation device
5928309, Feb 05 1996 Navigation/guidance system for a land-based vehicle
5929721, Aug 06 1996 CTS Corporation Ceramic filter with integrated harmonic response suppression using orthogonally oriented low-pass filter
5931882, Jul 29 1993 Raven Industries Combination grid recipe and depth control system
5933110, Jul 13 1998 WILMINGTON TRUST, NATIONAL ASSOCIATION Vessel attitude determination system and method
5935183, May 20 1996 Caterpillar Inc Method and system for determining the relationship between a laser plane and an external coordinate system
5936573, Jul 07 1997 Trimble Navigation Limited; Trimble Navigation LTD Real-time kinematic integrity estimator and monitor
5940026, Jul 21 1997 TELEDYNE SCIENTIFIC & IMAGING, LLC Azimuth determination for GPS/INS systems via GPS null steering antenna
5941317, Aug 01 1996 Great Western Corporation PTY LTD Row cultivator with laterally moveable tool bar
5943008, Sep 23 1997 TELEDYNE SCIENTIFIC & IMAGING, LLC Single global positioning system receiver capable of attitude determination
5944770, Dec 28 1995 Trimble Navigation Limited Method and receiver using a low earth orbiting satellite signal to augment the global positioning system
5945917, Dec 18 1997 Rockwell International; Rockwell Collins, Inc Swathing guidance display
5949371, Jul 27 1998 Trimble Navigation Limited Laser based reflectors for GPS positioning augmentation
5951613, Oct 23 1996 Caterpillar Inc Apparatus and method for determining the position of a work implement
5955973, Dec 30 1993 CNH America LLC; BLUE LEAF I P , INC Field navigation system
5956250, Feb 05 1990 Caterpillar Inc. Apparatus and method for autonomous vehicle navigation using absolute data
5969670, Jan 22 1998 Trimble Navigation Limited Inexpensive monitoring technique for achieving high level integrity monitoring for differential GPS
5987383, Apr 28 1997 Trimble Navigation Form line following guidance system
6014101, Feb 26 1996 Trimble Navigation Limited Post-processing of inverse DGPS corrections
6014608, Nov 04 1996 SAMSUNG ELECTRONICS CO , LTD Navigator apparatus informing or peripheral situation of the vehicle and method for controlling the same
6018313, Sep 01 1995 BRAU VERWALTUNGSGESELLSCHAFT MIT BESCHRANKTER HAFTUNG System for determining the location of mobile objects
6023239, Oct 08 1997 WILMINGTON TRUST, NATIONAL ASSOCIATION Method and system for a differential global navigation satellite system aircraft landing ground station
6049304, Jul 10 1997 Harris Corporation Method and apparatus for improving the accuracy of relative position estimates in a satellite-based navigation system
6052647, Jun 20 1997 BOARD OF TRUSTEES LELAND STANFORD, JR Method and system for automatic control of vehicles based on carrier phase differential GPS
6055477, Mar 31 1995 TRIMBLE NAVIGATIONS LIMITED Use of an altitude sensor to augment availability of GPS location fixes
6057800, Jun 28 1996 State University of New York RDOP surface for GPS relative positioning
6061390, Sep 02 1994 California Institute of Technology P-code enhanced method for processing encrypted GPS signals without knowledge of the encryption code
6061632, Aug 18 1997 Trimble Navigation Limited Receiver with seamless correction capacity
6062317, Sep 03 1999 Caterpillar Inc. Method and apparatus for controlling the direction of travel of an earthworking machine
6069583, May 06 1997 Agence Spatiale Europeene Receiver for a navigation system, in particular a satellite navigation system
6070673, Nov 22 1996 CNH America LLC; BLUE LEAF I P , INC Location based tractor control
6076612, Aug 31 1999 CNH America LLC; BLUE LEAF I P , INC Transition from position to draft mode controlled by hitch position command and feedback
6081171, Apr 08 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Monolithic filters utilizing thin film bulk acoustic wave devices and minimum passive components for controlling the shape and width of a passband response
6088644, Aug 12 1998 Caterpillar Inc. Method and apparatus for determining a path to be traversed by a mobile machine
6100842, Feb 20 1998 Trimble Navigation Limited Chained location determination system
6122595, May 20 1996 BENHOV GMBH, LLC Hybrid GPS/inertially aided platform stabilization system
6128574, Jul 23 1996 CLAAS KGaA Route planning system for agricultural work vehicles
6144335, Apr 14 1998 Trimble Navigation Limited Automated differential correction processing of field data in a global positional system
6191730, Dec 15 1997 Trimble Navigation Limited Two-channel fast-sequencing high-dynamics GPS navigation receiver
6191732, May 25 1999 Carlson Software Real-time surveying/earth moving system
6191733, Jun 01 1999 Modular Mining Systems, Inc. Two-antenna positioning system for surface-mine equipment
6198430, Mar 26 1999 Rockwell Collins, Inc. Enhanced differential GNSS carrier-smoothed code processing using dual frequency measurements
6198992, Oct 10 1997 Trimble Navigation Limited Override for guidance control system
6199000, Jul 15 1998 Trimble Navigation LTD Methods and apparatus for precision agriculture operations utilizing real time kinematic global positioning system systems
6205401, Sep 19 1995 Northrop Grumman Systems Corporation Navigation system for a vehicle, especially a land craft
6212453, Sep 11 1998 Honda Giken Kogyo Kabushiki Kaisha Vehicle steering control system
6215828, Feb 10 1996 Unwired Planet, LLC Signal transformation method and apparatus
6229479, Apr 25 1997 Mitac International Corp Relative position measuring techniques using both GPS and GLONASS carrier phase measurements
6230091, Sep 30 1997 AG-CHEM EQUIPMENT CO , INC Variable flow spray nozzle system
6230097, Aug 31 1998 Trimble Navigation Limited Accurate vehicle navigation
6233511, Nov 26 1997 CNH America LLC; BLUE LEAF I P , INC Electronic control for a two-axis work implement
6236907, May 30 1995 AG-CHEM EQUIPMENT CO , INC System and method for creating agricultural decision and application maps for automated agricultural machines
6236916, Mar 29 1999 Caterpillar Inc. Autoguidance system and method for an agricultural machine
6236924, Jun 21 1999 Caterpillar Inc.; Caterpillar Inc System and method for planning the operations of an agricultural machine in a field
6253160, Jan 15 1999 Trimble Navigation Ltd. Method and apparatus for calibrating a tool positioning mechanism on a mobile machine
6256583, Sep 16 1998 Rockwell Collins, Inc GPS attitude determination system and method using optimal search space identification for integer cycle ambiguity resolution
6259398, May 19 2000 SRI International Multi-valued variable ambiguity resolution for satellite navigation signal carrier wave path length determination
6266595, Aug 12 1999 Martin W., Greatline; Stanley E., Greatline Method and apparatus for prescription application of products to an agricultural field
6271788, May 20 1996 Trimble Navigation Limited Network of equivalent ground transmitters
6278918, Feb 28 2000 CNH America LLC; BLUE LEAF I P , INC Region of interest selection for a vision guidance system
6285320, Sep 03 1999 Sikorsky Aircraft Corporation Apparatus and method for mapping surfaces of an object
6292132, Aug 13 1999 21ST CENTURY GARAGE LLC System and method for improved accuracy in locating and maintaining positions using GPS
6304210, Mar 04 1993 Trimble Navigation Limited Location and generation of high accuracy survey control marks using satellites
6307505, Jul 22 1998 Trimble Navigation Limited Apparatus and method for coupling data to a position determination device
6313788, Aug 14 1998 Garmin International, Inc Method and apparatus for reliable inter-antenna baseline determination
6314348, Feb 11 1998 Trimble Navigation Limited Correction control for guidance control system
6324473, Aug 04 1997 Trimble Navigation Limited Method and apparatus for collecting, processing and distributing differential global positioning system information using the internet
6325684, Jun 09 2000 JOHNSON OUTDOORS INC Trolling motor steering control
6336051, Apr 16 1997 Carnegie Mellon University Agricultural harvester with robotic control
6336066, Sep 29 1998 Pellenc S.A. Process for using localized agricultural data to optimize the cultivation of perennial plants
6345231, Jul 10 1998 CLAAS Selbstfahrende Erntemaschinen GmbH Method and apparatus for position determining
6356602, May 04 1998 Trimble Navigation Limited RF integrated circuit for downconverting a GPS signal
6371416, Aug 01 2000 New York Air Brake Corporation Portable beacons
6377889, Oct 13 2000 Trimble Navigation Limited Non-linear method of guiding to arbitrary curves with adaptive feedback
6380888, Nov 13 2000 The United States of America as represented by the Secretary of the Navy Self-contained, self-surveying differential GPS base station and method of operating same
6385515, Jun 15 2000 CNH America LLC; BLUE LEAF I P , INC Trajectory path planner for a vision guidance system
6389345, Jun 29 1999 Caterpillar Inc. Method and apparatus for determining a cross slope of a surface
6392589, Apr 14 1998 Trimble Navigation Limited Automated differential correction processing of field data in a global positioning system
6397147, Jun 06 2000 HEMISPHERE GNSS INC Relative GPS positioning using a single GPS receiver with internally generated differential correction terms
6411254, Apr 15 1997 SnapTrack, Inc. Satellite positioning reference system and method
6415229, Jun 21 1996 CLAAS KGaA System for position determination of mobile objects, in particular vehicles
6418031, May 01 2000 TWITTER, INC Method and means for decoupling a printed circuit board
6421003, May 19 2000 SRI International Attitude determination using multiple baselines in a navigational positioning system
6424915, Jun 01 2000 Furuno Electric Company, Limited System for determining the heading and/or attitude of a body
6425186, Mar 12 1999 Apparatus and method of surveying
6431576, Apr 28 1999 Deere & Company System for steering towed implement in response to, or independently of, steering of towing vehicle
6434462, Jun 28 2001 Deere & Company GPS control of a tractor-towed implement
6445983, Jul 07 2000 CNH America LLC; BLUE LEAF I P , INC Sensor-fusion navigator for automated guidance of off-road vehicles
6445990, Mar 19 2001 Caterpillar Inc. Method and apparatus for controlling straight line travel of a tracked machine
6449558, May 29 1998 Method and device for creating a network positioning system (NPS)
6463091, Aug 09 1995 Mitac International Corp Spread spectrum receiver using a pseudo-random noise code for ranging applications in a way that reduces errors when a multipath signal is present
6463374, Apr 28 1997 Trimble Navigation Ltd. Form line following guidance system
6466871, Oct 03 1999 Azimuth Technologies Method for calibrating and verifying the attitude of a compass
6469663, Mar 21 2000 HEMISPHERE GNSS INC Method and system for GPS and WAAS carrier phase measurements for relative positioning
6484097, Apr 23 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Wide area inverse differential GPS
6501422, Aug 19 1998 Trimble Navigation, Ltd.; Trimble Navigation Limited Precise parallel swathing guidance via satellite navigation and tilt measurement
6505117, Feb 18 1999 Nokia Technologies Oy Method for navigating an object
6510367, Dec 12 1996 AG-CHEM EQUIPMENT CO INC Delay coordinating system for a system of operatively coupled agricultural machines
6515619, Jul 30 1998 Object location system
6516271, Jun 29 2001 Regents of the University of California, The Method and apparatus for ultra precise GPS-based mapping of seeds or vegetation during planting
6522948, Aug 14 2000 CNH Industrial Canada, Ltd Agricultural product application tracking and control
6539303, Dec 08 2000 AGJUNCTION LLC GPS derived swathing guidance system
6542077, Mar 27 1996 JOAO CONTROL & MONITORING SYSTEMS, LLC Monitoring apparatus for a vehicle and/or a premises
6549835, Sep 28 2000 Nissan Motor Co., Ltd. Apparatus for and method of steering vehicle
6553299, Jul 15 1998 Trimble Navigation Ltd. Methods and apparatus for precision agriculture operations utilizing real time kinematic global positioning system systems
6553300, Jul 16 2001 Deere & Company Harvester with intelligent hybrid control system
6553311, Dec 08 2000 Trimble Navigation Limited Navigational off- line and off-heading indication system and method
6567041, Apr 18 2001 Sprint Spectrum, L.P. Network system and method for a remote reference receiver system
6570534, Feb 05 2001 NOVARIANT, INC Low cost system and method for making dual band GPS measurements
6577952, Jan 08 2001 Continental Automotive Systems, Inc Position and heading error-correction method and apparatus for vehicle navigation systems
6587761, Oct 23 2001 The Aerospace Corporation Unambiguous integer cycle attitude determination method
6606542, May 30 1995 AGCO Corporation System and method for creating agricultural decision and application maps for automated agricultural machines
6611228, Jul 24 2000 FURUNO ELECTRIC COMPANY LIMITED Carrier phase-based relative positioning apparatus
6611754, Mar 14 2000 Continental Automotive GmbH Route planning system
6611755, Dec 19 1999 Trimble Navigation Limited Vehicle tracking, communication and fleet management system
6618671, Sep 20 2000 NXP B V Method of determining the position of a mobile unit
6622091, May 11 2001 Northrop Grumman Systems Corporation Method and system for calibrating an IG/GP navigational system
6631394, Jan 21 1998 WSOU Investments, LLC Embedded system with interrupt handler for multiple operating systems
6631916, Jul 28 2000 MILLER BLACKSMITH & WELDING Guidance system for pull-type equipment
6633814, Apr 25 1996 CSR TECHNOLOGY INC GPS system for navigating a vehicle
6643576, Nov 15 2000 NOVARIANT, INC Rapid adjustment of trajectories for land vehicles
6646603, Jun 16 2000 NXP B V Method of providing an estimate of a location
6657585, May 21 2002 The United States of America as represented by the Secretary of the Navy System for generating GPS position of underwater vehicle
6657875, Jul 16 2002 Semiconductor Components Industries, LLC Highly efficient step-down/step-up and step-up/step-down charge pump
6671587, Feb 05 2002 Ford Motor Company Vehicle dynamics measuring apparatus and method using multiple GPS antennas
6686878, Feb 22 2000 Trimble Navigation Limited GPS weather data recording system for use with the application of chemicals to agricultural fields
6688403, Mar 22 2001 Deere & Company Control system for a vehicle/implement hitch
6702200, Jul 24 2001 BOARD OF REGENTS FOR OKLAHOMA STATE UNIVERSITY, THE Nozzle attitude controller for spot and variable rate application of agricultural chemicals and fertilizers
6703973, Aug 19 1998 Trimble Navigation, Ltd.; Trimble Navigation, LTD Guiding vehicle in adjacent swaths across terrain via satellite navigation and tilt measurement
6711501, Dec 08 2000 AGJUNCTION LLC Vehicle navigation system and method for swathing applications
6721638, May 07 2001 DEMATIC CORP AGV position and heading controller
6744404, Jul 09 2003 HEMISPHERE GNSS INC Unbiased code phase estimator for mitigating multipath in GPS
6754584, Feb 28 2001 ENPOINT L L C Attitude measurement using a single GPS receiver with two closely-spaced antennas
6756938, Nov 06 2001 Google Technology Holdings LLC Satellite positioning system receivers and methods therefor
6771501, Sep 24 2001 Goodrich Control Systems Limited Fire resistant electronic engine controller
6774843, Mar 28 2001 TAKAHASHI, MASATO Method for acquiring azimuth information
6788951, May 22 2000 Denso Corporation Radio communication system using variable packet length
6789014, May 09 2003 Deere & Company Direct modification of DGPS information with inertial measurement data
6792380, Feb 12 2002 FURUNO ELECTRIC COMPANY LIMITED Attitude angle detecting apparatus
6810315, Nov 21 2001 Parker Intangibles, LLC Agricultural vehicle dispenser regulator and method
6813544, Aug 19 2002 INTIME, INC ; INSTITUTE FOR TECHNOLOGY DEVELOPMENT, INC Method and apparatus for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data
6819269, May 17 2000 OMEGA PATENTS, L L C Vehicle tracker including battery monitoring feature and related methods
6819780, Feb 02 2001 CNH America LLC; BLUE LEAF I P , INC Method and apparatus for automatically steering a vehicle in an agricultural field using a plurality of fuzzy logic membership functions
6822314, Jun 12 2002 INTERSIL AMERICAS LLC Base for a NPN bipolar transistor
6832024, Nov 20 2000 Lockheed Martin Corporation Method and apparatus for fiber bragg grating production
6862083, Dec 19 2000 SCHWARTZ ELECTRO-OPTICS, INC System and method for accurately characterizing and mapping agricultural plants and foliage
6865465, May 06 2002 AGJUNCTION INC Method and system for implement steering for agricultural vehicles
6865484, Apr 11 2001 Kabushiki Kaisha Topcon Satellite position measurement system
6876920, Oct 27 1998 AGJUNCTION LLC Vehicle positioning apparatus and method
6879283, Feb 21 2003 Trimble Navigation Limited Method and system for transmission of real-time kinematic satellite positioning system data
6900992, Sep 18 2001 Intel Corporation Printed circuit board routing and power delivery for high frequency integrated circuits
6922635, Aug 13 2002 DRS SIGNAL SOLUTIONS, INC Method and system for determining absolute positions of mobile communications devices using remotely generated positioning information
6931233, Aug 31 2000 CSR TECHNOLOGY INC GPS RF front end IC with programmable frequency synthesizer for use in wireless phones
6937939, Jul 08 1999 National University Corporation Tokyo University of Agriculture and Technology Soil measuring instrument, soil measurement assisting device and method, recorded medium on which a program is recorded, recorded medium on which data is recorded, application amount controller, application amount determining device, method for them, and farm working determination assisting system
6961018, Oct 06 2003 Insitu, Inc Method and apparatus for satellite-based relative positioning of moving platforms
6967538, Nov 28 2002 ABOV SEMICONDUCTOR CO , LTD PLL having VCO for dividing frequency
6990399, Oct 31 2002 CNH America LLC; BLUE LEAF I P , INC Agricultural utility vehicle and method of controlling same
7006032, Jan 15 2004 Honeywell International, Inc Integrated traffic surveillance apparatus
7026982, Dec 19 2001 Furuno Electric Ompany Limited Carrier-phase-based relative positioning device
7027918, Apr 07 2003 NOVARIANT, INC Satellite navigation system using multiple antennas
7031725, Aug 13 2002 DRS SIGNAL SOLUTIONS, INC Method and system for determining relative positions of networked mobile communication devices
7065440, Jan 22 2004 Trimble Navigation, LTD Method and apparatus for steering movable object by using control algorithm that takes into account the difference between the nominal and optimum positions of navigation antenna
7089099, Jul 30 2004 AMERICAN VEHICULAR SCIENCES LLC Sensor assemblies
7110762, Sep 15 2000 Trimble Navigation Limited System and method for using corrected signals from a global positioning system to perform precision survey
7110881, Oct 07 2003 Deere & Company Modular path planner
7124964, Sep 13 2002 Nozzle with flow rate and droplet size control capability
7142956, Mar 19 2004 AGJUNCTION LLC Automatic steering system and method
7143980, Mar 25 2002 ADAPCO, LLC Aerial chemical application and control method
7155335, Aug 06 2003 General Motors LLC Satellite radio real time traffic updates
7162348, Dec 11 2002 AGJUNCTION LLC Articulated equipment position control system and method
7162384, Sep 21 2005 GENERAL DYNAMICS ADVANCED INFORMATION SYSTEMS, INC System and method for temperature compensation of eddy current sensor waveform parameters
7184859, Aug 19 2002 INTIME, INC Method and system for spatially variable rate application of agricultural chemicals based on remotely sensed vegetation data
7191061, Apr 17 2003 Battelle Energy Alliance, LLC Auto-steering apparatus and method
7200490, Dec 12 2003 Trimble Navigation Limited GPS receiver with autopilot and integrated lightbar display
7216033, Mar 31 2003 Deere & Company Path planner and method for planning a contour path of a vehicle
7221314, Mar 26 2004 Topcon GPS, LLC Estimation and resolution of carrier wave ambiguities in a position navigation system
7228214, Mar 31 2003 Deere & Company Path planner and method for planning a path plan having a spiral component
7231290, Apr 05 2002 E I DU PONT DE NEMOURS AND COMPANY Method and apparatus for controlling a gas-emitting process and related devices
7248211, Jul 26 2004 Deere & Company Moving reference receiver for RTK navigation
7254485, Nov 01 2001 Trimble Navigation Limited Soil and topography surveying
7256388, Feb 04 2005 NOVARIANT, INC System and method for interactive selection of agricultural vehicle guide paths through a graphical user interface other than moving the vehicle
7271766, Jul 30 2004 Trimble Navigation Limited Satellite and local system position determination
7277784, May 31 2002 Deere & Company Combination of a self-moving harvesting machine and a transport vehicle
7277792, Aug 29 2001 AGJUNCTION LLC Vehicle guidance software, method and system
7292185, Oct 04 2005 HEMISPHERE GNSS INC Attitude determination exploiting geometry constraints
7292186, Apr 23 2003 HEMISPHERE GNSS INC Method and system for synchronizing multiple tracking devices for a geo-location system
7324915, Jul 14 2005 Biosense Webster, Inc Data transmission to a position sensor
7358896, Nov 03 2005 Qualcomm Incorporated Multiband GNSS receiver
7373231, Dec 11 2002 AGJUNCTION LLC Articulated equipment position control system and method
7388539, Oct 19 2005 HEMISPHERE GNSS INC Carrier track loop for GNSS derived attitude
7395769, Oct 21 2004 UNVERFERTH MANUFACTURING COMPANY, INC Individual row rate control of farm implements to adjust the volume of crop inputs across wide implements in irregularly shaped or contour areas of chemical application, planting or seeding
7400294, Oct 14 2005 HEMISPHERE GNSS INC Portable reference station for local differential GPS corrections
7400956, Mar 20 2003 AGJUNCTION INC Satellite position and heading sensor for vehicle steering control
7428259, May 06 2005 CSR TECHNOLOGY HOLDINGS INC Efficient and flexible GPS receiver baseband architecture
7437230, Mar 20 2003 AGJUNCTION LLC Satellite based vehicle guidance control in straight and contour modes
7451030, Feb 04 2005 NOVARIANT, INC System and method for interactive selection and determination of agricultural vehicle guide paths offset from each other with varying curvature along their length
7460942, Apr 09 2001 AGJUNCTION LLC Soil cultivation implement control apparatus and method
7479900, May 28 2003 ELECTRONIC COMMUNICATION TECHNOLOGIES LLC Notification systems and methods that consider traffic flow predicament data
7505848, Mar 31 2003 Deere & Company Path planner and method for planning a contour path of a vehicle
7522099, Sep 08 2005 Topcon GPS, LLC Position determination using carrier phase measurements of satellite signals
7522100, Jul 01 2005 CSR TECHNOLOGY HOLDINGS INC Method and device for acquiring weak global navigation satellite system (GNSS) signals
7571029, Oct 04 2005 GM Global Technology Operations LLC Method and apparatus for reporting road conditions
7689354, Mar 20 2003 AGJUNCTION LLC Adaptive guidance system and method
7930085, Aug 06 2004 Deere & Company Method and system for estimating an agricultural management parameter
7994971, Jan 09 2008 Mayflower Communications Company, Inc. GPS-based measurement of roll rate and roll angle of spinning platforms
8018376, Apr 08 2008 AGJUNCTION LLC GNSS-based mobile communication system and method
8140223, Mar 20 2003 HEMISPHERE GNSS INC Multiple-antenna GNSS control system and method
8190337, Mar 20 2003 AGJUNCTION LLC Satellite based vehicle guidance control in straight and contour modes
8214111, Jul 19 2005 AGJUNCTION LLC Adaptive machine control system and method
8219926, Aug 11 2003 Smith Micro Software, Inc Displaying a map on a handheld wireless telecommunication device
8265826, Mar 20 2003 HEMISPHERE GNSS INC Combined GNSS gyroscope control system and method
8437901, Oct 15 2008 Deere & Company High integrity coordination for multiple off-road vehicles
8523085, Aug 01 2008 Capstan Ag Systems, Inc. Method and system to control flow from individual nozzles while controlling overall system flow and pressure
8571764, Oct 25 2011 AGCO Corporation Dynamic spray buffer calculation
8634993, Mar 20 2003 AGJUNCTION LLC GNSS based control for dispensing material from vehicle
8649930, Sep 17 2009 AGJUNCTION LLC GNSS integrated multi-sensor control system and method
20020029110,
20020038171,
20020072850,
20020107609,
20020165645,
20020165648,
20020165669,
20020169553,
20020175858,
20030009282,
20030014171,
20030093210,
20030187560,
20030187577,
20030191568,
20030195008,
20030208319,
20040006426,
20040039514,
20040069875,
20040186644,
20040210357,
20040212533,
20050043882,
20050055147,
20050060069,
20050080559,
20050116859,
20050165546,
20050225955,
20050265494,
20060031664,
20060061469,
20060142936,
20060167600,
20060171611,
20060178820,
20060178823,
20060178825,
20060206246,
20060215739,
20070021913,
20070078570,
20070088447,
20070121708,
20070192024,
20070205940,
20070285308,
20080129586,
20080195268,
20080204312,
20080269988,
20090005990,
20090093959,
20090121932,
20090164067,
20090171583,
20090174597,
20090174622,
20090177395,
20090177399,
20090259397,
20090259707,
20090262014,
20090262018,
20090262974,
20090265054,
20090265101,
20090265104,
20090265308,
20090273372,
20090273513,
20090274079,
20090274113,
20090276127,
20090276155,
20090295633,
20090295634,
20090299550,
20090322597,
20090322598,
20090322600,
20090322601,
20090322606,
20090326809,
20100013703,
20100026569,
20100030470,
20100039316,
20100039318,
20100039320,
20100039321,
20100060518,
20100063649,
20100084147,
20100085249,
20100085253,
20100103033,
20100103034,
20100103038,
20100103040,
20100106414,
20100106445,
20100109944,
20100109945,
20100109947,
20100109948,
20100109950,
20100111372,
20100114483,
20100117894,
20100117899,
20100117900,
20100124210,
20100124212,
20100134354,
20100149025,
20100149030,
20100149033,
20100149034,
20100149037,
20100150284,
20100152949,
20100156709,
20100156712,
20100156718,
20100159943,
20100161179,
20100161211,
20100161568,
20100171660,
20100171757,
20100185364,
20100185366,
20100185389,
20100188285,
20100188286,
20100189163,
20100207811,
20100210206,
20100211248,
20100211315,
20100211316,
20100220004,
20100220008,
20100222076,
20100225537,
20100228408,
20100231443,
20100231446,
20100232351,
20100235093,
20100238976,
20100241347,
20100241353,
20100241441,
20100241864,
20100312428,
20110001668,
20110015817,
20110018765,
20110054729,
20110231061,
20110264307,
20110266357,
20110270495,
20110305260,
20110309974,
20120034940,
20120116676,
20120127032,
20120174445,
20120215410,
20120306692,
20130069821,
20130069822,
20130107034,
20130124055,
20130179026,
20130179204,
20150375247,
AU2002244539,
AU2002325645,
CA2218642,
CN102613161,
CN2562886,
EP2837285,
GB2347368,
JP2004008187,
JP4001933,
JP7244150,
WO1998036288,
WO2000024239,
WO2002080652,
WO2003019430,
WO2005119386,
WO2007139467,
WO2008080193,
WO2009066183,
WO2009082745,
WO2009126587,
WO2009148638,
WO2010005945,
WO2010042131,
WO2010104782,
WO2011014431,
WO2007139467,
WO2008080193,
WO2009126587,
WO2010005945,
WO2011014431,
WO9515499,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 21 2016AGJUNCTION LLC(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 19 2021BIG: Entity status set to Undiscounted (note the period is included in the code).
Jul 19 2021M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 13 2021PTGR: Petition Related to Maintenance Fees Granted.


Date Maintenance Schedule
Oct 30 20214 years fee payment window open
Apr 30 20226 months grace period start (w surcharge)
Oct 30 2022patent expiry (for year 4)
Oct 30 20242 years to revive unintentionally abandoned end. (for year 4)
Oct 30 20258 years fee payment window open
Apr 30 20266 months grace period start (w surcharge)
Oct 30 2026patent expiry (for year 8)
Oct 30 20282 years to revive unintentionally abandoned end. (for year 8)
Oct 30 202912 years fee payment window open
Apr 30 20306 months grace period start (w surcharge)
Oct 30 2030patent expiry (for year 12)
Oct 30 20322 years to revive unintentionally abandoned end. (for year 12)