A fluid heating system for heating fluid flowing in a pipe to prevent freezing and ice buildup. A controllable variable flow heat exchanger is utilized within the pipe to provide thermal transfer to the fluid flow.
|
13. A transportable fluid heating system comprising:
a pipe comprising a fluid input having a first flange thereon, a fluid output having a second flange thereon, the first and second flanges for connecting the pipe to a flanged pipeline;
a heat exchanger connected to the pipe via a heat exchanger inlet and a heat exchanger outlet;
a valve installed in the pipe for diverting a fluid flowing in a pipeline connected to the pipe through the heat exchanger inlet;
a closed heating line within the heat exchanger, the heating line for receiving a fluid heated to a temperature higher than the diverted fluid, the heated fluid circulating through the heating line for transferring heat from the heated fluid to the diverted fluid in the heat exchanger; and
a frame comprising a plurality of rigid members connected to each other, to the heat exchanger, and to the pipe, for securely supporting the heat exchanger and the pipe, and for lifting and transporting the fluid heating system,
wherein a portion of the heat exchanger outlet is integrated within the frame for returning heated fluid from the heat exchanger back to the pipeline.
9. A method of heating a fluid flowing in a pipeline, the method comprising:
providing a fluid heating system to an existing supply pipeline, the heating system comprising a pipeline section having opposite ends each connectable to an existing pipeline, the pipeline section having an intermediate valve, passageways forming an inlet and an outlet into a heat exchanger of the heating system, and a frame supporting the heating system, wherein a portion of at least one of the heat exchanger inlet or outlet is integral to the frame;
diverting fluid flowing in the supply pipeline into an interior compartment of the heat exchanger, the diverted fluid having a first temperature;
circulating a heated fluid in a closed heating line within the heat exchanger, wherein the heated fluid comprises a temperature greater than the first temperature and wherein the diverted fluid flows through the heat exchanger in physical contact with the heating line; and
returning the diverted fluid from the heat exchanger back to the pipeline through the portion of the frame, wherein the returned fluid is heated within the interior compartment to a second temperature that is greater than the first temperature.
1. A fluid heating system comprising:
a pipe comprising a fluid input and a fluid output;
a heat exchanger connected to the pipe via a heat exchanger inlet and a heat exchanger outlet, the heat exchanger inlet for diverting a fluid flowing in the pipe into a heat exchanger interior compartment, and the heat exchanger outlet for returning the diverted fluid from the heat exchanger interior compartment back to the pipe;
a heating line within the heat exchanger interior compartment, the heating line for circulating a heated fluid therethrough configured for heating the diverted fluid in the heat exchanger interior compartment; and
a frame for supporting the pipe and the heat exchanger, the frame including;
a first cross member for supporting a first end of the pipe and heat exchanger, the first end of the pipe and heat exchanger being proximate the fluid input;
a second cross member for supporting a second end of the pipe and the heat exchanger, the second end of the pipe and heat exchanger being proximate the fluid output, wherein the second cross member comprises a portion of the heat exchanger outlet; and
vertical members each attached to the cross members, the vertical members comprising at least one attachment point for securing a lifting means to the frame wherein the fluid heating system may be lifted and transported thereby.
2. The fluid heating system of
3. The fluid heating system of
4. The fluid heating system of
5. The fluid heating system of
6. The fluid heating system of
7. The fluid heating system of
8. The fluid heating system of
10. The method of
11. The method of
12. The method of
14. The transportable fluid heating system of
|
This invention relates to preventing ice buildup in a fluid transport pipeline. More particularly, the invention relates to warming a fluid inside of a transport pipeline.
In particular climates it is desired to heat, thaw and prevent the freezing of pipelines. The pipelines are used to transfer fluids, such as water or oil, across a distance, sometimes through areas of cold weather. Presently, heat exchangers are used to keep the fluid in the pipeline from freezing. However, heat exchangers require that the fluid in the pipeline be flowing in order to be effective. Once the fluid stops moving, the heat exchanger is unable to heat the fluid thereby making the system ineffective. Another method to heat fluid in a pipeline is to heat the exterior of the pipeline, which requires the installation of heated lines on the pipe. However, these transfer lines are generally inefficient as much of the heat is lost to the ambient air.
Yet another method is to insert a device into the line and use a vacuum to draw the fluid from the line. Once drained the fluid is heated and pumped back into the pipeline. This method is both very labor intensive and requires the special equipment such as vacuum trucks.
Therefore, a system for keeping high volumes of fluid from freezing is desired. Further, a system for keeping fluids from freezing with minimal intervention (disassembly of pipelines, draining and down time) is desired. Even further, a system to provide safe, continuous heat over long distance pipelines, and which is transportable to remote locations as a unit is desired.
In one form the invention relates to a fluid heating system which may be installed into a pipeline along the length of the pipeline. The fluid heating system is capable of being transported to a pipeline location and to heat fluid flowing through the pipeline. Flowing pipeline fluid may be diverted in a variable amount to be heated in an attached heat exchanger and then returned to the pipeline flow.
In one embodiment, the invention includes a fluid heating system having a pipe comprising a fluid input and a fluid output for connecting to a pipeline. A heat exchanger is connected to the pipe via an inlet and an outlet. The heat exchanger inlet diverts a fluid flowing in the pipe into a heat exchanger interior compartment to be heated and then returned from the heat exchanger back to the pipe. A heating line within the heat exchanger interior compartment includes a heated fluid circulating therethrough for heating the diverted fluid.
In yet another embodiment, the invention includes a method of heating a fluid flowing in a pipeline, wherein fluid flowing in the pipeline is diverted into an interior compartment of a heat exchanger. The diverted fluid typically requires heating to increase its current temperature. Heated fluid is circulated in a closed heating line within the heat exchanger, wherein the diverted fluid flows through the heat exchanger in physical contact with the heating line and is thereby heated. The heated diverted fluid is returned back to the pipeline flow.
In yet another embodiment, the invention includes a transportable fluid heating system having a pipe section with a fluid input and a fluid output each having a flange connected thereto for being connected to a pipeline. A heat exchanger is connected to the pipe in two places via a heat exchanger inlet and outlet. A valve installed in the pipe diverts fluid flowing in the pipeline through the heat exchanger inlet. A closed heating line within the heat exchanger receives a fluid heated to a temperature higher than the diverted fluid. The heated fluid circulates through the heating line for transferring heat from the heated fluid to the diverted fluid. A frame made from a plurality of rigid members is attached to the heat exchanger and to the pipe for securely supporting the heat exchanger and the pipe, and for lifting and transporting the fluid heating system.
The present invention is disclosed with reference to the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The examples set out herein illustrates several embodiments of the invention but should not be construed as limiting the scope of the invention in any manner.
Referring generally to
Referring now to
The pipeline carries pressurized fluid which travels therethrough in the direction indicated by directional arrows 102 and 104, which pressure is sufficient to drive the fluid through the heating system 100 when the system is installed in the pipeline 109 as described above. The amount of fluid diverted from the fluid flow in the pipe 103 through the heat exchanger inlet 122 is controlled by valve 106. A handle 107 on the valve may be manually rotated to open and close the valve 106 in a continuously variable fashion, which valve may be a butterfly valve as is commonly known to those having ordinary skill in the art. If the valve 106 is partially opened, then an amount of fluid flowing through a pipeline 109 connected to pipe 103 continues flowing through the pipe 103 as indicated by arrow 108 without diversion into the heat exchanger 117, while a remaining portion is diverted through the heat exchanger as described above. If the valve 106 is completely open then a larger volume of the fluid flowing from an attached pipeline 109 into pipe 103 may travel through the pipe 103 without being diverted into the heat exchanger as compared with a volume of fluid that travels through the pipe 103 when the valve is partially or completely closed. The valve 106 may be of the type that is fitted between pipe flanges 126, 128, such as a wafer and lug style butterfly valve made by C & C Industries of Houston, Tex.
The heat exchanger 117 connected to the pipe 103 includes an exterior housing, or wall 119, a heat exchanger inlet 122, for diverting a fluid flowing in the pipe into the heat exchanger interior compartment 118, and a heat exchanger outlet 124 wherein the fluid exits the heat exchanger back into pipe 103. The interior compartment 118 of the heat exchanger includes a closed heating line 121 for circulating a fluid heated to a temperature greater than the fluid flowing in the pipeline and diverted into the heat exchanger so that heat from the heated fluid may be thermally transferred to the diverted fluid, thereby raising its temperature. Because the heating line is closed, the heated fluid circulating therein does not come into contact with, i.e. does not mix with, the fluid diverted from the pipeline. The heated fluid enters the heating line at a heating line inlet 114 and exits the heating line through a heating line outlet 116. The heating fluid may include propylene glycol, water, oil, or other suitable heating fluids. The heating fluid can be heated using any of a variety of known heating devices such as boilers, electric based heaters, hydronic heaters, or other suitable heating devices, which may be closed system heaters or open air heaters. The heating fluids heated thereby may be transported over heating lines of any convenient length, ranging anywhere from several inches to over one hundred feet, and are connected to heating line input and output 131, 132, respectively.
The heating line input 114 penetrates a wall 119 of the heat exchanger 117 as does the heating line outlet 116. In one embodiment, an overall configuration of the heating line 121 within the heat exchanger interior compartment 118 has a U shape, therefore, the heating line input 114 and output 116 penetrate a common wall of the heat exchanger proximate to each other. The heating line may be made from copper or other metal which, because of the heated fluid flowing through it, becomes heated to a temperature higher than the diverted fluid flowing through the interior compartment 118 of the heat exchanger 117. The diverted fluid flowing through the interior compartment 118 of the heat exchanger 117 is heated by coming into physical contact with the surface of the heating line 121 while flowing through the heat exchanger. One example of a heat exchanger that may be used in the fluid heating system 100 is a straight tube heat exchanger made by Xylem, Inc. of Morton Grove, Ill.
As shown in
With reference to
Unless otherwise specified herein, most of the pipe, heat exchanger, and frame assemblies described herein are made from a suitable grade of steel. The frame members as shown include rigid steel frame members having a square cross section as exemplary embodiments but are not limited to such embodiments. Moreover, the frame members may be attached in a variety of configurations sufficient to support and transport the fluid heating system described herein. As described herein, the term “attached” or “attaching” may refer to nut and bolt connections, braces, screws, and other suitable mechanical connection, and also may include welding, for example, arc welding components together such as frame members or supports for the pipe and the heat exchanger. In other instances, such as connecting pipe or pipeline sections together, bolted flanges are used for attaching these sections, as described above.
While the invention has been described with reference to particular embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope of the invention.
Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope and spirit of the appended claims.
While the invention has been described with reference to particular embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope of the invention.
Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope and spirit of the appended claims.
Barendregt, Jeremy, Barendregt, Caleb
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2011100, | |||
2107933, | |||
3283123, | |||
3744554, | |||
3756268, | |||
4090494, | Jan 24 1977 | Southern Illinois University Foundation | Solar collector |
4286613, | Jan 16 1980 | Apparatus for and method of freeze protecting plumbing | |
4331106, | Mar 12 1981 | Combustion Engineering, Inc. | Heat exchanger support apparatus in a fluidized bed |
4397303, | Feb 09 1981 | CONTECH CONSTRUCTION PRODUCTS INC , A OHIO CORP | Heat exchanger for concentrating solar collectors and method for making the heat exchanger |
5027842, | Sep 11 1990 | BJ Services Company | Process for commissioning pipelines |
6070615, | Jul 21 1998 | United Microelectronics Corp. | Leakproof and fireproof tubing |
883103, | |||
20120017575, | |||
CN201163100, | |||
CN202304510, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 21 2017 | Certek Heat Machine Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 21 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Dec 05 2017 | SMAL: Entity status set to Small. |
Nov 25 2019 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jan 15 2024 | REM: Maintenance Fee Reminder Mailed. |
Jul 01 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 19 2022 | 4 years fee payment window open |
Sep 19 2022 | 6 months grace period start (w surcharge) |
Mar 19 2023 | patent expiry (for year 4) |
Mar 19 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 19 2026 | 8 years fee payment window open |
Sep 19 2026 | 6 months grace period start (w surcharge) |
Mar 19 2027 | patent expiry (for year 8) |
Mar 19 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 19 2030 | 12 years fee payment window open |
Sep 19 2030 | 6 months grace period start (w surcharge) |
Mar 19 2031 | patent expiry (for year 12) |
Mar 19 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |