A monitor control system capable of reprogramming the function of a LCD monitor. The monitor control system utilizes VGA signal lines for video signal transmission during normal mode of operation and the same VGA signal lines for transmitting erase/record commands and data when the erasable programmable ROM inside the monitor demands reprogramming. Using an isolator circuit in the monitor control system for isolating an erase/record pathway of an erasable programmable ROM from a normal video pathway, data within the erasable programmable ROM can be modified without opening up the monitor casing. Hence, the modification of monitor function is much more convenient.
|
0. 28. A method for reprogramming a function of a display system, comprising:
receiving a first signal transmitted through a serial signal interface;
determining to operate in a normal mode or a programming mode after receiving the first signal; and
in the programming mode, receiving update information transmitted through the serial signal interface and modifying a content of a memory within the display system so as to update the function of the display system.
0. 38. A display controller for reprogramming a function of a display system, comprising:
a signal detecting circuit for detecting update information transmitted through a serial signal interface; and
an activation circuit coupled to the signal detecting circuit for controlling a conduction state of a video pathway and a conduction state of a record pathway,
wherein when the display system is in a programming mode, update data is recorded in a memory within the display system via the record pathway by the activation circuit.
0. 1. A device for reprogramming the function of a liquid crystal display (LCD) monitor, comprising:
a set of video graphic adapter (VGA) signal lines for transmitting a plurality of erase/record commands and a plurality of erase/record data;
a signal detector coupled to the VGA signal lines for detecting and re-transmitting the erase/record commands and data;
an activation device coupled to the signal detector, wherein the activation device is normally connected to a video pathway, but as soon as erase/record commands are detected, the activation device is switched to an erase/record pathway so that erase/record commands and data can be re-directed;
a read-only-memory (ROM) erase/record command decoder connected to the activation device via the erase/record pathway, wherein the decoder translates the erase/record commands into a plurality of control signals and translates the erase/record data into a plurality of address signals and a plurality of data signals;
a plurality of signal lines for transferring the control signals, the address signals, and the data signals to an external ROM unit, wherein a content of the ROM unit can be modified according to the control signals, the address signals, and the data signals; and
a mode return device coupled to the ROM erase/record command decoder and the activation device, wherein the reprogramming status of the ROM unit can be determined from the address, data and read/write signals so that the activation device can be triggered to switch over connection from the erase/record pathway to the video pathway as soon as reprogramming is finished.
0. 2. The device of
0. 3. The device of
0. 4. The device of
0. 5. The device of
an inter-integrated circuit multiple address content comparator circuit coupled to the VGA signal lines for comparing with a plurality of consecutive address sequences in the erase/record data such that a set signal is transmitted when there is a match with a pre-set address sequence; and
a monitor-in-system programming control flag unit coupled to the inter-integrated circuit multiple address content comparator circuit for transmitting a start signal after receiving the set signal.
0. 6. The device of
a monitor-in-system reprogramming initialization circuit for producing a select signal after receiving the start signal; and
an erase/record pathway isolator for switching over connection from the video pathway to the erase/record pathway after receiving the select signal and transmitting the erase/record commands and data via the erase/record pathway.
0. 7. The device of
an inter-integrated interface circuit for receiving and translating the erase/record commands and data; and
an erase/record command decoder for receiving translated erase/record commands and data and outputting address, data and erase/read/write signals.
0. 8. The device of
a hidden ROM for holding a program code for erase/record commands;
a random access memory (RAM) unit for holding erase/record data;
a central processing unit coupled to the hidden ROM, the RAM unit and the inter-integrated interface circuit, wherein the central processing unit receives the erase/record commands and data passing through the inter-integrated circuit interface circuit and then stores the erase/record data in the RAM unit, while the erase/record commands are decoded by referring to the program code in the hidden ROM and then the decoded commands are re-transmitted; and
an erase/record control register coupled to the central processing unit for receiving the decoded erase/record commands and converting the erase/record commands into the interface control signals or erase/read/write signals, and converting the erase/record data stored in the RAM unit into address and data signals.
0. 9. The device of
0. 10. The device of
a mode return control register for receiving the address, data and erase/read/write signals and producing a mode return signal as soon as a reprogramming operation is finished; and
a mode return circuit coupled to the mode return control register and the activation device for sending a stop signal to the activation device after receiving the mode return signal so that the activation device switches over connection from the erase/record pathway back to the video pathway.
0. 11. The device of
0. 12. The device of
0. 13. A system for reprogramming the function of a liquid crystal display (LCD) monitor, comprising:
an erase/record device for holding and transmitting a plurality of erase/record commands and a plurality of erase/record data;
a set of video graphic adapter (VGA) signal lines coupled to the erase/record device for transmitting the erase/record commands and data; and
a LCD monitor controller with a monitor-in-system programming function, wherein the LCD monitor controller is coupled to the VGA signal lines so that the erase/record commands of the erase/record device and data are received from the erase/record device via the VGA signal lines, and then a plurality of address signals, a plurality of data signals, and a plurality of control signals are exported for reprogramming a ROM unit, wherein
the ROM unit coupled to the LCD monitor controller via signal lines for transferring the address signals, the data signals and the control signals, so that data stored in the ROM unit can be modified according to the address signals and the control signals, and the data signals coming from the LCD monitor controller.
0. 14. The system of
0. 15. The system of
0. 16. The system of
a signal detector coupled to the VGA signal lines for detecting and transmitting the erase/record commands and data;
an activation device coupled to the signal detector, wherein the activation device is normally connected to a video pathway, but as soon as erase/record commands is detected, the activation device is switched to an erase/record pathway so that erase/record commands and data can be re-directed;
a ROM erase/record command decoder connected to the activation device via the erase/record pathway, wherein the decoder translates the erase/record commands into a plurality of erase/read/write signals and translates the erase/record data into a plurality of address signals and a plurality of data signals; and
a mode return device coupled to the ROM record command decoder and the activation device, wherein the reprogramming status of a ROM unit can be determined from the address, data and erase/read/write signals so that the activation device can be triggered to switch over connection from the erase/record pathway to the video pathway as soon as reprogramming is finished.
0. 17. The system of
an inter-integrated circuit multiple address content comparator circuit coupled to the VGA signal lines for comparing with a plurality of consecutive address sequences in the erase/record data such that a set signal is transmitted when there is a match with a pre-set address sequence; and
a monitor-in-system programming control flag unit coupled to the inter-integrated circuit multiple address content comparator circuit for transmitting a start signal after receiving the set signal.
0. 18. The system of
a monitor-in-system reprogramming initialization circuit for producing a select signal after receiving the start signal; and
an erase/record pathway isolator for switching over connection from the video pathway to the erase/record pathway after receiving the select signal and transmitting the erase/record commands and data via the erase/record pathway.
0. 19. The system of
an inter-integrated interface circuit for receiving and translating the erase/record commands and data; and
an erase/record command decoder for receiving translated erase/record commands and data and outputting address, data and erase/read/write signals.
0. 20. The system of
a hidden ROM for holding a program code for erase/record commands;
a random access memory (RAM) unit for holding erase/record data;
a central processing unit coupled to the hidden ROM, the RAM unit and the inter-integrated interface circuit, wherein the central processing unit receives the erase/record commands and data passing through the inter-integrated circuit interface circuit and then stores the erase/record data in the RAM unit, while the erase/record commands are decoded by referring to the program code in the hidden ROM after which the decoded commands are re-transmitted; and
an erase/record control register coupled to the central processing unit for receiving the decoded erase/record commands and converting the erase/record commands into the interface control signals or erase/read/write signals, and converting the erase/record data stored in the RAM unit into address and data signals.
0. 21. The system of
0. 22. The system of
a mode return control register for receiving the address, data and read/write signals and producing a mode return signal as soon as a reprogramming operation is finished; and
a mode return circuit coupled to the mode return control register and the activation device for sending a stop signal to the activation device after receiving the mode return signal so that the activation device switches connection from the erase/record pathway back to the video pathway.
0. 23. The system of
0. 24. The system of
0. 25. A method for reprogramming the function of a liquid crystal display (LCD) monitor system, comprising the steps of:
tapping a plurality of signals from a set of video graphic adapter (VGA) signal lines to perform a plurality of consecutive address sequence comparisons with a preset address sequence;
triggering a programming mode inside the LCD monitor system when one of the tapped consecutive address sequences matches that of the pre-set address sequence;
reading an erase/record command and deciding what actions to take as soon as the programming mode is activated;
reading in erase/record data and writing the erase/record data into a memory unit when the erase/record command is for a write operation, and then returning to the previous step; and
returning to the very first step when the erase/record command demands a return to a non-programming mode.
0. 26. The method of
0. 27. The method of
0. 29. The method of claim 28, wherein in the normal mode, receiving a second signal transmitted through the serial signal interface and performing image processing based on the second signal.
0. 30. The method of claim 29, wherein in the normal mode, the second signal comprises video signals such that the image processing step is performed on the video signals.
0. 31. The method of claim 29, wherein the determining step comprises determining whether to switch from the normal mode to the programming mode according to the first signal, and the switching step from the normal mode to the programming mode comprises switching from a visual path arranged for transmitting the second signal to imaging-processing circuits, to a recording path arranged for transmitting the update information to a decoder coupled to the memory.
0. 32. The method of claim 31, wherein the switching step from the normal mode to the programming mode comprises switching from the visual path coupled to the imaging-processing circuits for performing the image processing, to a recording path coupled to the memory.
0. 33. The method of claim 28, wherein in the programming mode, the update information comprises recording commands and recording data such that the content of the memory is modified according to the recording commands and recording data.
0. 34. The method of claim 33, further comprising determining whether to return to the normal mode from the programming mode according to the recording commands.
0. 35. The method of claim 33, wherein in the programming mode, the modifying step of the content of the memory comprises: converting the recording commands into erase/read/write signals and converting the recording data into an address signal and a data signal for modifying the content of the memory.
0. 36. The method of claim 28, wherein the determining step comprises: determining whether a consecutive address sequence represented by the first signal matches that of a pre-set address sequence; and operating in the programming mode if the consecutive address sequence is determined to match that of the pre-set address sequence.
0. 37. The method of claim 28, wherein the memory is a non-volatile memory.
0. 39. The display controller of claim 38, wherein the signal detecting circuit detects a first signal transmitted through the serial signal interface and determines whether to generate a second signal indicative of a switching from a normal mode to the programming mode according to the first signal.
0. 40. The display controller of claim 39, wherein the activation circuit switches from the normal mode to the programming mode in response to the second signal,
wherein in the normal mode, the activation circuit transmits a third signal transmitted through the serial signal interface to an imaging-processing circuit, and in the programming mode, the activation circuit converts a fourth signal into a fifth signal for modifying a content of the memory within the display system so as to update the function of the display system.
0. 41. The display controller of claim 40, wherein in the programming mode, the fourth signal comprises recording commands and recording data, and the fifth signal comprises erase/read/write signals and an address signal and a data signal such that the content of the memory is modified according to the erase/read/write signals and the address signal and the data signal.
0. 42. The display controller of claim 40, wherein in the normal mode, the third signal comprises video signals such that image processing is performed on the video signals.
0. 43. The display controller of claim 39, wherein the signal detecting circuit determines whether a consecutive address sequence represented by the first signal matches that of a pre-set address sequence and generates the second signal if it determines that the consecutive address sequence matches that of the pre-set address sequence.
0. 44. The display controller of claim 38, wherein the memory is a non-volatile memory.
0. 45. The display controller of claim 38, wherein the activation circuit switches from a normal mode to a programming mode by switching from the video pathway to the record pathway.
|
This application is a continuation-in-part of application Ser. No. 09/575,890, filed on May 22, 2000, now pending, which is a continuation-in-part of application Ser. No. 09/414,251, filed on Oct. 7, 1999, now U.S. Pat. No. 6,295,053. This application is also a continuation-in-part of application Ser. No. 09/543,008, filed on Apr. 4, 2000 now U.S. Pat. No. 6,577,301, now allowed.
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,697,058. The reissue applications are Reissue Application No. 12/906,031, filed on Oct. 15, 2010, now Pat. No. RE44,388, Reissue Application No. 11/361,037, filed on Feb. 22, 2006, now Pat. No. RE40,422, and Reissue Application No. 11/361,038, filed on Feb. 22, 2006, now Pat. No. RE40,574, which are based on U.S. application Ser. No. 10/418,435, filed on Apr. 17, 2003, now U.S. Pat. No. 6,697,058, which is a continuation-in-part of U.S. application Ser. No. 09/575,890, filed on May 22, 2000, now U.S. Pat. No. 6,661,411, which is a continuation of application Ser. No. 09/414,251, filed on Oct. 7, 1999, now U.S. Pat. No. 6,295,053, which claims the priority of Taiwan Application No. 88112204, filed on Jul. 19, 1999. The U.S. Pat. No. 6,697,058 is also a continuation-in-part of application Ser. No. 09/543,008, filed on Apr. 4, 2000, now U.S. Pat. No. 6,577,301, which claims the priority of Taiwan Application No. 88122129, filed on Dec. 16, 1999.
U.S. application Ser. No. 11/299,238, filed on Dec. 9, 2005, now Pat. No. RE40,325, is a reissue application of the U.S. application Ser. No. 09/575,890, filed on May 22, 2000, now U.S. Pat. No. 6,661,411.
U.S. application Ser. No. 14/470,681, filed on Aug. 27, 2014, now pending, is a continuation reissue application of reissue application Ser. No. 12/906,031, filed on Oct. 15, 2010, now Pat. No. RE44,388.
This application is also a continuation reissue application of reissue application Ser. No. 12/906,031, filed on Oct. 15, 2010, now Pat. No. RE44,388, which is a continuation reissue application of reissue application Ser. No. 12/243,919, filed on Oct. 1, 2008, now Pat. No. RE41,966, which is a continuation reissue application of Reissue Application No. 11/361,038, filed on Feb. 22, 2006, now Pat. No. RE40,574. The prior reissue application Ser. No. 11/361,038 is based on U.S. application Ser. No. 10/418,435, filed on Apr. 17, 2003, now U.S. Pat. No. 6,697,058. U.S. Pat. No. 6,697,058 is a continuation-in-part of application Ser. No. 09/575,890, filed on May 22, 2000, now U.S. Pat. No. 6,661,411, which is a continuation-in-part of application Ser. No. 09/414,251, filed on Oct. 7, 1999, now U.S. Pat. No. 6,295,053. The U.S. Pat. No. 6,697,058 is also a continuation-in-part of application Ser. No. 09/543,008, filed on Apr. 4, 2000, now U.S. Pat. No. 6,577,301. The entirety of each of the above-mentioned patents is hereby incorporated by reference herein and made a part of this specification.
1. Field of the Invention
The invention relates to a device and a method for repeatedly updating the function of a liquid quid crystal (LCD) monitor, and more particularly to a device and a method for repeatedly updating the function of a LCD monitor by using Display Data Channel (DDC) signal lines for signal transmission.
2. Description of the Related Art
In a current monitor system, particularly to a LCD monitor, a monitor controller must be exchanged when function modifying or debugging, resulting in high cost consumed. As to a further advanced monitor system, a corresponding monitor controller has a build-in read only memory (ROM) which is an erasable programmable read only memory. By updating data stored in the erasable programmable read only memory, function modification and debugging can be achieved.
Referring to
When it is necessary to modify the function of the monitor system, data stored in the flash ROM 20 needs to be updated. First, the case of the monitor must be opened. Then, the first jumper 14 is used to separate the original circuit and the rewriting pathway to the flash ROM. And then, a cable connected to the socket 80 to transmit the updated data.
Obviously, it is really inconvenient to update the monitor system because the case of the conventional monitor must be first opened, and then the jumper has to be switched for recording the erasable programmable read only memory of the monitor controller 10.
As a result, it is rather inconvenience when the monitor system, such as LCD monitor, is updated because it is necessary to open the case of the monitor and to switch jumpers for recording the erasable programmable read only memory of the monitor controller 10.
The invention is to provides a device for reprogramming function of a LCD monitor, which needs not to open the case and needs no the conventional jumper. Also and, it is not necessary to include a connector with pre-designed layout for isolating the previously original circuit and the rewriting pathway to the flash memory. The displaying function of the LCD monitor can be repeatedly updated and the information about on-screen display.
The present invention provides a LCD monitor control system capable of reprogramming monitor function. The monitor control system utilizes the VGA signal lines for transmitting signals during normal operation. The same VGA signal lines are also used for transmitting erase/record commands to the monitor system and to erase/record data into an external erasable programmable ROM.
The invention provides a device for reprogramming function of a LCD monitor, which includes a set of video graphic adapter (VGA) signal lines for transmitting a plurality of erase/record commands and a plurality of erase/record data. A signal detector is coupled to the VGA signal lines for detecting and re-transmitting the erase/record commands and data. An activation device is coupled to the signal detector, wherein the activation device is normally connected to a video pathway, but as soon as erase/record commands are detected, the activation device is switched to an erase/record pathway so that erase/record commands and data can be re-directed. A read-only-memory (ROM) erase/record command decoder is coupled to the activation device via the erase/record pathway, wherein the decoder translates the erase/record commands into a plurality of erase/read/write signals and translates the erase/record data into a plurality of address signals and a plurality of data signals. A plurality of address signals, a plurality of data signals and a plurality of control signals are coupled to the ROM erase/record command decoder. Consequently, data stored in the external ROM unit can be modified, according to the address, data and erase/read/write signals coming from the command decoder. A mode return device is coupled to the ROM erase/record command decoder and the activation device. Wherein, the reprogramming status of the ROM unit can be determined from the address, data and read/write signals so that the activation device can be triggered to switch over connection from the erase/record pathway to the video pathway as soon as reprogramming is finished.
In the foregoing device, the signal detector further includes an inter-integrated circuit multiple address content comparator circuit, which is coupled to the VGA signal lines for comparing with a plurality of consecutive address sequences in the erase/record data such that a set signal is transmitted when there is a match with a pre-set address sequence. A monitor-in-system programming control flag unit is coupled to the inter-integrated circuit multiple address content comparator circuit for transmitting a start signal after receiving the set signal.
In the foregoing device, the activation device further includes a monitor-in-system reprogramming initialization circuit for producing a select signal after receiving the start signal, as well as an erase/record pathway isolator for switching over connection from the video pathway to the erase/record pathway after receiving the select signal and transmitting the erase/record commands and data via the erase/record pathway.
In the foregoing device, the ROM erase/record command decoder further includes an inter-integrated interface circuit for receiving and translating the erase/record commands and data, as well as an erase/record command decoder for receiving translated erase/record commands and data and outputting address, data and erase/read/write signals.
In the foregoing device, the erase/record command decoder further includes a hidden ROM for holding a program code for erase/record commands; a random access memory (RAM) unit for holding erase/record data; a central processing unit coupled to the hidden ROM, the RAM unit and the inter-integrated interface circuit. Wherein the central processing unit receives the erase/record commands and data passing through the inter-integrated circuit interface circuit and then stores the erase/record data in the RAM unit, while the erase/record commands are decoded by referring to the program code in the hidden ROM and then the decoded commands are re-transmitted. An erase/record control register coupled to the central processing unit for receiving the decoded erase/record commands and converting the erase/record commands into the interface control signals or erase/read/write signals, and converting the erase/record data stored in the RAM unit into address and data signals.
The invention further provides a system for reprogramming the function of a liquid crystal display (LCD) monitor, which comprises an erase/record device for holding and transmitting a plurality of erase/record commands and a plurality of erase/record data. A set of video graphic adapter (VGA) signal lines coupled to the erase/record device for transmitting the erase/record commands and data. And, a LCD monitor controller with a monitor-in-system programming function, wherein the LCD monitor controller is coupled to the VGA signal lines so that the erase/record commands of the erase/record device and data are received from the erase/record device via the VGA signal lines, and then a plurality of address signals, a plurality of data signals, and a plurality of control signals are exported for reprogramming a ROM unit, wherein the ROM unit coupled to the LCD monitor controller via signal lines for transferring the address signals, the data signals and the control signals, so that data stored in the ROM unit can be modified according to the address signals and the control signals, and the data signals coming from the LCD monitor controller.
In the forgoing invention, the LCD monitor controller with monitor-in-system programming function includes a signal detector coupled to the VGA signal lines for detecting and transmitting the erase/record commands and data. An activation device is coupled to the signal detector. Wherein the activation device is normally connected to a video pathway, but as soon as erase/record commands is detected, the activation device is switched to an erase/record pathway so that erase/record commands and data can be re-directed. A ROM erase/record command decoder is coupled to the activation device via the erase/record pathway, wherein the decoder translates the erase/record commands into a plurality of erase/read/write signals and translates the erase/record data into a plurality of address signals and a plurality of data. A mode return device is coupled to the ROM erase/record command decoder and the activation device. Wherein, the reprogramming status of the ROM unit can be determined from the address, data and erase/read/write signals so that the activation device can be triggered to switch over connection from the erase/record pathway to the video pathway as soon as reprogramming is finished.
The invention also provides a method for reprogramming the function of a LCD monitor system. The method includes tapping a plurality of signals from a set of video graphic adapter (VGA) signal lines to perform a plurality of consecutive address sequence comparisons with a pre-set address sequence. A programming mode inside the LCD monitor system is triggered when one of the tapped consecutive address sequences matches that of the pre-set address sequence. An erase/record command is read and it is decided what actions to take as soon as the programming mode is activated. The erase/record data is read and the erase/record data is written into a memory unit when the erase/record command is for a write operation, and then returning to the previous step. When the erase/record command demands a return to a non-programming mode, the process returns back to the very first step.
The invention will become more fully understood from the detailed description given hereinafter and the accompanying drawings which are given by way of illustration only, and thus do not limit the present invention, and wherein:
Referring to
When the function of driving program in the flash ROM 120 is desired to be updated, the updated program and data can be written to the flash ROM 120 without the need of opening the case of the monitor and the jumper for switching. For example, the updated information can be input through the SDA and SCL signal lines. Compared to the prior art, it is unnecessary to open the case of the monitor. In other words, the function update of the monitor can be achieved by just using the original signal lines 18.
Alternatively, the erase/record device can utilize an inter-integrated circuit (IIC) interface circuit platform. To reprogram the function of the monitor, erase/record commands and data are first written into the memory area of the IIC interface circuit platform. The erase/record commands and data are sent in the IIC interface format to the ROM inside the monitor controller 180 directly via the VGA signal lines.
In this embodiment of the invention, the serial data line SDA and the serial clock line SCL of the VGA signal lines are used to transmit erase/record commands and data in the IIC interface format. In practice, any two of the signal lines including SDA, SCL, Hsync and Vsync can be used for transmitting erase/record commands and data in the IIC interface format.
VGA signal lines are connected to the signal detector 300. The signal detector 300 is a device for detecting any erase/record commands and data on the VGA signal lines. Signals are next delivered to the activation device 400.
The activation device 400 has a video pathway and an erase/record pathway. When erase/record commands are detected by the signal detector 300, the erase/record commands and data are re-directed to the ROM erase/record command decoder 500 via the erase/record pathway by the activation device 400. In the normal mode of operation, video signals are re-directed to the image-processing circuits 700 via the video pathway by the activation device 400.
The ROM erase/record command decoder 500 translates the erase/record commands into erase/read/write signals to be used by the ROM unit 120 and the erase/record data are also translated into addresses and data signals. The translated signals are the sent to the ROM unit 120 so that monitor function can be modified.
The ROM erase/record command decoder 500 produces the address signals, the data signals, and the control signals and then exports the signals to an external ROM unit (not shown), which stores a program code and data used for performing displaying function. The external ROM can, for example, be the flash memory or erasable programmable ROM. However, if an updated program is desired, the program code can be erased and reprogrammed according to the address signals, data signals and erase/read/write signals picked up by the ROM unit.
The mode return device 600 is coupled to the ROM erase/record command decoder 500 and the activation device 400. According to address, data and read/write signals feedback from the decoder 500, progress in the reprogramming of ROM 120 can be determined. When the reprogramming is finished, the mode return device 600 signals to the activation device 400 so that connection to the video pathway is re-established.
In the following, elements and operation of each device are described in detail.
The hidden ROM 522 is a device for storing the program code of erase/record commands, and the RAM unit 526 is a device for storing erase/record data. The central processing unit 524 picks up the translated erase/record commands and data from the IIC interface circuit. The erase/record data is stored in the RAM unit 526. The erase/record commands are decoded using the decoding program inside the hidden ROM 522. The decoded erase/record commands are transmitted to an erase/record control register 528 where the commands are converted into ROM interface control signals or erase/read/write signals. The erase/record data stored in the RAM unit 526 is converted into address and data signals by the central processing unit 524.
The erase/record command decoder 520 can also be implemented using a hardware circuit. The erase/record commands picked up from the IIC circuit are divided into different states so that the commands can easily be converted into erase/read/write, address and data signals.
In summary, the invention provides a monitor control system capable of reprogramming the function of a LCD monitor. The monitor control system utilizes the VGA signal lines for signal transmission in normal operation and the same VGA signal lines in the modification of data inside the erasable programmable ROM of a monitor controller in the reprogramming mode. The original cable used by the VGA card can be used to rewrite a program used by the LCD monitor controller without opening the case and no need of the jumper. Also and, the related on-screen display information can also be updated.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5539479, | May 31 1995 | EchoStar Technologies Corporation | Video receiver display of cursor and menu overlaying video |
5657091, | Nov 01 1995 | International Business Machines Corporation | Video display controller, user interface and programming structure for such interface |
5686934, | Aug 02 1991 | Canon Kabushiki Kaisha | Display control apparatus |
5872554, | Oct 16 1995 | Inventec Corporation | Method and apparatus for non-blinking displaying of grayscale image on monochrome LCD screen |
6011546, | Nov 01 1995 | MEDIATEK INC | Programming structure for user interfaces |
6020879, | Oct 03 1996 | RPX Corporation | Power saving circuit of LCD unit |
6064359, | Jul 09 1997 | Seiko Epson Corporation | Frame rate modulation for liquid crystal display (LCD) |
6243741, | Dec 13 1996 | Saturn Licensing LLC | Remote commander and network connecting system |
6268845, | Jun 11 1997 | Hewlett Packard Enterprise Development LP | Bezel button controls over USB |
6295053, | Jul 19 1999 | Novatek Microelectronics Corp. | System for reprogramming monitor function |
6302795, | Jul 31 1998 | SONY NETWORK ENTERTAINMENT PLATFORM INC ; Sony Computer Entertainment Inc | Data processing system, apparatus and method |
6525667, | Apr 14 1997 | Idec Izumi Corporation | Operation indicator device and panel unit |
6567845, | Jul 31 1998 | SONY NETWORK ENTERTAINMENT PLATFORM INC ; Sony Computer Entertainment Inc | System for and method of processing data, and apparatus and method of sending and receiving data |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 02 2015 | Novatek Microelectronics Corp. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jan 15 2022 | 4 years fee payment window open |
Jul 15 2022 | 6 months grace period start (w surcharge) |
Jan 15 2023 | patent expiry (for year 4) |
Jan 15 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 15 2026 | 8 years fee payment window open |
Jul 15 2026 | 6 months grace period start (w surcharge) |
Jan 15 2027 | patent expiry (for year 8) |
Jan 15 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 15 2030 | 12 years fee payment window open |
Jul 15 2030 | 6 months grace period start (w surcharge) |
Jan 15 2031 | patent expiry (for year 12) |
Jan 15 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |