A self-cleaning litter box for cats employs a comb drive to drive a comb through litter to remove waste from the litter. A sensor for detecting the presence of an obstruction is coupled to the comb drive and stops the comb drive upon detecting an obstruction. A manual mode selector switch and an actuating switch are provided to manually activate the cleaning of the litter box at a time deemed appropriate by the cat owner. A foot pedal unit may be provided for semi-automatic use. A removable tray for cat litter may be provided. The tray may be disposable. A pivotable ramp facilitates ingress to, and egress from, the litter box. The ramp may be carpeted. A tray receives the litter box and a hood encloses the litter box to provide privacy.

Patent
   RE47347
Priority
Jul 17 1998
Filed
Apr 30 2004
Issued
Apr 16 2019
Expiry
Jul 17 2018

TERM.DISCL.
Assg.orig
Entity
Large
1
87
EXPIRED<2yrs
0. 8. A cat litter apparatus, comprising:
a litter chamber;
a removable tray disposed in sliding engagement with a bottom of the litter chamber to receive the litter; and
a latching mechanism adapted to selectively retain the tray in the litter chamber, the latching mechanism comprising a resilient locking tab on the tray and a locking projection on the litter chamber, the tab being removably retained by the projection as a result of said tray being completely slid into the litter chamber.
1. A cat litter apparatus, comprising:
a litter chamber;
an enclosure located over said litter chamber, said litter chamber being removable from said enclosure;
a removable litter tray disposed in sliding engagement with a bottom of the litter chamber to receive the litter; and
a tray lock latching mechanism for selectively retaining the tray in the litter chamber, said tray lock latching mechanism comprising a resilient locking tab on a selected one of said tray and said litter chamber and a locking projection on the other of said tray and said litter chamber, said tab being removably retained in by said projection as a result of said tray being completely slid into the litter chamber.
7. A litter box, comprising:
a housing defining a litter chamber;
a removable tray for receiving cat litter, said tray being located in the litter chamber and being in slidable engagement with a bottom of the litter chamber;
a comb movably disposed in the removable tray for raking the cat litter supported in the tray; and
a lock latching mechanism for retaining the removable tray in the housing, the lock latching mechanism including a locking projection coupled to the housing and a resilient locking tab coupled to the removable tray, the locking tab selectively engaging the locking projection as a result of said tray being completely slid into the litter chamber.
0. 12. A litter box, comprising:
a litter chamber;
a removable tray adapted to receive litter, the tray being located in the litter chamber;
a comb movably disposed in the litter chamber between a storage position and a discharge position, the comb being drivable by a motor to rake the litter supported in the tray;
a sensor coupled to the motor and positioned to detect contact with an obstruction when said comb is between the storage position and the discharge position; and
a latching mechanism for retaining the removable tray in the housing, the latching mechanism including a locking projection coupled to the housing and a resilient locking tab coupled to the removable tray, the locking tab selectively engaging the locking projection.
2. The apparatus of claim 1, wherein the further comprising a tray lock that is selectively moved between a locking position and an unlocking position, a portion of said tray lock interfering with an end of the removable tray to also retain the tray in the housing said litter chamber when the lock is in the locking position.
3. The apparatus of claim 1, further comprising:
a comb disposed in said litter chamber;
a comb drive coupled to said comb and including a drive motor; and
a sensor coupled to said drive motor and positioned to detect contact with an obstruction while said comb moves between a storage position and a discharge position.
4. The apparatus of claim 3, wherein said sensor provides a shut-off signal to said comb drive in response to detection of the obstruction.
5. The apparatus of claim 4, wherein said sensor includes a switch electrically coupled to said drive motor, said switch being movable between an open position and a closed position, said switch providing the shut-off signal to said comb drive when in the closed position.
6. The apparatus of claim 5, wherein said sensor is a leaf switch.
0. 9. The cat litter apparatus, as set forth in claim 8, comprising a lid coupled to the litter chamber.
0. 10. The cat litter apparatus, as set forth in claim 8, wherein the tray is formed of a plastic material.
0. 11. The cat litter apparatus, as set forth in claim 8, wherein the tray is disposable.
0. 13. The litter box, as set forth in claim 12, comprising a lid coupled to the litter chamber.
0. 14. The litter box, as set forth in claim 12, wherein the tray is formed of a plastic material.
0. 15. The litter box, as set forth in claim 12, wherein the tray is disposable.

338 331. The shafts 335 are sized to extend through apertures 339 formed in the discharge end wall 224, with the disks 333 cooperating with the circlip 330 331 to retain the tray locks 330 in position. Thus, tray locks 330 are rotatably connected to the discharge end wall 224. The apertures 339 are located on the end wall 224 so that the offset portion of the disk 333 rotates between an unlocking position (FIG. 13), wherein the removable tray 304 is released for removal, and a locking position (FIG. 14). In the locking position, a portion of the disk 333 overlaps the distal end 305 of the removable tray to prevent removal, as illustrated in phantom in FIG. 15. The tray locks 330 can be adapted to have grooves 341. The grooves 341 would be used to allow a tool 334, such as a screwdriver or a coin, to lock and unlock the tray locks 330. Other indicia 343 may be added to indicate whether the tray locks 300 330 are in the locking or unlocking position.

As illustrated in FIG. 15, the removable tray 300 preferably includes a beveled edge 345 formed on the distal end 305, and the discharge end wall 224 includes a beveled step 347 formed to be complementary to the beveled edge 345. The beveled edge 345 and step 347 cooperate to provide a seam that resists litter intrusion.

To remove the litter tray 300, as illustrated in FIGS. 16-18, a user inserts a tool 334 into the tray locks 330 to rotate the tray locks 330 in direction 332 (FIG. 16) to the unlocking position. Of course, different tray locks 330 can be used. For example, a sliding tray lock could be used. Once both tray locks 330 are in the unlocking position, the user may depress the locking tab 302 (FIG. 17) to disengage the tab 302 from the locking projection 320. Once disengaged, the tray 300 may be removed from litter box 20 by pulling on the handle portion 306 in the direction 336 (FIG. 18).

In the preferred embodiment of the present invention, as shown schematically in FIGS. 1-3 and in detail in FIGS. 19-20, a reverse sensor 400 is coupled to a back side of the carriage 45 to avoid injury to a cat in the event that the carriage makes contact with the cat during movement toward the storage position. It will be appreciated that a forward sensor can be used to avoid injury to a cat if the carriage 45 contacts the cat during movement toward the discharge position. The reverse sensor 400 includes a reverse sensing bar 402, an actuating bar 408, and a leaf switch 410. The leaf switch 410 is connected to the carriage 45 at a point adjacent the actuating bar 408. The reverse sensing bar 402 held in a flexible relationship with the carriage 45 by first and second bar holders 404, 406 molded therein (FIG. 6). The bar holders 404, 406 contain springs (not shown) to provide this flexible relationship.

Referring to FIG. 19, the leaf switch 410 includes a base 420, a flexible leaf switch arm 426, a rigid leaf switch arm 422 and a leaf switch arm separator 424. The separator 424 prevents the contacts 423, 425 from inadvertently making contact. The leaf switch arms 422, 426 have leaf switch contacts 423, 425. The leaf switch arms 427, 429 may also include leaf switch contact protectors 427, 429, respectively, to prevent damage to the contacts 423, 425.

When the carriage 45 contacts a cat, or other obstruction, a force is applied to the reverse sensing bar 402, and the force is transmitted to the flexible leaf switch arm 426 by the actuating bar 408. The actuating bar 408 pushes the leaf switch arm 422 to bend the arm 422 around the leaf switch arm separator 424, causing the leaf switch contact 425 to touch contact 423. The leaf switch 410 is closed, and an electrical connection is maintained, while the contacts 423, 425 are in contact with each other. When the leaf switch 410 is closed, a signal is generated to stop and reverse the motor 55 (described below).

The leaf switch 410 is resiliently biased toward its open position (that is, the contacts 423, 425 are biased away from each other). The leaf switch 410 will be closed (as described above) when the sensing bar 402 contacts the end wall 25 and the contact 425 of the flexible leaf switch arm 426 is forced into contact with the contact 423 of the rigid leaf switch arm 422.

Referring now to FIG. 21, motor 55 is energized from battery 56 through a pre-programmed micro-processor control 96. Although not shown in FIG. 21, a conventional electrical power supply may alternatively be used to energize the motor 55. Control 96 receives input signals from single space sensors 82, 84. Additional inputs to control 96 may be supplied by a mode select switch 91, a motor stall sensor 92, a battery voltage sensor 93, a home position sensor 94 for the comb 43, a reverse sensor 400, and a manual operation switch 370.

The mode select switch 91 (FIG. 5) is a three position switch. The mode select switch 91 is switchable between an automatic operation selecting position, a manual operation selecting position and an off position. The mode select switch 91 allows a user to decide how the litter box 20 is to operate (manually, automatically, or not at all). No power is supplied to the litter box 20 when the mode select switch 91 is in the off position. The mode select switch 91 provides an automatic operation input and a manual operation input to the control 96. In the off modes no input is generated because all components, including the control 96, will not be functioning.

The motor stall sensor 92 determines whether the motor 55 is stalled. If the motor 55 is started by the control 96, but becomes stalled, the motor stall sensor 92 will supply a motor stall input to the control 96.

The battery voltage sensor 93 determines whether there is a low battery voltage condition. If there is a low battery voltage condition, the battery voltage sensor 93 supplies a low battery voltage condition input to the control 96. The control 96 sends a signal to sound a buzzer 97 when the low voltage input is received.

The home position sensor 94 for the comb 43 determines whether the comb 43 has reached the “home” position. If the comb 43 has reached the “home” position, the home position sensor 94 supplies a “home” position input to the control 96. In response to the home position input, the control 96 stops the motor 55.

A manual operation foot switch 370 (FIG. 22) allows a user to initiate manual operation of the litter box 20 by closing the switch 370 if the mode selector switch 91 is in the manual position. When the switch 370 is closed, a manual operation switch activated input is sent to the control 96.

Limit switches 95, 99 may be provided at the storage end 28 and at the discharge end 29 of the litter box 20. One or more buzzers or other alarm devices 97 are included in the circuit so that the cat owner can be signaled when the litter box 20 is functional or when other conditions occur, such as an insufficient litter supply in the box 20 or a fill waste receptacle 68 or low battery voltage.

If desired, the apparatus 200 may be provided with a shut-off timer system (not illustrated). The shut-off timer system may be used to disable operation of the apparatus 200 for a predetermined period of time, for example, six hours. Thus, for example, the apparatus 200 may be disabled during the middle of the night, so that the apparatus 200 does not disturb resting persons or other pets. A push button over-ride system (not illustrated) may be provided to manually initiate a raking operation when the apparatus 200 is otherwise disabled by the shut-off timer system.

The motor stall sensor 92, battery voltage sensor 93, buzzer 97, and leaf switch 410 of reverse sensor 400 may all be packaged in the same housing with the motor 55. Such packaging would be particularly advantageous by eliminating the need for long wiring runs.

The mode selector switch 91, home position sensor 94, limit switches 95,99 and manual operation switch 370 can be incorporated in the litter box 20 in appropriate positions as desired. Home position sensor 94 may be coupled to or adjacent to the “home” position. For example, if the “home” position is determined to be the storage end 29, then the sensor 94 should be located adjacent to the storage end wall 25. Limit switch 95 can be positioned to be actuated by any part of the comb 43 or the carriage 45. The limit switch 95 is disposed at the storage end 28 of litter box 20 and is activated when the comb 43 or carriage 45 reaches the storage end 28 of the litter box 20. The limit switch 99 is disposed at the discharge end 29 of litter box 20 and is activated when the comb 43 or carriage 45 reaches the discharge end 29 of the litter box 20. Manual operation switch 370 can be positioned adjacent the mode select switch 91, the carriage 45 or any other desired location on the litter box 20.

In operation, the comb 43 may initially be located at the comb storage end 29. In this condition, the comb shaft 41 is elevated, the guide wheels 52, 53 having ridden up the extensions 36, 37 of tracks 32, 33. The switch 58 and the lever 59 have engaged the pin 61; the motor 55 is shut off, but is set for forward movement. Removable tray 300 is filled with litter, approximately to level 38. Photo detectors 82 and 84 receive light beams from sources 86 on the near wall 22 of the litter box (FIGS. 4 and 23). With no cat present in the litter box 20, reception of the light beams by photo detectors 82 and 84 is unimpeded. All other mechanisms are in the positions shown in FIG. 1. Lid 69 is closed over the receptacle 68. The receptacle lid 69 is engaged by pin 75 at the end of the lever 73, but remains closed because the lid opening lever 73 is inactive.

At this juncture, it may be assumed that a cat (not illustrated) enters the litter box 20 for the purpose of elimination of either liquid or solid waste. With some kinds of litter, the urine from the cat creates a clump in the litter with which the bottom portion of housing 21 is filled. For solid elimination, the clump is formed by the waste itself In either instance, the cat is likely to bury the waste or to cover it with other litter, especially with respect to solid waste. Thus, clumps 71 are produced by the cat, and those clumps are located at some level in the litter above the bottom of the removable tray 300 (FIG. 23). It is assumed that the box has previously been used and that previously deposited waste clumps 72 are already present in the waste receptacle 68.

While the cat is present in the litter box 20, the light beam to at least one of the photo detectors 82 and 84 is cut off. Usually, both light beams are blocked. However, this does not initiate a self-cleaning operation in the litter box 20. Subsequently, when the cat leaves the litter box 20, the light beam or beams again impinge upon the photo detectors. Accordingly, an output signal from one or both cat sensors is supplied to control 96 (FIG. 21). At this point, however, there still is no actuation of a self-cleaning operation in the box 20 by the comb 43. The reason for the delay is that the cat might return to the litter box, deciding that its elimination activities have not been completed. In these circumstances, the light beams to one or both of the photo detectors 82, 84 are again cut off and the preset delay interval for actuation of a self-cleaning operation is not completed.

Ultimately, the cat leaves the litter box 20 for an interval long enough to exceed the preset time delay that is set into control 96. That time interval is subject to substantial variation; a range of two to seven minutes is usually desirable. The self-cleaning operation carried out by the comb 43 should not be initiated while the cat is in the immediate vicinity because it is undesirable to cause the cat to have reason to be afraid of the litter box 20.

In a preferred embodiment, the operation of the self-cleaning litter box 20 can be also be performed manually. Instead of waiting for the predetermined delay period, as previously described, cleaning of the litter box 20 may be initiated by the cat owner. Manual operation can be achieved by placing the mode select switch 91 (FIG. 5) into a manual operation selecting position. With the mode select switch 91 in this position, inputs from the photo detectors 82, 84 do not initiate the preset delay feature previously described. Instead, the control 96 looks for an input from the manual operation switch 370.

FIG. 22 illustrates the use of a foot switch 372 as the manual operation switch 370. The foot switch 372 is a normally open switch providing no input to the control 96 when open. The foot switch 372 is closed and thus activated when a cat owner steps on it. The closing of the foot switch 372 provides an input to the control 96 causing the comb 43 to rake the litter (described below). This may be desirable when the cat owner wants to remove the waste from the litter box 20 at a time he or she deems appropriate.

After the cat has left litter box 20 for a time exceeding the preset delay interval in control 96 (automatic operation) or after the manual operation switch 370 has been activated (in manual mode), motor 55 is energized from battery 56, or a conventional power supply (not shown), through control 96. As a consequence, gear 57 and shaft 41 are rotated in the direction of the arrow B in FIG. 1. The initial movement of the comb carriage 45 (shaft 41, motor 55, and battery housing 56) is downwardly along track extensions 36 and 37. In the course of this downward movement of comb 43, its tines 44 are pushed downwardly into the litter in the bottom portion of housing 21, well below fill line 38. The bottoms of the tines 44, when this movement is completed, are quite close to the bottom of the removable tray 300, but preferably do not quite engage the bottom.

Motor 55 remains energized and shaft 41 continues to rotate in the direction of arrow B. As a consequence, comb 43 is driven across the litter chamber, from the storage end 29 to the discharge end 28, as indicated in FIG. 2 by arrow A. Reference may also be made to FIG. 4, where the position of the comb and its tines 44 are illustrated. As the comb moves across the litter box 20, in the direction of arrow A, the tines 44 engage any clumps 71 present in the litter, whether generated by the elimination of liquid or solid wastes by the cat. Comb 43 carries the clumps 71 toward the discharge position 28 at the far end of box 20, that is, to the right hand end of the litter box 20 as seen in FIGS. 1 and 2. Comb 43 remains in a substantially erect position as shown in FIG. 2. It is prevented from rotating in the direction of arrow B by the engagement of auxiliary guide wheels 64, 65 with tracks 32, 33 respectively. The forward motion of the comb 43 in the direction of arrow A is effected by rotation of shaft 41 in the direction of arrow B and the engagement of guide wheels 52 and 53 and their pins 51 and 54 in the apertures 31 and 39 of the two tracks 32 and 33 that define the comb path.

Ultimately, the comb 43 advances to a position where its main guide wheels 52 and 53 reach the upwardly inclined extension portions 34 and 35 of tracks 32 and 33, respectively. Motor 55 is still energized; as a consequence, the carriage 45 moves up the ramps or track extensions 34 and 35 to the position shown in FIG. 3. During this upward movement of comb 43, lever 73 is engaged by the comb carriage 45 and is pivoted upwardly from the original position shown in FIGS. 1 and 2 to the elevated position shown in FIG. 3. As a consequence, due to the engagement of pin 75 with a slot or like guide 77 in receptacle cover 69, cover 69 is moved to the open position shown in FIG. 3. When comb 43 reaches the discharge position shown in FIG. 3, the additional clumps 71 are discharged into receptacle 68 to join clumps 72 already present there.

When comb 43 reaches the position of FIG. 3, it actuates the limit switch 99. The resulting output signal to control 96 (FIG. 21) reverses motor 55 and the motor 55 starts to rotate the shaft 41 in the direction of arrow C, FIG. 3. Accordingly, the comb 43 is driven, by motor 55, back to its storage position illustrated in FIG. 1. In the process, the discharge lever 73 is disengaged and drops back down to its original position, so that the lid 69 on receptacle 68 again closes. The waste from the litter box 20 is now totally enclosed in waste receptacle 68.

When comb 43 has finished its movement back to a point closely adjacent to the storage end wall 25, its two main guide wheels 52 and 53 encounter the steeply inclined upward extensions 36, 37 of tracks 32, 33. Motor 55 remains energized and pulls comb 43 and its shaft 41 up to the position shown in FIG. 1. When the comb 43 reaches that position, switch 58 is actuated by pin 61 and sets motor 55 for subsequent operation in the forward direction. When comb 43 reaches the end of its travel, at the position shown in FIG. 1, the comb limit switch 95 (FIG. 21) is actuated and a signal is supplied to control 96 to shut off the motor. A “home” sensor 94 may be provided for the same purpose. Usually, it is desirable to have both a home sensor 94 and a limit switch 95 (see FIG. 21) to actuate the control 96 and make sure that the motor 55 is shut off with the comb 43 at the storage position 29 shown in FIG. 1.

In a preferred embodiment, a reverse sensor 400 (FIGS. 6 and 19-20) is utilized to make sure that the motor 55 is stopped and reversed when the comb 43 strikes an object while returning to the storage position 29. The reverse sensor 400 is normally open and does not provide an input to the control 96 while open. The reverse sensor 400 is closed when the reverse sensing bar 402 strikes an object forcing the actuating bar 408 to close the leaf switch 410. When the reverse sensor 400 is closed, an input is sent to the control 96 indicating that the motor 55 should be stopped and reversed, and that the movement of the comb 43 should be stopped and reversed.

FIG. 23 is a flow chart illustrating a subroutine programmed into control 96 (FIG. 21) for a self-cleaning operation in the improved litter.box 20. The flow chart starts with a command to comb litter 101 supplied to the control 96. As a consequence, a set direction and start command is supplied to the motor 55 in stage 102 of the subroutine. In the next stage 103, if the motor 55 is stalled, that condition is sensed and an output command is received by the motor 55 (stage 105) to reverse the direction of the motor 55. Ordinarily, however, the motor 55 will not be stalled and the next step (stage 104) is to determine whether the comb 43 is at its end of travel. If not, the subroutine returns to stage 103 and checks for a stalled motor 55. If the comb 43 is located at the discharge end of its travel, an output signal is applied to reverse the motor 55 (step 105).

When the motor 55 has been reversed, the condition of the motor 55 is again checked to see if it is stalled. If so, there is an output signal to stop the motor 55 (step 108). Ordinarily, however, the motor 55 will not be stalled and an enabling signal is received (stage 107) to check and see whether the comb 43 is in its “home” position. When comb 43 reaches its “home” position, at storage end of litter box 20) there is an output signal sent to stop the motor 55 (stage 108) which directs the subroutine to return to the beginning of the subroutine (stage 109). If the comb 43 has not reached the “home” position, the subroutine proceeds to stage 107A to determine if the reverse sensor 400 has been activated. If the reverse sensor 400 has not been activated, the subroutine returns to stage 106 and checks for a stalled motor 55. If the reverse sensor 400 has been activated, there is an output signal (stage 107A) to a stop motor (stage 108). The subroutine then returns to the beginning (stage 109). This completes the subroutine of FIG. 23.

FIG. 24 illustrates a further subroutine that is also programmed into processor control 96 (FIG. 21). The subroutine starts with a power-on stage 111 that may be initiated by an appropriate switch (for example, the mode select switch 91). Alternatively, the subroutine may start with insertion of appropriate batteries into battery case 55 (FIGS. 1-3) or by plugging in a conventional power supply 20 (not shown). The next stage 112 in the subroutine is initialization of the control 96. In the next subroutine stage 113, the control 96 checks to determine whether the mode select switch 91 of FIG. 21 is set for manual mode.

If the manual operation mode is selected, the control 96 checks to determine if a manual operation switch 370 (FIG. 22) has been activated (stage 113A). The manual operation switch 370 is normally open and provides a NO signal (stage 113A) when open. The manual operation switch 370 is activated by the cat owner. When the manual operation switch 370 has been activated, a comb litter procedure is initiated (stage 114). If the manual operation switch 370 has not been activated, the subroutine returns to the mode check at stage 113.

If the program is not set for manual mode, the subroutine checks for a low battery condition (stage 115). If a low battery voltage condition is ascertained, the subroutine checks to see if the alarm mode is set (stage 116) and, if the alarm mode is set, the subroutine actuates an alarm (stage 117) to produce a programmed output from buzzer 97 (FIG. 21) that alerts the user that a change of batteries is required. Outputs generated in stages 116 and 117 may be fed back to stage 113 in this subroutine in appropriate circumstances. If a conventional power supply is used to energize the motor 55, the control 96 may be programmed to skip stages 115 to 117. Ordinarily, however, when the voltages of the batteries are adequate, there is a NO output and the subroutine continues by checking for a full septic or waste receptacle 68 (stage 118). Ordinarily, the receptacle 68 will not be full. If the receptacle 68 is full, the subroutine returns to stage 113.

In normal circumstances, with adequate room in the receptacle 68, the subroutine checks to see if any septic is present (stage 119). If septic is present, the subroutine checks to determine if the comb 43 is in the “home” position (stage 121). If the comb 43 is in the home position, the subroutine checks for the presence of a cat in the litter box (stage 122). If the comb is not in the home position, or if the cat is not present in the litter box, the subroutine returns to the mode check (stage 113) and begins again. If the cat is present in the litter box, the subroutine waits for the delay time to expire (stage 123) and then executes a comb litter command (stage 124) and returns to the mode check (stage 113) and begins again.

Thus, the automated self-cleaning litter box 20 may be arranged so as not to frighten or disturb a cat; the self-cleaning movement of the comb 43 may not occur until there is a reasonable certainty that a cat using the litter box 20 has been gone for two to seven minutes, depending on the delay set into the control 96, before the motor 55 is energized. Other sensors can be used instead of photo detectors 82 and 94. For example, infra-red sensors receiving radiation from an appropriate infra-red source, or a strain gauge on pan bottom 26, may serve the same purpose as the photo detectors of FIGS. 1-4.

The gear drive 57 that connects motor 55 to shaft 41 is not subject to fouling by the litter, which often includes powdery material that is likely to interfere with operation of other drive mechanisms such as a worm drive. Motor 55 should be sealed against dust and dirt, since it must operate in an adverse environment. Litter box 20 is simple and economical in construction, but should afford an extended operating life with little or no attention apart from periodic replacement of the litter and replacement of the batteries 56.

In a preferred embodiment of the present invention, as shown in FIGS. 5 and 6, a durable ramp 350 is pivotally connected to the housing 21. The ramp 350 includes carpeting 352 and first and second pivot pins 354, 356 molded to one end of the ramp 350. The carpeting 352 is mounted upon a top side of the ramp 350. The carpeting 352 is ribbed and made of a fabric that will trap litter and provide suitable paw-cleaning and scratching-post functions for a cat utilizing the ramp 350. The ribbed carpet 352 traps litter. The carpet 352 may be easily removed for cleaning.

In order for the ramp 350 to be connected to the housing 21, the two side walls 22, 23 may include first and second pivot holes 360, 362 at the discharge end 28 of the litter box 20. The ramp 350 is attached to the housing 21 by placing the first pivot pin 354 and the second pivot pin 356 into pivot holes formed in the side walls 22, 23 of the litter box 20. The carpeting 352 is facing up as depicted in FIG. 6 and will minimize litter tracking when the cat exits the litter box 20.

Another feature of a preferred embodiment of the present invention, as shown in FIGS. 25-28, includes a rectangular tray 500 having first and second side walls 504, 508, an end wall 506 connected between the side walls 504, 508, and a bottom wall 502. The first and second side walls 504, 508, the end wall 506 and the bottom wall 502 cooperate to form a housing-receiving region 540. The tray 500 may be thermal formed or molded and is designed such that the housing 21 may be placed within the housing-receiving region 540. One aspect of the tray 500 is that it can be used as a catch-all if any litter or waste is kicked out of the self-cleaning litter box 20 by a cat.

Another aspect of the tray 500 is that it may be used to cooperate with a dome or hood 548 to define an enclosure 550 for the self-cleaning litter box 20. The dome 548 may be used to provide privacy for the cat. The enclosure 550 includes a plurality of hood supports 530. The hood supports 530, may be metal or plastic strips. Each hood support 530 has a first end portion 532 and a second end portion 534. To accommodate the hood supports 530, the first and second side walls 504, 508 have a plurality side of wall openings 510. The openings 510 are adapted to receive the hood support end portions 532, 534.

The hood supports 530 are placed into the side wall openings 510 such that the end portions 532, 534 are retained therein by the resiliency of the hood supports 530 acting against the side walls 504, 508. The hood 548 is placed over the hood supports 530 forming the enclosure 550. The hood 548 has an opening 552 and may be made of cloth or any suitable material and may be connected to the hood supports 530 in any manner. For example, the hood supports 530 may be sewn into the hood 548. Alternatively, the hood 548 may have ties that connect the hood 548 to the hood supports 530. Alternatively, the hood 548 can drape over the supports 530 and attach to the sidewalls 504, 508.

FIG. 29 illustrates the waste receptacle 68 and its lid 69 in the closed condition. There is a mass 271 of waste in receptacle 68, but the receptacle is not yet full. Receptacle 68 is positioned in the litter box 20 for engagement with bosses 222 and 223. The bosses 222 and 223 extend inwardly from the litter box side walls 22, 23, respectively, to engage the indentations 63, 70 (FIG. 6). The walls of the waste receptacle 68 adjacent side walls 22, 23 are provided with aligned openings 226, 227, respectively. Radiation from a source 242 on wall 22 impinges upon a detector 243 on wall 23 as long as the level of waste 271 in the receptacle 68 does not block the radiation.

While the invention has been described in detail in connection with preferred embodiments known at the time, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention.

Thaler, Arnold, Cheung, Philip Y. H.

Patent Priority Assignee Title
11793155, Dec 10 2021 Cat litter box system
Patent Priority Assignee Title
3734057,
3811410,
3964437, Dec 09 1974 Dog or animal toilet
4011836, Sep 22 1975 Pet commode
4011837, Feb 19 1975 Self-cleaning animal kennel
4050414, May 17 1976 KLT Industries, Inc. Animal toilet
4096827, Jan 11 1977 Self-cleaning cat waste disposal device
4098229, Jun 04 1976 Self-contained, portable animal commode
4117804, Apr 15 1977 Ivan, Pope Self-deodorizing litter box
4120264, May 11 1977 Sanitary facility for pets
4190525, Sep 26 1978 Litter and refuse receptacle and separator
4325325, Oct 31 1980 Self-cleaning litter box
4325822, Jul 25 1980 Pet litter separator
4469046, May 24 1978 CHURCH & DWIGHT CO , INC Odorless animal litter unit
4574735, Mar 05 1984 Electronic litter system
4658720, May 21 1985 Refuse bin incorporating compacting means
4729342, Jul 12 1985 Self-cleaning pet toilet
4844011, Feb 02 1987 Cat waste disposal system
4846104, Feb 01 1988 Automated cat toilet
4854267, Jul 15 1988 Mechanical cat litter box
4897183, Jun 10 1987 LEWIS BROTHERS MANUFACTURING, INC Litter screening and separating apparatus
4934317, Feb 03 1989 Dump and replace litter box
4949672, Jun 17 1988 The Clorox Company; CLOROX COMPANY, THE, A DE CORP Boron-based odor control animal litter
4949673, Nov 12 1988 Domestic pets chamberpot
5012765, Apr 30 1990 Cielo Industries, Inc. Cat litter screening device
5048463, Jun 20 1989 C. Carl, Wilson Control system for accessories used with small animals and pets
5048465, Jan 10 1991 Self-cleaning kitty litter box
5107797, Aug 03 1988 Litterbox for domestic animals
5168834, Oct 28 1991 Litter handling system
5178099, May 15 1992 Filtering pet privy
5184575, Jun 02 1989 Sanitary facility for cats
5188062, Apr 06 1992 Automatic litter box for small animals
5193488, Nov 18 1991 ROGER D STERN P C TRUST Cat waste elimination system
5220886, Jul 31 1992 Litter box accessory
5226388, Jul 10 1992 Automated cat litter disposal system
5249549, Jan 03 1992 Disposable pet litter container
5259340, Jan 21 1992 Foundaway Company Automatic or semiautomatic cat litter box
5267530, Dec 28 1992 Self cleaning cat litter box
5272999, Nov 12 1991 Litter box
5279258, Feb 20 1992 Automated portable pet toilet
5460122, May 15 1992 Self cleaning kitty litter box having a movable floor
5462015, Jun 01 1994 DOSKOCIL MANUFACTURING COMPANY, INC Kennel hull latch
5477812, Jan 12 1995 Waters Research Company Automated self-cleaning litter box for cats
5511513, Jan 23 1995 Pet litter box for collecting pet waste and elimination of odor
5544620, May 17 1995 Self-cleaning cat box
5564364, Dec 28 1994 Pet litter box with automatic exhaust system
5564366, Dec 22 1994 Litter box system
5572950, Mar 09 1995 ASPEN PET PRODUCTS HOLDINGS, INC ; DOSKOCIL MANUFACTURING COMPANY, INC Cat litter box assembly having a cover and a retractable hood
5592900, Feb 20 1992 Automated portable pet toilet
5598811, May 05 1995 Litter saving waste container system
5623892, Jun 23 1994 HELLER FINANCIAL, INC , AS AGENT Hinge assembly for providing a cat litter box with a readily removable hinged cover
5645013, Apr 02 1996 Redmond Innovations, Inc. Pet litter box
5662066, Feb 28 1996 DONALD D REITZ REVOCABLE TRUST, THE Automatic cat litter device and method
5701844, Aug 10 1994 Container with waste removal device
5727691, Dec 29 1995 Animal litter containment and filtering apparatus
5794566, Apr 02 1996 DOSKOCIL MANUFACTURING COMPANY, INC Kitty litter pan
5797346, Jul 01 1996 Odor free litter system
5799610, Mar 04 1996 Self-filtering litter box for pets
5806461, May 07 1997 Catwalk litter box
5931119, May 03 1996 Knox Security Engineering Corp.; KNOX SECURITY ENGINEERING CORP Self cleaning pet litter box
6082302, Jul 17 1998 ROYAL BANK OF CANADA Self-cleaning litter box
6202595, Feb 09 1999 Animal waste disposal system
6205954, Nov 06 1998 Device for collecting excrements of pet animals and auxiliary element applied therewith
6378461, Apr 19 2000 ROYAL BANK OF CANADA Self-cleaning litter box
6561132, Sep 14 2001 PET NOVATIONS LTD Feline excretia processing and elimination system
6925961, Oct 14 2003 CLASSIQUE INNOVATIONS, INC Pet litter apparatus
20030217700,
20070056521,
AU752371,
CA2069517,
CA2165866,
CA2276500,
CA2536850,
CA2558950,
DE29718260,
EP154540,
EP227155,
EP297015,
EP721731,
EP875140,
EP972442,
JP2981163,
JP3308242,
JP3349474,
JP681245,
JP8238035,
RE36847, Dec 24 1997 ROYAL BANK OF CANADA Automated self-cleaning litter box for cats
///////////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Aug 28 1998CHEUNG, PHILIP Y H Windmere CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198440777 pdf
Aug 28 1998THALER, ARNOLDWindmere CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198440777 pdf
Sep 15 2003Windmere CorporationHP INTELLECTUAL CORP ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0198440788 pdf
Apr 30 2004Spectrum Brands, Inc.(assignment on the face of the patent)
Nov 17 2004HP INTELLECTUAL CORP BANK OF AMERICA, N A , AS AGENTGRANT OF SECURITY INTEREST0154520839 pdf
Dec 31 2005HP INTELLECTUAL CORP APPLICA CONSUMER PRODUCTS, INC MERGER SEE DOCUMENT FOR DETAILS 0171830370 pdf
Dec 28 2007APPLICA CONSUMER PRODUCTS, INC BANK OF AMERICA, N A , AS AGENTSECURITY AGREEMENT0205070922 pdf
Jun 16 2010BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSonex International CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0247940886 pdf
Jun 16 2010APPLICA CONSUMER PRODUCTS, INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0248230177 pdf
Jun 16 2010TOASTMASTER INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0248230177 pdf
Jun 16 2010SPECTRUM BRANDS, INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0248230177 pdf
Jun 16 2010ROVCAL, INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0248230177 pdf
Jun 16 2010UNITED PET GROUP, INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0248230177 pdf
Jun 16 2010United Industries CorporationBANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0248230177 pdf
Jun 16 2010RUSSELL HOBBS, INC BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0248230177 pdf
Jun 16 2010BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSALTON, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0247940886 pdf
Jun 16 2010BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTAPPLICA CONSUMER PRODUCTS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0247940886 pdf
Jun 16 2010UNITED PET GROUP, INC , A CORP OF DELAWAREWells Fargo Bank, National AssociationSECURITY AGREEMENT0247410295 pdf
Jun 16 2010RUSSELL HOBBS, INC , A CORP OF DELAWAREWells Fargo Bank, National AssociationSECURITY AGREEMENT0247410295 pdf
Jun 16 2010SPECTRUM BRANDS, INC , A CORP OF DELAWAREWells Fargo Bank, National AssociationSECURITY AGREEMENT0247410295 pdf
Jun 16 2010ROV HOLDING, INC , A CORP OF DELAWAREWells Fargo Bank, National AssociationSECURITY AGREEMENT0247410295 pdf
Jun 16 2010TETRA HOLDING US , INC , A CORP OF DELAWAREWells Fargo Bank, National AssociationSECURITY AGREEMENT0247410295 pdf
Jun 16 2010APPLICA CONSUMER PRODUCTS, INC , A CORP OF FLORIDAWells Fargo Bank, National AssociationSECURITY AGREEMENT0247410295 pdf
Jun 16 2010ROVCAL, INC , A CORP OF CALIFORNIAWells Fargo Bank, National AssociationSECURITY AGREEMENT0247410295 pdf
Jun 16 2010BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTHP INTELLECTUAL CORP RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0247940886 pdf
Jun 16 2010BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTAPPLICA INCORPORATEDRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0247940886 pdf
Dec 17 2012ROVCAL, INC Wells Fargo Bank, National AssociationPATENT SECURITY AGREEMENT0295360634 pdf
Dec 17 2012SPECTRUM BRANDS, INC Wells Fargo Bank, National AssociationPATENT SECURITY AGREEMENT0295360634 pdf
Dec 17 2012United Industries CorporationWells Fargo Bank, National AssociationPATENT SECURITY AGREEMENT0295360634 pdf
Dec 17 2012UNITED PET GROUP, INC Wells Fargo Bank, National AssociationPATENT SECURITY AGREEMENT0295360634 pdf
Dec 17 2012APPLICA CONSUMER PRODUCTS, INC Wells Fargo Bank, National AssociationPATENT SECURITY AGREEMENT0295360634 pdf
Oct 31 2014SPECTRUM BRANDS, INC SPECTRUM BRANDS, INC MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0359890033 pdf
Oct 31 2014APPLICA CONSUMER PRODUCTS, INC SPECTRUM BRANDS, INC MERGER AND CHANGE OF NAME SEE DOCUMENT FOR DETAILS 0359890033 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTTELL MANUFACTURING, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTLIQUID HOLDING COMPANY, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTNATIONAL MANUFACTURING CO RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTKwikset CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTPRICE PFISTER, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTSEED RESOURCES, L L C RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTUNITED PET GROUP, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTTETRA HOLDING US , INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTROVCAL, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTSPECTRUM BRANDS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTTOASTMASTER INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTAPPLICA CONSUMER PRODUCTS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTRUSSELL HOBBS, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Jun 23 2015BANK OF AMERICA, N A , AS AGENTSalix Animal Health, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0360520845 pdf
Date Maintenance Fee Events
Oct 18 2018PTGR: Petition Related to Maintenance Fees Granted.


Date Maintenance Schedule
Apr 16 20224 years fee payment window open
Oct 16 20226 months grace period start (w surcharge)
Apr 16 2023patent expiry (for year 4)
Apr 16 20252 years to revive unintentionally abandoned end. (for year 4)
Apr 16 20268 years fee payment window open
Oct 16 20266 months grace period start (w surcharge)
Apr 16 2027patent expiry (for year 8)
Apr 16 20292 years to revive unintentionally abandoned end. (for year 8)
Apr 16 203012 years fee payment window open
Oct 16 20306 months grace period start (w surcharge)
Apr 16 2031patent expiry (for year 12)
Apr 16 20332 years to revive unintentionally abandoned end. (for year 12)