vascular access systems for performing hemodialysis are disclosed. The vascular access system contemplates a catheter section adapted for insertion into a vein and a graft section adapted for attachment to an artery. The catheter section may have metal or polymer wall reinforcements that allow the use of thin-walled, small outer diameter conduits for the vascular access system. One or more of the adhered, embedded or bonded conduit reinforcement structures may be removable without significant damage to the conduit sections to facilitate attachment of the sections, or to a connector between the sections. Various self-sealing materials are provided for use in the vascular access system, as well as temporary access sites and flow control/sensor systems.

Patent
   RE47154
Priority
Oct 08 2003
Filed
Apr 07 2016
Issued
Dec 11 2018
Expiry
Oct 08 2024
Assg.orig
Entity
Large
0
209
currently ok
20. A vascular access system for hemodialysis comprising:
a graft conduit having a proximal end and a distal end, wherein the proximal end is configured for anastomosis to an artery;
a connector element having a fluid passageway therethrough, wherein the connector element comprises a first end connected to the distal end of the graft conduit and a second end configured for connection to a proximal end of a catheter conduit that is separate from the graft conduit; and
a self-sealing element integrally formed with the graft conduit or connector element, the self-sealing element comprising a wall structure formed of a self-sealing material suitable for puncture by a needle to permit needle access to the fluid passageway and configured to re-seal upon withdrawal of said needle,
wherein the connector element has a different internal diameter at its first and second ends and is configured to provide a smooth transition in the fluid passageway between the distal end of the graft conduit and the proximal end of the catheter conduit.
0. 23. An apparatus for providing needle access to a blood pathway comprising:
a first fluid conduit comprising a graft conduit configured for attachment to an artery at a proximal end of the first fluid conduit;
a second fluid conduit separate from the first fluid conduit comprising a catheter conduit configured for insertion in a vein at a distal end of the second fluid conduit, the distal end of the second fluid conduit being sized to permit collateral flow of blood around the second fluid conduit and through the vein in which the second fluid conduit is inserted; and
a connector element having an internal passageway in fluid communication with the first and second fluid conduits to form a blood pathway, a first end of the connector element being connected to a distal end of the first fluid conduit and a second end being connected to a proximal end of the second fluid conduit,
wherein the connector element has a transition zone occupying at least a portion of the internal passageway therein, the transition zone being configured to reduce turbulent or non-laminar flow in the blood pathway between the first and second fluid conduits.
14. A vascular access system for hemodialysis comprising:
a catheter conduit having a proximal end and a distal end with a lumen therethrough, wherein the distal end is configured for insertion in a vein and sized to permit collateral flow of blood around a distal end of the catheter conduit and through the vein in which the catheter conduit is inserted;
a connector element having a fluid passageway therethrough, wherein the connector element comprises a first end configured for connection to a distal end of a graft conduit that is separate from the catheter conduit and a second end connected to the proximal end of the catheter conduit; and
a self-sealing element integrally formed with the catheter conduit or connector element, the self-sealing element comprising a wall structure formed of a self-sealing material suitable for puncture by a needle to permit needle access to the fluid passageway and configured to re-seal upon withdrawal of said needle,
wherein the connector element has a different internal diameter at its first and second ends and is configured to provide a smooth transition in the fluid passageway between the proximal end of the catheter conduit and the distal end of the graft conduit.
0. 35. An apparatus for providing needle access to a blood pathway comprising:
a first fluid conduit comprising a graft conduit configured for attachment to an artery at a proximal end of the first fluid conduit;
a second fluid conduit separate from the first fluid conduit comprising a catheter conduit configured for insertion in a vein at a distal end of the second fluid conduit, the distal end of the second fluid conduit being sized to permit collateral flow of blood around the second fluid conduit and through the vein in which the second fluid conduit is inserted;
a strain relief structure configured to resist kinking of the first fluid conduit; and
a connector element having an internal passageway in fluid communication with the first and second fluid conduits to form a blood pathway, a first end of the connector element being connected to a distal end of the first fluid conduit and a second end being connected to a proximal end of the second fluid conduit,
wherein the connector element has a transition zone occupying at least a portion of the internal passageway therein, the transition zone being configured to reduce turbulent or non-laminar flow in the blood pathway between the first and second fluid conduits.
0. 21. An apparatus for providing needle access to a blood pathway comprising:
a first fluid conduit comprising a graft conduit configured for attachment to an artery at a proximal end of the first fluid conduit;
a second fluid conduit separate from the first fluid conduit comprising a catheter conduit configured for insertion in a vein at a distal end of the second fluid conduit, the distal end of the second fluid conduit being sized to permit collateral flow of blood around the second fluid conduit and through the vein in which the second fluid conduit is inserted;
a connector element having an internal passageway in fluid communication with the first and second fluid conduits to form a blood pathway, the first end of the connector element being connected to a distal end of the first fluid conduit and a second end being connected to a proximal end of the second fluid conduit; and
a self-sealing element comprising a wall structure forming, at least in part, a portion of a wall of the first fluid conduit, the wall structure being formed of a material that can be punctured by a needle to permit needle access to the blood pathway and that re-seals upon withdrawal of the needle,
wherein the connector element has a transition zone occupying at least a portion of the internal passageway therein, the transition zone being configured to reduce turbulent or non-laminar flow in the blood pathway between the first and second fluid conduits.
1. An apparatus for providing needle access to a blood pathway comprising:
a first fluid conduit comprising a graft conduit configured for attachment to an artery at a proximal end of the first fluid conduit;
a second fluid conduit separate from the first fluid conduit comprising a catheter conduit configured for insertion in a vein at a distal end of the second fluid conduit, the distal end of the second fluid conduit being sized to permit collateral flow of blood around the second fluid conduit and through the vein in which the second fluid conduit is inserted;
a connector element having an internal passageway in fluid communication with the first and second fluid conduits to form a blood pathway, the a first end of the connector element being connected to a distal end of the first fluid conduit and a second end being connected to a proximal end of the second fluid conduit; and
a self-sealing element comprising a wall structure forming, at least in part, a portion of a wall of the second fluid conduit or the connector element, the wall structure being formed of a tubular material that can be punctured by a needle to permit needle access to the blood pathway and that re-seals upon withdrawal of the needle,
wherein the connector element has a transition zone occupying at least a portion of the internal passageway therein, the transition zone being configured to reduce turbulent or non-laminar flow in the blood pathway between the first and second fluid conduits.
2. The apparatus for providing needle access to a blood pathway as in claim 1, wherein the tubular material is selected from the group consisting of: material subject to compressive stress; material having a porous structure enhancing microthrombosis; low durometer materials, thixotropic materials; gelatinous materials; and combinations thereof.
3. The apparatus for providing needle access to a blood pathway as in claim 1, wherein the tubular material comprises material subject to compressive stress.
4. The apparatus for providing needle access to a blood pathway as in claim 1, wherein the tubular material comprises at least two layers subject to compressive stress of different orientations.
5. The apparatus for providing needle access to a blood pathway as in claim 1, wherein the tubular material comprises material having a porous structure.
6. The apparatus for providing needle access to a blood pathway as in claim 1, wherein the tubular material comprises gelatinous material.
7. The apparatus for providing needle access to a blood pathway as in claim 1, wherein the connector element is integrally formed with the second fluid conduit.
8. The apparatus for providing needle access to a blood pathway as in claim 1, wherein the connector element is integrally formed with the first fluid conduit.
9. The apparatus for providing needle access to a blood pathway as in claim 1, further comprising a strain relief tube about the second fluid conduit, the strain relief tube having a first end and a second end, the second end comprising two or more flexural sections and two or more separations between the flexural sections.
10. The apparatus for providing needle access to a blood pathway as in claim 1, further comprising a means for controlling blood flow rate through the blood pathway.
11. The apparatus for providing needle access to a blood pathway as in claim 1, further comprising a means for monitoring blood flow rate through the blood pathway.
12. The apparatus for providing needle access to a blood pathway as in claim 1, wherein the connector element further comprises one or more securing structures for securing the connector element to the first and second fluid conduits.
13. The apparatus for providing needle access to a blood pathway as in claim 12, wherein the securing structure is selected from the group consisting of a clamshell assembly, a tension clips, a collet securing device, a compression ring/collar, one or more barb-like protrusions, and combinations thereof.
15. The vascular access system as in claim 14, further comprising a graft conduit connected to the first end of the connector element.
16. The vascular access system as in claim 14, wherein the connector element is integrally formed with the catheter conduit.
17. The vascular access system as in claim 14, wherein the connector element further comprises one or more securing structures for securing the catheter conduit and graft conduit to the connector element.
18. The vascular access system as in claim 17, wherein the securing structure is selected from the group consisting of a clamshell assembly, a tension clips, a collet securing device, a compression ring/collar, one or more barb-like protrusions, and combinations thereof.
19. The vascular access system as in claim 17, wherein the securing structure comprises a clamshell assembly having a pair of complementary connecting structures configured to secure the conduit to the connector element.
0. 22. The apparatus for providing needle access to a blood pathway as in claim 21, wherein the material of which the wall structure is formed is tubular.
0. 24. The apparatus for providing needle access to a blood pathway as in claim 23, wherein the connector element comprises one or more securing structures for securing the first fluid conduit and the second fluid conduit to the connector element.
0. 25. The apparatus for providing needle access to a blood pathway as in claim 24, wherein the one or more securing structures comprises a clamshell assembly.
0. 26. The apparatus for providing needle access to a blood pathway as in claim 25, wherein the connector element further comprises a connector having a first end connected to the first fluid conduit and a second end connected to the second fluid conduit, and wherein the clamshell assembly is configured to clamp around a portion of the connector.
0. 27. The apparatus for providing needle access to a blood pathway as in claim 26, wherein the first end of the connector is positioned at an interior of the first fluid conduit, the second end of the connector is positioned at an interior of the second fluid conduit, and the clamshell assembly is positioned at an exterior of one or more of the first fluid conduit and the second fluid conduit when the clamshell assembly is clamped around the portion of the connector.
0. 28. The apparatus for providing needle access to a blood pathway as in claim 25, wherein the connector element further comprises a connector coupled with each of the first fluid conduit and the second fluid conduit, the connector defining one or more reduced diameter portions, and wherein the clamshell assembly comprises one or more radially inwardly extending protrusions that interface with the one or more reduced diameter portions of the connector to secure the first and second fluid conduits onto the connector.
0. 29. The apparatus for providing needle access to a blood pathway as in claim 25, wherein the clamshell assembly is generally C-shaped and comprises a pair of complementary connecting structures that can be joined to close the C-shape and form a tubular structure.
0. 30. The apparatus for providing needle access to a blood pathway as in claim 25, wherein the connector element comprises a connector that defines the internal passageway, and wherein the clamshell assembly comprises a pair of complementary connecting structures that can be joined to secure the first and second fluid conduits to the connector.
0. 31. The apparatus for providing needle access to a blood pathway as in claim 24, wherein the one or more securing structures comprises a tension clip.
0. 32. The apparatus for providing needle access to a blood pathway as in claim 23, wherein the connector element has a different internal diameter at its first and second ends and is configured to provide a smooth transition in the fluid passageway between the distal end of the graft conduit and the proximal end of the catheter conduit.
0. 33. The apparatus for providing needle access to a blood pathway as in claim 32, wherein an internal diameter of the first fluid conduit is larger than an internal diameter of the second fluid conduit.
0. 34. The apparatus for providing needle access to a blood pathway as in claim 23, wherein an internal diameter of the first fluid conduit is larger than an internal diameter of the second fluid conduit.
0. 36. The apparatus for providing needle access to a blood pathway as in claim 35, wherein the strain relief structure comprises a flexible coil.
0. 37. The apparatus for providing needle access to a blood pathway as in claim 36, wherein the flexible coil is positioned around an outer surface of the first fluid conduit.
0. 38. The apparatus for providing needle access to a blood pathway as in claim 36, wherein the connector element comprises a connector and a securing structure for securing the first fluid conduit to the connector, wherein the flexible coil is attached to a tubular structure, wherein the tubular structure is positioned around an outer surface of the first fluid conduit, and wherein the securing structure is positioned around an outer surface of the tubular structure and secures the tubular structure and the first fluid conduit onto the connector.
0. 39. The apparatus for providing needle access to a blood pathway as in claim 38, wherein the tubular structure comprises a polymer.
0. 40. The apparatus for providing needle access to a blood pathway as in claim 39, wherein the tubular structure comprises silicone.
0. 41. The apparatus for providing needle access to a blood pathway as in claim 38, wherein the flexible coil is positioned entirely outside of the securing structure when the securing structure secures the tubular structure and the first fluid conduit onto the connector.
0. 42. The apparatus for providing needle access to a blood pathway as in claim 38, wherein the securing structure comprises a clamshell assembly.
0. 43. The apparatus for providing needle access to a blood pathway as in claim 42, wherein the clamshell assembly is generally C-shaped and comprises a pair of complementary connecting structures that can be joined to close the C-shape to form a tube around the tubular structure.
0. 44. The apparatus for providing needle access to a blood pathway as in claim 36, wherein the connector element comprises a connector and a clamshell assembly for securing the first fluid conduit to the connector, wherein the flexible coil is attached to a sleeve that comprises a polymer, wherein the sleeve is positioned around an outer surface of the first fluid conduit, and wherein the clamshell assembly is positioned around an outer surface of the sleeve and secures the sleeve and the first fluid conduit onto the connector.
0. 45. The apparatus for providing needle access to a blood pathway as in claim 35, wherein the strain relief structure is a structure that is separate from the connector element.
0. 46. The apparatus for providing needle access to a blood pathway as in claim 35, wherein the connector element comprises a connector that defines the internal passageway, wherein the first fluid conduit is inserted into the strain relief structure and is positioned over a first end of the connector.
0. 47. The apparatus for providing needle access to a blood pathway as in claim 35, wherein the connector element comprises a securing structure for securing the catheter conduit and the graft conduit to the connector element, and wherein a portion of the strain relief structure is layered between the securing structure and the first conduit and is maintained in position by radial compression from the securing structure.
0. 48. The apparatus for providing needle access to a blood pathway as in claim 47, wherein the securing structure comprises a tubular structure.
0. 49. The apparatus for providing needle access to a blood pathway as in claim 48, wherein the securing structure comprises a connector sleeve.
0. 50. The apparatus for providing needle access to a blood pathway as in claim 48, wherein the strain relief structure comprises a flexible coil.

5
Where Q is flow rate, ΔP is the pressure differential, r is the radius of the catheter lumen, η is the viscosity, and 1 is the distance between the pressure measurement points. The equation shows that the flow rate is very sensitive to the radius of the catheter. However, the catheter is relatively non-thrombogenic compared to the graft and therefore one may approximate the flow rate by assuming that the catheter remains at a constant radius. In the preferred embodiment, the flow monitoring components of the VAS comprise an external component and an internal component.

In one embodiment, the external component comprises a power supply, a transmitter, a receiver, a signal processor and a flow readout. The VAS flow monitor may be powered by standard wall outlet electricity or by battery. If standard wall outlet power is used, the power supply regulates the voltage to match the requirements of the other components. The power supply may be used to power both the external device and the internal device. The transmitter comprises an antenna and a tuned circuit that transmits a radio frequency (RF) signal. The RF signal is tuned for optimal coupling to the implanted device in order to transfer power to the implanted device. A receiver is also contained in the external component. The receiver receives the flow signals from the implanted portion of the flow monitor. This antenna is tuned for optimal reception with the output signal of the implanted device. Preferably, the transmitter and receiver would use the same antenna. The signal processor takes the signal from the receiver, analyzes the signals to determine the flow rate, and converts the flow rate into an electronic format so the flow can be displayed by the flow readout. Electronic circuits are well known for converting electronic signals to a format that can be readily displayed. More details of the signal analysis are given below. In other embodiments of the invention, the flow rate information is not converted to an electronic format and instead is displayed on a calibrated analog display. Thus, the flow readout may comprise a standard digital or analog readout that provides a display of the flow value.

The internal or implanted component of the flow monitor comprises a receiver, a flow sensing unit, a signal processor and a transmitter. The receiver receives the RF signal from the external device and uses it to provide power to operate the other components in the implanted device. The preferred shape of the antenna is a coil embedded into the catheter wall. The preferred embodiment of the flow sensing unit comprises a series of individual pressure transducers embedded into the wall of the catheter. In some embodiments, the transducers are embedded into the catheter rather than the graft (ePTFE) because the catheter typically is made of a material (e.g. silicone) that is considerable less thrombogenic than the graft, thus allowing one to assume that the catheter diameter remains constant. One group of pressure transducers are separated by a known distance from another group of transducers by a known distance in order to measure the pressure drop from one portion of the catheter to another portion of the catheter. In one embodiment, each group of pressure transducers comprises one transducer, but in other embodiments, one or more group comprise at least two transducer each, spaced along the circumference, in order to allow averaging for more accurate measurements. Pressure transducer groups with multiple transducers about a circumference may compensate for possible localized pressure variations due to bends in the catheter and other local bias factors.

Although various types of pressure transducers are contemplated for the invention, one of the most common is the strain-gauge transducer. The conversion of pressure into an electrical signal is achieved by the physical deformation of strain gauges which are bonded into the diaphragm of the pressure transducer and wired into a Wheatstone bridge configuration. Pressure applied to the pressure transducer produces a deflection of the diaphragm which introduces strain to the gauges. The strain will produce an electrical resistance change proportional to the pressure. The strain gauges may be covered with a thin, flexible biocompatible material such as silicone or urethane and be positioned on the inside surface of the catheter for maximum sensitivity.

The signal processor for the implantable component takes the signals from each one of the transducers and, in the preferred embodiment, it amplifies, encodes, and multiplexes each signal for transmission by the transmitter so the external component can decode and identify the readings from each of the individual transducers. The electronics may be preferably designed to keep all of the time-dependent information (the pulse waveform) of the signals for analysis by the external system.

In another embodiment, the pressure monitoring system may be used to assess for possible clot formation in the catheter using the temporal information of the pulse waveform to help determine flow rate. For example, if the graft section begins to clot while the catheter remains patent, the absolute pressure in the catheter will drop, the pressure differential between the transducers will also drop, and the waveform shape will change to a less resistive shape (pressure waveform looks more like waveform of the central venous system). The external component of the flow monitoring system will analyze this information and determine the flow rate. On the other hand, if the catheter begins to form clot and the flow slows, the waveform shape will continuously become more resistive with decreased flow. In addition, the pressure differential will increase and the absolute pressure will decrease as the flow decreases. This will occur until the pressure differential reaches a threshold, at this point both pressures will drop with decreased flow. The transmitter is driven by the electronics and preferable uses the receiver antenna to transmit the RF signals to the external device.

While this invention has been particularly shown and described with references to embodiments thereof, it will be understood by those skilled in the art that the various changes in form and details may be made therein without departing from the scope of the invention. For all of the embodiments described above, the steps of the methods need not be performed sequentially. Furthermore, any references above to either orientation or direction are intended only for the convenience of description and are not intended to limit the scope of the invention to any particular orientation or direction.

Porter, Christopher H., Ziebol, Robert J., Lynch, Laurie E., Herrig, Judson A.

Patent Priority Assignee Title
Patent Priority Assignee Title
3363926,
3490438,
3683926,
3814137,
3818511,
3826257,
3882862,
3998222, Apr 15 1974 Subcutaneous arterio-venous shunt with valve
4076023, Aug 01 1975 Erika, Inc. Resealable device for repeated access to conduit lumens
4133312, Oct 13 1976 Cordis Dow Corp. Connector for attachment of blood tubing to external arteriovenous shunts and fistulas
4184489, Oct 06 1976 Cordis Dow Corp. Infusion tube access site
4214586, Nov 30 1978 Ethicon, Inc. Anastomotic coupling device
4318401, Apr 24 1980 President and Fellows of Harvard College Percutaneous vascular access portal and catheter
4427219, Jan 26 1981 Robroy Industries Compression coupling
4441215, Nov 17 1980 AORTECH, INC , A CORP OF MN Vascular graft
4447237, May 07 1982 RESEARCH AGAINST CANCER, INC Valving slit construction and cooperating assembly for penetrating the same
4496349, Apr 08 1980 Minntech Corporation Percutaneous implant
4496350, Apr 08 1980 Minntech Corporation Blood access device
4503568, Nov 25 1981 New England Deaconess Hospital Small diameter vascular bypass and method
4550447, Aug 03 1983 SORIN BIOMEDICAL INC Vascular graft prosthesis
4619641, Nov 13 1984 MT SINAI SCHOOL OF MEDICINE OF THE CITY OF NEW YORK Coaxial double lumen anteriovenous grafts
4655771, Apr 30 1982 AMS MEDINVENT S A Prosthesis comprising an expansible or contractile tubular body
4723948, Nov 12 1986 SMITHS MEDICAL MD, INC Catheter attachment system
4734094, Jun 09 1986 Catheter and method for cholangiography
4753236, Apr 08 1986 Temporary anastomotic device
4771777, Jan 06 1987 Advanced Cardiovascular Systems, Inc. Perfusion type balloon dilatation catheter, apparatus and method
4772268, May 25 1984 Cook Incorporated Two lumen hemodialysis catheter
4786345, Mar 24 1984 INSITUFORM NETHERLANDS B V Method of lining a passageway
4790826, Mar 28 1986 COSMOS COMMODITY, INC , AN OK CORP Percutaneous access port
4822341, Nov 20 1987 Bard Peripheral Vascular, Inc Vascular access fistula
4848343, Oct 31 1986 AMS MEDINVENT S A Device for transluminal implantation
4850999, May 26 1981 SCHNEIDER USA INC Flexible hollow organ
4856938, Jul 28 1987 MENCK GmbH Method of and arrangement for separating tubular foundation piles under water
4877661, Oct 19 1987 W L GORE & ASSOCIATES, INC Rapidly recoverable PTFE and process therefore
4898669, Jun 16 1987 Claber S.p.A. Vascular access device, in particular for purification treatments of the blood
4917067, Nov 05 1987 NGK Spark Plug Co., Ltd. System for controlling air-fuel ratio of combustible mixture fed to internal combustion engine
4917087, Apr 10 1984 WALSH MANUFACTURING MISSISSUAGA LIMITED Anastomosis devices, kits and method
4919127, May 03 1988 Endotracheal tube connector
4929236, May 26 1988 RITA MEDICAL SYSTEMS, INC ; AngioDynamics, Inc Snap-lock fitting catheter for an implantable device
4955899, May 26 1989 IMPRA, INC , AN AZ CORP ; IMPRA, INC , AN AZ CORP Longitudinally compliant vascular graft
5026513, Oct 19 1987 W L GORE & ASSOCIATES, INC Process for making rapidly recoverable PTFE
5041098, May 19 1989 GRANTADLER CORPORATION Vascular access system for extracorporeal treatment of blood
5053023, Oct 25 1988 Vas-Cath Incorporated Catheter for prolonged access
5061275, Apr 21 1986 AMS MEDINVENT S A Self-expanding prosthesis
5061276, Apr 28 1987 Edwards Lifesciences Corporation Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
5064435, Jun 28 1990 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Self-expanding prosthesis having stable axial length
5104402, May 25 1988 Trustees of the University of Pennsylvania Prosthetic vessels for stress at vascular graft anastomoses
5171227, Apr 16 1991 The Curators of the University of Missouri Separable peritoneal dialysis catheter
5171305, Oct 17 1991 CREDIT SUISSE FIRST BOSTON MANAGEMENT CORPORATION Linear eversion catheter with reinforced inner body extension
5192289, Mar 09 1989 AVATAR DESIGN & DEVELOPMENT INC Anastomosis stent and stent selection system
5192310, Sep 16 1991 ATRIUM MEDICAL CORPORATION Self-sealing implantable vascular graft
5197976, Sep 16 1991 ATRIUM MEDICAL CORPORATION Manually separable multi-lumen vascular graft
5330500, Oct 17 1991 Self-expanding endovascular stent with silicone coating
5399168, Aug 29 1991 C R BARD, INC Implantable plural fluid cavity port
5405320, Jan 08 1990 The Curators of the University of Missouri Multiple lumen catheter for hemodialysis
5405339, Sep 03 1993 Medtronic, Inc.; WILES, TERRY L Medical connector and method for connecting medical tubing
5454790, May 09 1994 Tyco Healthcare Group LP Method and apparatus for catheterization access
5476451, Mar 01 1990 Michigan TransTech Corporation Implantable access devices
5496294, Jul 08 1994 Target Therapeutics, Inc Catheter with kink-resistant distal tip
5509897, Jan 08 1990 The Curators of the University of Missouri Multiple lumen catheter for hemodialysis
5558641, Jan 24 1994 SMITHS MEDICAL ASD, INC Hybrid portal and method
5562617, Jan 18 1994 VASCA, INC Implantable vascular device
5562618, Jan 21 1994 SMITHS MEDICAL ASD, INC Portal assembly and catheter connector
5591226, Jan 23 1995 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Percutaneous stent-graft and method for delivery thereof
5607463, Mar 30 1993 Medtronic, Inc Intravascular medical device
5624413, Feb 23 1996 Medical Components, Inc. Method for inserting a multiple catheter assembly
5631748, Nov 16 1995 Xerox Corporation Color images having multiple separations with minimally overlapping halftone dots and reduced interpixel contrast
5637088, Sep 14 1995 System for preventing needle displacement in subcutaneous venous access ports
5637102, May 24 1995 C R BARD, INC Dual-type catheter connection system
5645532, Mar 04 1996 Sil-Med Corporation Radiopaque cuff peritoneal dialysis catheter
5647855, May 06 1992 Self-healing diaphragm in a subcutaneous infusion port
5669637, May 29 1996 Optimize Technologies, Inc. Miniature fitting assembly for micro-tubing
5669881, Jan 10 1995 Edwards Lifesciences Corporation Vascular introducer system incorporating inflatable occlusion balloon
5674272, Jun 05 1995 Pacesetter, Inc Crush resistant implantable lead
5676346, May 16 1995 CAREFUSION 303, INC Needleless connector valve
5743894, Jun 07 1995 Sherwood Services AG; TYCO GROUP S A R L Spike port with integrated two way valve access
5755773, Jun 04 1996 Medtronic Ave, Inc Endoluminal prosthetic bifurcation shunt
5755775, Jan 23 1995 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Percutaneous stent-graft and method for delivery thereof
5792104, Dec 10 1996 Medtronic, Inc Dual-reservoir vascular access port
5797879, Aug 26 1996 Apparatus and methods for providing selectively adjustable blood flow through a vascular graft
5800512, Jan 22 1996 LIFEPORT SCIENCES LLC PTFE vascular graft
5800514, May 24 1996 LifeShield Sciences LLC Shaped woven tubular soft-tissue prostheses and methods of manufacturing
5800522, Jul 07 1995 W L GORE & ASSOCIATES, INC Interior liner for tubes, pipes and blood conduits
5810870, Aug 18 1993 W L GORE & ASSOCIATES, INC Intraluminal stent graft
5829487, Jul 12 1994 EAT GMBH THE DESIGNSCOPE COMPANY Method for representing a fabric consisting of warp and weft threads
5830224, Mar 15 1996 Medtronic Vascular, Inc Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
5840240, Nov 04 1991 MEDRAD, INC Method of making a silicone composite vascular graft
5866217, Nov 04 1991 MEDRAD, INC Silicone composite vascular graft
5904967, Apr 27 1995 Terumo Kabushiki Kaisha Puncture resistant medical material
5931829, Jan 21 1997 VASCA, INC Methods and systems for establishing vascular access
5931865, Nov 24 1997 W L GORE & ASSOCIATES, INC Multiple-layered leak resistant tube
5957974, Jan 23 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Stent graft with braided polymeric sleeve
5997562, Jun 13 1997 Medtronic Ave, Inc Medical wire introducer and balloon protective sheath
6001125, Jan 22 1996 LIFEPORT SCIENCES LLC PTFE vascular prosthesis and method of manufacture
6019788, Nov 08 1996 W L GORE & ASSOCIATES, INC Vascular shunt graft and junction for same
6036724, Jan 22 1996 LIFEPORT SCIENCES LLC PTFE vascular graft and method of manufacture
6102884, Apr 07 1997 HEMOSPHERE, INC Squitieri hemodialysis and vascular access systems
6156016, Jan 06 1998 MAGINOT CATHETER TECHNOLOGIES, INC Catheter systems and associated methods utilizing removable inner catheter or catheters
6167765, Sep 25 1998 The Regents of the University of Michigan System and method for determining the flow rate of blood in a vessel using doppler frequency signals
6171295, Jan 20 1999 Boston Scientific Scimed, Inc Intravascular catheter with composite reinforcement
6231085, Apr 21 1997 Irrigation Development Company Tubing coupling and hose end combination, and related method
6245098, May 23 1997 C R BARD, INC Catheter system with high kink resistance
6255396, Sep 09 1999 Baxter International Inc Cycloolefin blends and method for solvent bonding polyolefins
6261255, Nov 06 1998 Apparatus for vascular access for chronic hemodialysis
6261257, May 26 1998 RENAN P UFLACKER Dialysis graft system with self-sealing access ports
6319279, Oct 15 1999 ACCESS CONNECTIONS LLC Laminated self-sealing vascular access graft
6338724, Mar 29 1999 Arterio-venous interconnection
6398764, Jan 18 1994 VASCA. Inc. Subcutaneously implanted cannula and method for arterial access
6402767, May 22 1997 Kensey Nash Corporation Anastomosis connection system and method of use
6428571, Jan 22 1996 LIFEPORT SCIENCES LLC Self-sealing PTFE vascular graft and manufacturing methods
6436132, Mar 30 2000 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
6536135, Feb 18 1999 General Electric Company Carbon-enhanced fluoride ion cleaning
6582409, Feb 03 1997 Merit Medical Systems, Inc Hemodialysis and vascular access systems
6585762, Aug 10 2000 DIALYSIS ACCESS SOLUTIONS, INC Arteriovenous grafts and methods of implanting the same
6610004, Oct 09 1997 THORATEC LLC; TC1 LLC Implantable heart assist system and method of applying same
6689096, Oct 31 1997 WATRELOT, ANTOINE Multipurpose catheter
6689157, Jul 07 1999 Endologix LLC Dual wire placement catheter
6692461, Aug 07 2001 Advanced Cardiovascular Systems, Inc. Catheter tip
6699233, Apr 10 2000 Boston Scientific Scimed, Inc Locking catheter
6702748, Sep 20 2002 Flowcardia, Inc. Connector for securing ultrasound catheter to transducer
6702781, Apr 05 1991 Boston Scientific Scimed, Inc Adjustably stiffenable convertible catheter assembly
6706025, May 12 1993 Target Therapeutics, Inc. Lubricious catheters
6719781, Jun 14 1996 Aptus Medical Inc. Catheter apparatus having an improved shape-memory alloy cuff and inflatable on-demand balloon for creating a bypass graft in-vivo
6719783, Jan 22 1996 LIFEPORT SCIENCES LLC PTFE vascular graft and method of manufacture
6730096, Mar 06 1996 Medical Components, Inc. Composite catheter stabilizing devices, methods of making the same and catheter extracting device
6733459, May 28 1999 SENKO MEDICAL INSTRUMENT MFG CO , LTD Balloon catheter for intra-aortic balloon pump apparatus
6740273, Jan 03 2001 Method for making balloon catheter
6749574, Mar 17 2000 Integra LifeSciences Inc. Ventricular catheter with reduced size connector
6752826, Dec 14 2001 TC1 LLC Layered stent-graft and methods of making the same
6758836, Feb 07 2002 C R BARD, INC Split tip dialysis catheter
6858019, Jan 09 2001 ARGON MEDICAL DEVICES, INC Dialysis catheter and methods of insertion
6926735, Dec 23 2002 Maquet Cardiovascular, LLC Multi-lumen vascular grafts having improved self-sealing properties
6976952, Apr 23 1999 Vascutek Limited Expanded polytetrafluoroethylene vascular graft with coating
7011645, Jan 09 2001 ARGON MEDICAL DEVICES, INC Dialysis catheter
7025741, Jun 06 2003 DiaxaMed, LLC Arteriovenous access valve system and process
7036599, Mar 20 2001 TS TECNOSPAMEC S R L Method and apparatus for cutting underwater structures
7101356, Mar 23 2001 Miller Medical LLC Implantable vascular access device
7131959, Jan 23 2003 DF Vital Holdings, LLC Apparatus and methods for occluding an access tube anastomosed to sidewall of an anatomical vessel
7211074, Aug 12 2003 Mozarc Medical US LLC Valved catheter
7244272, Dec 19 2000 Nicast Ltd. Vascular prosthesis and method for production thereof
7252649, Sep 20 1999 Navilyst Medical, Inc Implantable vascular access device
7297158, Jun 14 2004 TC1 LLC Multilayer composite vascular access graft
7399296, Feb 26 2003 Medtronic Vascular, Inc Catheter having highly radiopaque embedded segment
7452374, Apr 24 2003 Maquet Cardiovascular, LLC AV grafts with rapid post-operative self-sealing capabilities
7507229, Oct 10 2002 Covidien LP Wire braid-reinforced microcatheter
7722665, Jul 07 2006 Graft Technologies, Inc.; GRAFT TECHNOLOGIES, INC System and method for providing a graft in a vascular environment
7762977, Oct 08 2003 Merit Medical Systems, Inc Device and method for vascular access
7789908, Jun 25 2002 LifeShield Sciences LLC Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings
7828833, Jun 11 2001 LifeShield Sciences LLC Composite ePTFE/textile prosthesis
7850675, Jul 20 2004 AngioDynamics, Inc Reinforced venous access catheter
8097311, Sep 07 2000 Asahi Kasei Kabushiki Kaisha Seamless master and method of making same
8690815, Oct 08 2003 Merit Medical Systems, Inc Device and method for vascular access
20020049403,
20020151761,
20030100859,
20030139806,
20040024442,
20040073282,
20040099395,
20040147866,
20040193242,
20040215337,
20050137614,
20050203457,
20050215938,
20060058867,
20060064159,
20060081260,
20060118236,
20070078412,
20070078416,
20070078438,
20070088336,
20070123811,
20070135775,
20070161958,
20070167901,
20070173868,
20070191779,
20070219510,
20070233018,
20070249986,
20070249987,
20070265584,
20070293823,
20070293829,
20080009781,
20080027534,
20080167595,
20080306580,
20090227932,
DE29515546,
DE4418910,
JP5212107,
JP5714358,
JP6105798,
JP62112567,
JP984871,
RE41448, Feb 03 1997 Merit Medical Systems, Inc Squitieri hemodialysis and vascular access systems
WO76577,
WO105463,
WO198403036,
WO199624399,
WO1998034676,
WO200076577,
WO2001028456,
WO200105463,
WO2004112880,
WO9519200,
///////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 11 2005HERRIG, JUDSON A GRAFTCATH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0413430105 pdf
Nov 11 2005DOAN, TUANGRAFTCATH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0413430105 pdf
Nov 11 2005ZIEBOL, ROBERT J GRAFTCATH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0413430105 pdf
Nov 11 2005LYNCH, LAURIE E GRAFTCATH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0413430105 pdf
Nov 16 2005PORTER, CHRISTOPHER H GRAFTCATH, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0413430105 pdf
Apr 17 2008GRAFTCATH, INC HEMOSPHERE, INC CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0417800605 pdf
Dec 03 2014HEMOSPHERE, INC CRYOLIFE, INC MERGER SEE DOCUMENT FOR DETAILS 0417810674 pdf
Feb 03 2016CRYOLIFE, INC Merit Medical Systems, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0413430588 pdf
Apr 07 2016Merit Medical Systems, Inc.(assignment on the face of the patent)
Jul 06 2016Merit Medical Systems, IncWELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0396090918 pdf
Jul 27 2018Merit Medical Systems, IncWELLS FARGO BANK, NATIONAL ASSOCIATION, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0469570264 pdf
Date Maintenance Fee Events
Nov 29 2021M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Nov 29 2021M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.


Date Maintenance Schedule
Dec 11 20214 years fee payment window open
Jun 11 20226 months grace period start (w surcharge)
Dec 11 2022patent expiry (for year 4)
Dec 11 20242 years to revive unintentionally abandoned end. (for year 4)
Dec 11 20258 years fee payment window open
Jun 11 20266 months grace period start (w surcharge)
Dec 11 2026patent expiry (for year 8)
Dec 11 20282 years to revive unintentionally abandoned end. (for year 8)
Dec 11 202912 years fee payment window open
Jun 11 20306 months grace period start (w surcharge)
Dec 11 2030patent expiry (for year 12)
Dec 11 20322 years to revive unintentionally abandoned end. (for year 12)