Provided is a dot sighting device with large caliber for binocular vision in which sighting can be performed rapidly and accurately by minimizing parallax. The dot sighting device is attached to and detached from a mount for a heavy machine gun. In addition, by using the dot sighting device with large caliber, a user can rapidly and accurately sight and fire a target by taking into consideration types and characteristics of the target and a distance to the target.

Patent
   RE47133
Priority
Jul 06 2007
Filed
May 17 2017
Issued
Nov 20 2018
Expiry
Jul 03 2028

TERM.DISCL.
Assg.orig
Entity
Small
0
43
all paid
0. 8. A dot sighting device comprising:
an illumination element that irradiates light;
a reflection element that reflects at least a portion of the light irradiated by the illumination element to form an image;
a connecting element that attaches to and detaches from a mount;
a first adjustment mechanism that sets a zero point of the dot sighting device, the first adjustment mechanism including a first control mechanism that adjusts a zero point in upper and lower directions; and
a second adjustment mechanism that selects a bullet path, the second adjustment mechanism being distinct from the first adjustment mechanism, wherein
the reflection element is coupled to a first plate,
the connecting element is connected to a second plate, and
the second adjustment mechanism adjusts a slope of the first plate relative to the second plate.
0. 1. A dot sighting device comprising:
a reflection mirror;
an illumination having a LED irradiating light to the reflection mirror and a transparent reticle that is positioned in front of the LED and forms a dot image by transmitting the light irradiated from the LED;
a fixed grille formed on a lower portion of the dot sighting device;
wherein the dot sighting device is attached to and detached from a mount for a heavy machine gun by the fixed grille:
wherein the reflection mirror comprises a doublet, with a first surface, an interior second surface and a third surface, with the first surface and third surface being spherical, wherein the interior second surface of the reflection mirror comprises a LED reflection surface;
wherein a radius curvature of the first and third surfaces satisfies the following equation:
D 1 = n - 1 R 1 , D 2 = 1 - n R 3 ( 1 ) D 1 + D 2 - d n D 1 D 2 = 0
wherein D1 denotes a refractive power of the first surface D2 denotes a refractive power of the third surface, d denotes a distance between the centers of the first and third surfaces, R1 denotes a radius curvature of the first surface, R3 denotes a radius curvature of the third surface, and n denotes a refractive index of the material.
0. 2. The dot sighting device of claim 1, further comprising a reticle selection unit connected to the illumination unit, wherein the transparent reticle is formed on a plane perpendicular to a reticle rotation axis that extends from the reticle selection unit and penetrates the illumination unit, thus being able to rotate based on the reticle rotation axis by rotation of the reticle selection unit, and a plurality of reticles according to a target are formed on the transparent reticle on the same radial axis around the reticle rotation axis, and one of the reticles corresponding to the target is selected by rotating the reticle selection unit according to the target.
0. 3. The dot sighting device of claim 1, further comprising a reticle selection unit connected to the illumination unit, wherein the transparent reticle is formed on a plane perpendicular to a reticle rotation axis that extends from the reticle selection unit and penetrates the illumination unit, thus being able to rotate based on the reticle rotation axis by rotation of the reticle selection unit, and a plurality of reticles are formed on the transparent reticle on the same radius axis around the reticle rotation axis, wherein the reticles are formed closer to the reticle rotation axis as a distance to the corresponding point of impact is farther, and one of the reticles is selected by rotating the reticle rotation unit according to a distance to the target.
0. 4. A dot sighting device comprising:
a reflection mirror;
an illumination having a LED irradiating light to the reflection mirror and a transparent reticle that is positioned in front of the LED and forms a dot image by transmitting the light irradiated from the LED;
a fixed grille formed on a lower portion of the dot sighting device;
wherein the dot sighting device is attached to and detached from a mount for a heavy machine gun by the fixed grille;
the dot sighting device further comprising a reticle selection unit connected to the illumination unit, wherein the transparent reticle is formed on a plane perpendicular to a reticle rotation axis that extends from the reticle selection unit and penetrates the illumination unit, thus being able to rotate based on the reticle rotation axis by rotation of the reticle selection unit, and a plurality of reticles according to a target are formed on the transparent reticle on the same radial axis around the reticle rotation axis, and one of the reticles corresponding to the target is selected by rotating the reticle selection unit according to the target;
wherein the reticle rotation axis comprises, around a reticle rotation connection axis, a rotation axis on an illumination unit side having a convex-concave portion with a plurality of convexes-concaves corresponding to a distance to a point of impact; and a rotation axis on a reticle selection unit side that has protrusions coupled to desired convexes-concaves of the convex-concave portion on an end thereof and the other end of which is connected to the transparent reticle,
wherein the rotation axis on the illumination unit side and the rotation axis on the reticle selection unit side are separated from each other by pulling the reticle selection unit, and then the reticle selection unit is rotated so as to couple a desired convex-concave corresponding to the distance to the point of impact of the convex-concave portion of the rotation axis on the illumination unit side with the protrusion of the rotation axis on the reticle selection unit side.
0. 5. A dot sighting device comprising:
a reflection mirror;
an illumination having a LED irradiating light to the reflection mirror and a transparent reticle that is positioned in front of the LED and forms a dot image by transmitting the light irradiated from the LED;
a fixed grille formed on a lower portion of the dot sighting device, wherein the dot sighting device is attached to and detached from a mount for a heavy machine gun by the fixed grille;
wherein the upper plate comprises a protective window; a reflection mirror; and an illumination unit, and
wherein the lower plate comprises: a fixed grille formed on a lower portion of the dot sighting device;
a bullet path adjustment handle installed at a side surface of the dot sighting device;
a click control bolt that connects the upper and lower plates and sets an origin point;
a bullet path adjustment body that is accommodated in a bullet path adjustment body accommodation unit formed in the lower plate and is connected to the upper plate by fixing an end on the lower plate side of the click control bolt to an upper portion of a plate connection rotation axis penetrating a side surface of the lower plate;
a bullet path adjustment axis that comprises a bullet path adjustment portion positioned on a bullet path adjustment axis contact portion at an end of the bullet path adjustment body, and penetrates the lower plate, thereby being connected to the bullet path adjustment handle;
a connection pin of the bullet path adjustment body and the lower plate, penetrating the other end of the bullet path adjustment body and the lower plate from a side surface of the lower plate, thereby connecting the bullet path adjustment body and the lower plate; and
a spring accommodation portion formed in a top surface of the lower plate on the bullet path adjustment axis contact portion side based on the connection pin,
wherein the spring accommodation portion accommodates a spring, thereby pushing the upper plate and the lower plate apart from each other,
wherein the bullet path adjustment body is rotatable around the upper/lower plate connection rotation axis, wherein the bullet path adjustment axis contacts a top surface of the bullet path adjustment axis contact portion of the bullet path adjustment body, and comprises a bullet path adjustment portion having a plurality of contact surfaces each having a different normal distance from the center of the bullet path adjustment axis, corresponding to a distance to a target,
wherein, in the bullet path adjustment portion, by rotating the bullet path adjustment handle, a contact surface corresponding to a distance to a desired target contacts the bullet path adjustment axis contact portion.
0. 6. A dot sighting device comprising:
a reflection mirror;
an illumination having a LED irradiating light to the reflection mirror and a transparent reticle that is positioned in front of the LED and forms a dot image by transmitting the light irradiated from the LED;
a fixed grille formed on a lower portion of the dot sighting device,
wherein the dot sighting device is attached to and detached from a mount for a heavy machine gun by the fixed grille;
the dot sighting device further comprising a reticle selection unit connected to the illumination unit, wherein the transparent reticle is formed on a plane perpendicular to a reticle rotation axis that extends from the reticle selection unit and penetrates the illumination unit, thus being able to rotate based on the reticle rotation axis by rotation of the reticle selection unit, and a plurality of reticles are formed on the transparent reticle on the same radius axis around the reticle rotation axis, wherein the reticles are formed closer to the reticle rotation axis as a distance to the corresponding point of impact is farther, and one of the reticles is selected by rotating the reticle rotation unit according to a distance to the target
wherein the reticle rotation axis comprises, around a reticle rotation connection axis, a rotation axis on an illumination unit side having a convex-concave portion with a plurality of convexes-concaves corresponding to a distance to a point of impact; and a rotation axis on a reticle selection unit side that has protrusions coupled to desired convexes-concaves of the convex-concave portion on an end thereof and the other end of which is connected to the transparent reticle,
wherein the rotation axis on the illumination unit side and the rotation axis on the reticle selection unit side are separated from each other by pulling the reticle selection unit, and then the reticle selection unit is rotated so as to couple a desired convex-concave corresponding to the distance to the point of impact of the convex-concave portion of the rotation axis on the illumination unit side with the protrusion of the rotation axis on the reticle selection unit side.
0. 7. The dot sighting device of claim 1, wherein the second surface comprises an aspheric surface having a conic coefficient.
0. 9. The dot sighting device of claim 8, wherein the second adjustment mechanism is connected to the first adjustment mechanism to select the bullet path in a state in which the zero point is set.
0. 10. The dot sighting device of claim 8, wherein the first adjustment mechanism includes a second control mechanism that adjusts the zero point in left and right directions.
0. 11. The dot sighting device of claim 8, wherein the second adjustment mechanism adjusts a slope of the reflection element relative to the connecting element.
0. 12. The dot sighting device of claim 8, wherein the second adjustment mechanism includes a plurality of selections, each selection corresponding with a predetermined bullet path adjustment associated with a selected distance to a target.
0. 13. The dot sighting device of claim 8, wherein the second adjustment mechanism includes a plurality of slope selection portions that, when selected, set a slope of the first plate relative to the second plate corresponding to a predetermined distance to a target.
a an upper/lower click control bolt 17 and a left/right click control bolt 45 (refer to FIG. 13) are used to adjust an origin point a zero point (or set zero). A user confirms an external target through a protective window 27 and a reflection mirror 16. Light irradiated from an LED light source in an illumination unit 19 forms a dot image on the reflection mirror 16 and is reflected, and the reflected light is incident on eyes of a user, thereby allowing the user to view the dot image. The brightness of the LED light source can be adjusted by a control switch 31. In addition, the LED light source can be driven by a built-in battery in a battery case 29, or driven with electrical power supplied from an external electrical source. Alternatively, the built-in battery can be charged using an external electrical source.

FIG. 7 is a schematic view for explaining an operating principle of an illumination unit 19 and a reflection mirror 16 of a dot sighting device according to an embodiment of the present invention.

Referring to FIG. 7, an illumination device 33 using an LED or the like is installed in the illumination unit 19, and acts as a light source. Light irradiated from the illumination device 33 is transmitted through a transparent reticle of a revolving transparent reticle 35 disposed in front of the illumination device 33 and is irradiated to the reflection mirror 16. The light irradiated to the reflection mirror 16 is reflected and incident on eyes of a user, and the user views a transparent reticle-shaped dot.

FIG. 8 is a view illustrating in detail an operating principle of a reticle selection unit 21 and the illumination unit 19 of the dot sighting device of FIG. 7, according to an embodiment of the present invention. The revolving transparent reticle 35 is formed on a plane perpendicular to a reticle rotation axis 37 that extends from the reticle selection unit 21 disposed adjacent to the illumination unit 19 and penetrates the illumination unit 19. In addition, when the reticle rotation axis 37 rotates by rotation of the reticle selection unit 21, the revolving transparent reticle 35 accordingly rotates. Thus, users can select a desired reticle from among various types of reticles formed in the revolving transparent reticle 35 by rotating the reticle selection unit 21.

FIG. 9 is a view of the revolving transparent reticle 35 of the dot sighting device of FIG. 7, according to an embodiment of the present invention. A variety of reticles 39A through 39F are formed in the revolving transparent reticle 35 along a reticle rotation line 40 having a radial axis based on a center axis 37′ of the revolving transparent reticle 35. For example, to sight and fire at a moving vehicle, helicopter, fighter plane, or the like, the sighting should be performed by taking into consideration velocity or the like of the moving target, unlike firing at human. Thus, a dot image should be formed by taking such factors into account. Dot images for objects are, in general, largely categorized into dot images for short distances, dot images for long distances, and dot images for anti-aircraft firing. In addition, different dot images are used for humans and horses, for tanks, for helicopters, for fighter planes, and the like. In the revolving transparent reticle 35 according to the current embodiment of the present invention, taking into consideration the characteristics of the target, a long distance reticle for humans and horses 39A, a short distance reticle for humans and horses 39B, a reticle for still vehicles and tanks 39C, a reticle for moving vehicles and tanks 39D, a reticle for anti-aircraft helicopters 39E, and a reticle for anti-aircraft fighter planes 39F are radially formed along the reticle rotation line 40.

The reticle rotation axis 37 penetrates the center axis 37′ of the revolving transparent reticle 35, and the revolving transparent reticle 35 is fixed to the reticle rotation axis 37 and rotates according to the rotation of the reticle rotation axis 37. Thus, users can rapidly select a reticle for forming a dot image appropriate for a target by rotating the reticle selection unit 21. As a result, sighting and firing can be rapidly and accurately performed.

FIG. 10 is a view of the revolving transparent reticle 35 of the dot sighting device of FIG. 7, according to another embodiment of the present invention. A fired bullet is continuously affected by gravity until the bullet reaches a target. Thus, if a distance to the target material is farther, the bullet reaches a position that is different from an originally sighted position. Therefore, to increase accuracy, the distance to the target should be amended while sighting the target, taking into consideration the distance.

When gravity is taken into consideration, the farther the distance to the target, the greater an angle formed between a gun barrel and a horizontal plane should be. Thus, in the revolving transparent reticle 35 of FIG. 10, taking the above into consideration, the farther the distance to the target based on a sighting baseline 41, the closer reticles 39′A through 39′F are formed to the center axis 37′.

For example, if the sighting baseline 41 is a baseline with respect to a target 100 m away, the reticle 39′A with respect to the target 100 m away from a shooter is formed on the sighting baseline 41. In addition, the reticle 39′B with respect to a target 200 m away from the shooter is formed towards the center axis 37′ as much as pre-set distance from the sighting baseline 41. In addition, the reticle 39′C with respect to a target 400 m away, the reticle 39′D with respect to a target 800 m away, the reticle 39E with respect to a target 1200 m away, and the reticle 39′F with respect to a target 1600 m away are formed towards the center axis 37′ as much as pre-set distances.

The reticle rotation axis 37 penetrates the center axis 37′ of the revolving transparent reticle 35, and the revolving transparent reticle 35 is fixed to the reticle rotation axis 37 and rotates according to the rotation of the reticle rotation axis 37. Thus, users can rapidly select a reticle for forming a dot image appropriate for a target by rotating the reticle selection unit 21, taking into consideration a distance to the target. As a result, sighting and firing can be rapidly and accurately performed.

In Examples 1 and 2, the center axis 37′ of the revolving transparent reticle 35 is formed at the center of the revolving transparent reticle 35. However, the center axis 37′ can be formed at a position deviated from the center of the revolving transparent reticle 35 in the two examples described above. That is, taking into account the distance to the target, the center axis 37′ can be formed at a position that is close to a reticle to be used for a long distance target in advance.

To maintain stereoscopic vision, i.e., a sense of distance by making the width of a reflection mirror greater than a distance between both eyes of a user, a virtual image of a dot should be formed within binocular fixation distance. As a result, a target and a dot sighted at the target can be accurately viewed without eye strain.

To form a dot at a binocular fixation point during binocular fixation, i.e., to position an image of a reticle by the reflection mirror at the binocular fixation point, a change of position should be performed by moving an illumination unit, particularly, a reticle acting as a point light source, forward or backward.

For example, in three cases of a 100 m reticle, a 200 m reticle, and a 400 m reticle, an operation in which a position of the point light source of the illumination unit is finely moved to a direction of a focal point of the reflection mirror is needed.

A distance of stereoscopic vision in which human eyes can have a three-dimensional effect is about 240 m according to Hermann von Helmholtz. Thus, 800 m, 1200 m and 1600 m reticles may be positioned at the focal point of the reflection mirror in order to position a dot image after reflection from the reflection mirror at infinity in front of the eyes, as in the case of the 400 m reticle.

When the focal point of the reflection mirror is f mm, a shift s of a z m reticle from the focal point of the reflection mirror to the reflection mirror can be calculated using Equation 2 below, and examples of the calculation are shown in the following table.

S = f - 1000 zf 1000 z - f ( 2 )

TABLE 1
50 m 100 m 200 m 400 m
Reticle type reticle reticle reticle reticle
Calculation example of a 1.05 mm 0.53 mm 0.26 mm 0.13 mm
shift of a reticle in a re-
flection mirror having an
actual focal distance of
229 mm
*The above table shows calculation of shifts of 4 types of reticles from the focal point of the reflection mirror to the reflection mirror in the reflection mirror having an actual focal distance of 229 mm

To move the reticle taking into account the shift, a reticle rotation axis 37 as illustrated in FIG. 11 can be taken into consideration. FIG. 11 is a schematic view of the reticle rotation axis 37 illustrated in FIG. 8, according to an embodiment of the present invention.

Referring to FIG. 11, the reticle rotation axis 37 includes a rotation axis 65 on an illumination unit side, which extends from a front surface of the illumination unit 19, a rotation axis 67 on a reticle selection unit side, and a connection axis 58 of the reticle rotation axis 37. A revolving transparent reticle is attached to a rear portion of the rotation axis 67 on the reticle selection unit side. Referring to FIG. 11, convexes-concaves 61a through 61c are formed on an end of the rotation axis 65 on the illumination unit side along the circumference thereof. The size of each of the convexes-concaves 61a through 61c corresponds to a shift distance according to each of the reticles shown in the table above. Protrusions 63 are formed on an end of the rotation axis 67 on the reticle selection unit side coupled to the rotation axis 65 on the illumination unit side.

When a user pulls the reticle selection unit 21, the rotation axis 65 on the illumination unit side and the rotation axis 67 on the reticle selection unit side are separated from each other, and the protrusions 63 rotate as the rotation axis 67 on the reticle selection unit side rotates by rotating the reticle selection unit 21. When the protrusions 63 are positioned to correspond to the convexes-concaves 61, which corresponds to a desired shift distance of the reticle, the protrusions 63 and the convexes-concaves 61 are coupled if the reticle selection unit 21 is released.

Thus, a user can rapidly amend a dot image corresponding to a distance during stereoscopic vision. As a result, sighting and firing can be rapidly and accurately performed.

FIGS. 12 and 13 are views of dot sighting devices according to other embodiments of the present invention, in which a path of a bullet can be adjusted.

In the present embodiments, the path of the bullet is adjusted by rotating a bullet path adjustment handle 43 instead of using the reticle selection unit. The dot sighting devices according to the current embodiments of the present invention in which the path of the bullet can be adjusted will now be described with reference to the following drawings.

FIG. 14 is a schematic assembly view of an optical axis adjustment device according to an embodiment of the present invention.

A lower plate 6 illustrated in FIG. 14 is disposed below an upper plate 4 of FIGS. 12 and 13.

Referring to FIG. 14, a groove in which an upper/lower click control bolt 17 is accommodated is formed in a top surface portion of a bullet path adjustment body 47, and an upper/lower plate connection rotation axis 49 is inserted through a side surface center portion of the bullet path adjustment body 47. The upper/lower click control bolt 17 accommodated from the top surface portion of the bullet path adjustment body 47 is fixedly inserted in a center portion groove of the upper/lower plate connection rotation axis 49. The bullet path adjustment body 47 connected to the upper/lower click control bolt 17 by the upper/lower plate connection rotation axis 49 is accommodated in a bullet path adjustment body accommodation unit 55 formed in the lower plate 6. In addition, the bullet path adjustment body 47 is coupled to the lower plate 6 by a connection pin 59 that penetrates a side surface of the lower plate 6 and couples the bullet path adjustment body 47 with the lower plate 6.

Thus, the upper/lower click control bolt 17 can rotate around on (or screw on) the upper/lower plate connection rotation axis 49, and the bullet path adjustment body 47 can rotate around on the connection pin 59.

In addition, the bullet path adjustment body 47 is connected to the upper plate 4 through the upper/lower click control bolt 17 fixed to the upper plate 4, and is connected to the lower plate 6 by the connection pin 59.

A bullet path adjustment axis 51 passes through the lower plate 6, passes by and contacts a bullet path adjustment axis contact portion 48 of the bullet path adjustment body 47, and is connected to the bullet path adjustment handle 43. A bullet path adjustment portion 53 of the bullet path adjustment axis 51 contacts the bullet path adjustment axis contact portion 48 of the bullet path adjustment body 47, facing each other.

Spring accommodation portions 57 are formed in a top surface of the lower plate 6, at a position adjacent to the bullet path adjustment body accommodation unit 55 and parallel to the connection pin 59, as illustrated in FIG. 14. In addition, springs are accommodated in the spring accommodation portions 57, whereby a repulsive force acts on the upper and lower plates 4 and 6.

A configuration for adjusting the bullet path of the dot sighting device according to the present embodiment will now be described with reference to FIGS. 15 and 16.

FIGS. 15 and 16 are schematic views for explaining an operating principle of a bullet path adjustment body and a bullet path adjustment axis of the optical axis adjustment device of FIG. 14, according to an embodiment of the present invention.

Referring to FIG. 15, the bullet path adjustment portion 53 of the bullet path adjustment axis 51 passes by and contacts the bullet path adjustment axis contact portion 48 of the bullet path adjustment body 47. FIG. 16 is a cross-sectional view taken along a line A-B of FIG. 15. Referring to FIG. 16, the bullet path adjustment portion 53 comprises a plurality of contact surfaces 53a through 53e each having a different normal distance from center of rotation 60 of the bullet path adjustment axis 51.

The springs of the spring accommodation portions 57 push the upper and lower plates 4 and 6 away from each other, and thus a force, directed towards the upper plate 4 from the lower plate 6 acts on the bullet path adjustment body 47 connected to the upper plate 4 by the upper/lower click control bolt 17. That is, a force that rotates towards causes the upper plate 4 based to rotate upward centering on the connection pin 59 continuously acts on the bullet path adjustment body 47 connected to the upper plate 4. Thus, when the contact surface contacting the bullet path adjustment axis contact portion 48 in the bullet path adjustment portion 53 is changed, a distance between the upper plate 4 and the lower plate 6 is changed.

For example, when the bullet path adjustment axis contact portion 48 of the bullet path adjustment body 47 contacts the contact surface 53d having a relatively long normal distance from the center of rotation 60, and then contacts the contact surface 53a having a relatively short normal distance from the center of rotation 60, the distance between the upper plate 4 and the lower plate 6 becomes closer. In the opposite case, the distance between the upper plate 4 and the lower plate 6 becomes farther.

Since the lower plate 6 is fixed to the mount for a heavy machine gun, the distance between the upper plate 4 and the lower plate 6 is changed by a fine change in a slope of the upper plate 4 with respect to the fixed lower plate 6. By calculating an amendment a corrective angle according to a distance in advance, each of the contact surfaces 53a through 53e of the bullet path adjustment portion 53 is formed at a normal distance corresponding to the amendment corrective angle. Thus, when a corresponding contact surface is selected by rotating the bullet path adjustment handle 43, the slope of the upper plate 4 is changed according to the distance to the target. Then, when the target is sighted through the reflection mirror of the upper plate 4 having the changed slope and the protective window, the same amendment corrective effect according to a distance as in Example 2 of Embodiment 1 can be obtained.

As described above, in the dot sighting device having large caliber and using the reflection mirror, according to the present invention, there is a need to address the problem of parallax according to aberration.

FIG. 17 is a schematic view illustrating a structure of a reflection mirror according to an embodiment of the present invention. In the present embodiment, a distance between a LED and a reflection surface is set at 200 mm, and a thickness of the center of the reflection mirror is set at 4.0 mm.

A LED dot is reflected from a R2 surface and emitted to the outside. In this regard, when incident on the reflection mirror, the LED dot is transmitted through a R1 surface, is reflected from the R2 surface, and then is transmitted through the R1 surface again, and consequently, the LED dot is incident on the eyes of an observer. That is, since the LED dot is transmitted through the R1 surface twice and is transmitted through the R2 surface once, a further degree of freedom in design is provided. Due to this, parallax can be minimized. To decrease magnification occurrence when an external target point is focused on the eyes of the observer, the reflection mirror can be configured to become an afocal system. The configuration applies to radius curvature of first and third surfaces by using Equation 1 below.

When d denotes a distance between centers (center thickness) of first and third surfaces of a doublet, R1 denotes radius curvature of the first surface, R3 denotes radius curvature of the third surface, and n denotes a refractive index of the material, the following equation is obtained.

D 1 = n - 1 R 1 , D 2 = 1 - n R 3 ( 1 ) D 1 + D 2 - d n D 1 D 2 = 0 ,

wherein D1 denotes a refractive power of the first surface and D2 denotes a refractive power of the third surface. By using the reflection mirror according the present embodiment, it was confirmed that parallax was reduced by 80% or greater.

FIG. 18 is a schematic view illustrating a structure of a reflection mirror, according to another embodiment of the present invention. Referring to FIG. 18, when a second surface is an aspheric surface having a conic coefficient, the parallax is further minimized. In this case, parallax was reduced by 90% or greater, compared to that of the reflection mirror of FIG. 17.

The following three graphs FIGS. 19, 20 and 21 respectively show Tangential ray aberration degrees in the case of a conventional single reflection surface, in the case of a doublet reflection surface (when the reflection surface between two lenses is spherical), and in the case of a doublet reflection surface where a conic aspheric surface is adopted as the reflection surface between two lenses. Each lens has an inclination angle of −2.0°.

FIG. 19 is a graph representing spherical aberration, and when it coincides with an X axis, parallax does not occur. A maximum aberration value of the conventional single reflection surface is 0.02 mm, a maximum aberration value when the spherical reflection surface is adopted as a median surface of the doublet is 0.004 mm, and a maximum aberration value when the conic aspheric reflection surface is adopted as a median surface of the doublet is 0.0004 mm. Thus, when a space accounting for 50% of a total region from the center is regarded as an effective space, the spherical reflection surface employed as the median surface of the doublet has an improvement in terms of the integral value of spherical aberration amount (y axis) with respect to x axis (an effective space that LED light beam reflects by a minimum of 80% or greater, compared with the conventional single reflection surface. In addition, the conic aspheric reflection surface employed as the median surface of the doublet has an improvement in terms of the integral value of by a minimum of 90% or greater, compared with the spherical reflection surface employed as the median surface of the doublet.

According to the present invention, a dot sighting device with large caliber for a heavy machine gun in which binocular vision is possible can be obtained.

In addition, according to the present invention, a target can be rapidly sighted taking into consideration distance amendment, and thus firing can be performed taking into consideration differences according to a distance of the target.

While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.

Jung, In, Lee, Dong Hee

Patent Priority Assignee Title
Patent Priority Assignee Title
2190567,
2190569,
2419151,
2986972,
3524710,
3672782,
3867764,
3914030,
3963356, Dec 11 1973 AGA Aktiebolag Optical sight
4269476, Nov 07 1978 Thomson-CSF Helmet-mounted display system
4600271, Mar 07 1983 Thomson CSF Head-up display
4704018, Oct 04 1984 Nippon Kogaku K.K. Eye fundus observing and photographing apparatus
4764011, Nov 15 1985 Internantional Business Machines Corporation Sighting device for day and night use
5205044, Nov 12 1991 Luminous dot sighting instrument
5272514, Dec 06 1991 L-3 Communications Corporation Modular day/night weapon aiming system
5373644, Nov 24 1992 Reflex luminous dot sighting instrument with undesired dot light blocking
5493450, Nov 18 1993 Sighting instrument
5508843, Sep 14 1993 Asia Optical Co., Ltd. Sight scope
5532875, Mar 09 1993 BETENSKY, ELLIS Wide angle binocular system with variable power capability
5625954, Nov 29 1993 Reflex luminous dot sighting instrument with elevation and windage controls
5777797, Sep 11 1995 FUJI PHOTO OPTICAL CO , LTD Objective lens system for endoscopes having an image transfer optical fiber bundle
5813159, Jan 13 1993 Wide field of view reflex gunsight
6295754, Oct 21 1998 LEUPOLD & STEVENS, INC Aiming Device with adjustable height mount and auxiliary equipment mounting features
6327806, Sep 25 1996 OPTICS RESEARCH HK LTD ; LEUPOLD & STEVENS, INC Optical sighting devices
6490060, Oct 14 1999 EOTech, LLC Lightweight holographic sight
6967775, Jul 13 2004 Millett Industries Zoom dot sighting system
7145703, Jan 27 2005 EOTech, LLC Low profile holographic sight and method of manufacturing same
7234265, Dec 07 2005 Internal red dot sight
7997163, Jun 13 2005 Daisy Manufacturing Company Adjustable locking windage and elevation knob
8020335, Sep 10 2004 Aimpoint AB Mount for mounting accessories on a weapon
20020186476,
20030131518,
20060010761,
20060164704,
20060265930,
20070180751,
20090265974,
20100083554,
CH619296,
EP239700,
JP3191389,
KR100667472,
KR100921308,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 29 2009LEE, DONG HEEJUNG, INASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0434990694 pdf
May 17 2017DONGIN OPTICAL CO., LTD.(assignment on the face of the patent)
Aug 14 2017JUNG, INDONGIN OPTICAL CO , LTD ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0441260686 pdf
Date Maintenance Fee Events
Jun 14 2019M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Nov 15 2023M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.
Nov 15 2023M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity.


Date Maintenance Schedule
Nov 20 20214 years fee payment window open
May 20 20226 months grace period start (w surcharge)
Nov 20 2022patent expiry (for year 4)
Nov 20 20242 years to revive unintentionally abandoned end. (for year 4)
Nov 20 20258 years fee payment window open
May 20 20266 months grace period start (w surcharge)
Nov 20 2026patent expiry (for year 8)
Nov 20 20282 years to revive unintentionally abandoned end. (for year 8)
Nov 20 202912 years fee payment window open
May 20 20306 months grace period start (w surcharge)
Nov 20 2030patent expiry (for year 12)
Nov 20 20322 years to revive unintentionally abandoned end. (for year 12)