Methods and apparatuses are described for a Node B to transmit reference signals (RS) from multiple antennas to enable User Equipments (UEs) to perform demodulation of received information signals and to estimate channel quality Indication (CQI) metrics. To minimize overhead and enable backward compatible operation with legacy systems, RS from a first set of Node B antennas are transmitted in every transmission time interval and substantially over the whole operating BandWidth (BW). RS from a second set of Node B antennas serving for CQI estimation are periodically transmitted, substantially over the whole operating BW, with transmission period informed to UEs through broadcast signaling by the Node B and starting transmission sub-frame determined from the identity of the cell served by the Node B. RS from the second set of antennas, and new RS from the first set of antennas, serving for demodulation of information signals have substantially the same BW as the information signals which can be smaller than the operating BW.
|
0. 28. A method for transmitting reference signals (RSs) by a base station including a set of antennas, the method comprising:
transmitting a first set of RSs using frequency division multiplexing and time division multiplexing, in both physical downlink control channel (PDCCH) transmission symbols and physical downlink shared channel (PDSCH) transmission symbols of consecutive sub-frames; and
periodically transmitting a second set of RSs using code division multiplexing in a time domain and in a frequency domain, in PDSCH transmission symbols of a sub-frame,
wherein the first set of RSs is used for demodulation of downlink signals,
wherein the second set of RSs is used for obtaining a channel quality estimate, and
wherein a transmission period of the second set of RSs is transmitted to a terminal.
0. 22. A method for receiving reference signals (RSs) from a base station including a set of antennas by a terminal in a wireless communication system, the method comprising:
receiving a first set of RSs using frequency division multiplexing and time division multiplexing, in both physical downlink control channel (PDCCH) transmission symbols and physical downlink shared channel (PDSCH) transmission symbols of consecutive sub-frames; and
periodically receiving a second set of RSs using code division multiplexing in a time domain and in a frequency domain, in PDSCH transmission symbols of a sub-frame,
wherein the first set of RSs is used for demodulation of downlink signals,
wherein the second set of RSs is used for obtaining a channel quality estimate, and
wherein a transmission period of the second set of RSs is received from the base station.
0. 31. A base station (BS), including a set of antennas, for transmitting reference signals (RSs) in a wireless communication system, the BS comprising:
a transceiver configured to:
transmit a first set of RSs using frequency division multiplexing and time division multiplexing, in both physical downlink control channel (PDCCH) transmission symbols and physical downlink shared channel (PDSCH) transmission symbols of consecutive sub-frames, and
periodically transmit a second set of RSs using code division multiplexing in a time domain and in a frequency domain, in PDSCH transmission symbols of a sub-frame,
wherein the first set of RSs is used for demodulation of downlink signals,
wherein the second set of RSs is used for obtaining a channel quality estimate, and
wherein a transmission period of the second set of RSs is transmitted to a terminal.
0. 25. A terminal for receiving reference signals (RSs) from a base station including a set of antennas in a wireless communication system, the terminal comprising:
a transceiver configured to:
receive a first set of RSs using frequency division multiplexing and time division multiplexing, in both physical downlink control channel (PDCCH) transmission symbols and physical downlink shared channel (PDSCH) transmission symbols of consecutive sub-frames, and
periodically receive a second set of RSs using code division multiplexing in a time domain and in a frequency domain, in PDSCH transmission symbols of a sub-frame,
wherein the first set of RSs is used for demodulation of downlink signals,
wherein the second set of RSs is used for obtaining a channel quality estimate, and
wherein a transmission period of the second set of RSs is received from the base station.
0. 1. A method for transmitting first and second sets of reference signals (RSs) from a set of Node B antennas, the set of Node B antennas also transmitting control data signals in a Physical Downlink Control channel (PDCCH) and information data signals in a Physical Downlink Shared channel (PDSCH) over a transmission time interval having transmission symbols, the PDCCH being located in different transmission symbols than the PDSCH, the method comprising:
transmitting the first set of RSs, from the set of Node B antennas, using frequency division multiplexing and time division multiplexing, in both PDCCH transmission symbols and PDSCH transmission symbols of consecutive transmission time intervals; and
periodically transmitting the second set of RSs, from the set of Node B antennas, using code division multiplexing in a time domain and in a frequency domain, in PDSCH transmission symbols of the transmission time interval,
wherein a transmission period is received from the Node B.
0. 2. The method of
0. 3. The method
0. 4. The method of
transmitting the first set of RSs from the set of Node B antennas over an entire operating bandwidth; and
transmitting the second set of RSs from the set of Node B antennas over a portion of the operating bandwidth that is less than the entire operating bandwidth.
0. 5. A method for transmitting first and second sets of reference signals (RSs) from a set of Node B antennas, over a transmission time interval in a set of transmission time intervals and over an entire operating bandwidth in a cell, the method comprising:
transmitting the first set of RSs from the set of Node B antennas in all sub-frames in consecutive transmisson time intervals using frequency division multiplexing and time division multiplexing; and
periodically transmitting the second set of RSs from the set of Node B antennas in one sub-frame among a set of sub-frames in transmission time intervals using code division multiplexing in a time domain and in a frequency domain, a number of the sub-frames in the set being greater than 1,
wherein a sub-frame comprises a plurality of symbols, and
wherein a transmission period is received from the Node B.
0. 6. The method of
0. 7. The method of
0. 8. The method of
0. 9. The method of
0. 10. The method of
combining at the Node B the first set of RSs or the second set of RSs for demodulation of information control signals; and
transmitting the first set of RSs and the second set or RSs separately for demodulation of information data signals.
0. 11. The method of
0. 12. The method of
0. 13. An apparatus for transmitting first and second sets of reference signals (RSs) from a set of Node B antennas, the set of Node B antennas also transmitting control data signals in a Physical Downlink Control channel (PDCCH) and information data signals in a Physical Downlink Shared channel (PDSCH) over a transmission time interval having transmission symbols, the PDCCH being located in different transmission symbols than the PDSCH, the apparatus comprising:
a first transmitter for transmitting the first set of RSs, from the set of Node B antennas, using frequency division multiplexing and time division multiplexing, in both PDCCH transmission symbols and PDSCH transmission symbols of consecutive transmission time intervals; and
a second transmitter for periodically transmitting the second set of RSs, from the set of Node B antennas, using code division multiplexing in a time domain and in a frequency domain, in PDSCH transmission symbols of the transmission time interval,
wherein a transmission period is received from the Node B.
0. 14. The apparatus of
0. 15. An apparatus for transmitting first and second sets of reference signals (RSs) from a set of Node B antennas, over a transmission time interval in a set of transmission time intervals and over an entire operating bandwidth in a cell, the apparatus comprising:
a first transmitter for transmitting the first set of RSs from the set of Node B antennas in all sub-frames in consecutive transmission time intervals using frequency division multiplexing and time division multiplexing; and
a second transmitter for periodically transmitting the second set of RSs from the set of Node B antennas in one sub-frame among a set of sub-frames in transmission time intervals using code division multiplexing in a time domain and in a frequency domain, a number of the sub-frames in the set being greater than 1,
wherein a sub-frame comprises a plurality of symbols, and
wherein a transmission period is received from the Node B.
0. 16. The apparatus of
0. 17. The apparatus of
0. 18. The apparatus of
0. 19. The apparatus of
0. 20. The apparatus of
combining at a Node B the first set of RSs or the second set of RSs for demodulation of information control signals; and
transmitting the first set of RSs and the second set of RSs separately for demodulation of information data signals.
0. 21. The apparatus of
0. 23. The method of claim 22, wherein the first set of RSs is used for demodulation of control data signals or for demodulation of information data signals and for obtaining channel quality estimates.
0. 24. The method of claim 22, wherein the first set of RSs are received over an entire operating bandwidth, and
wherein the second set of RSs are received over a portion of the operating bandwidth that is less than the entire operating bandwidth.
0. 26. The terminal of claim 25, wherein the first set of RSs is used for demodulation of control data signals or for demodulation of information data signals and for obtaining channel quality estimates.
0. 27. The terminal of claim 25, wherein the transceiver is further configured to:
receive the first set of RSs over an entire operating bandwidth, and
receive the second set of RSs over a portion of the operating bandwidth that is less than the entire operating bandwidth.
0. 29. The method of claim 28, wherein the first set of RSs is used for demodulation of control data signals or for demodulation of information data signals and for obtaining channel quality estimates.
0. 30. The method of claim 28, wherein the first set of RSs are transmitted over an entire operating bandwidth, and
wherein the second set of RSs are transmitted over a portion of the operating bandwidth that is less than the entire operating bandwidth.
0. 32. The BS of claim 31, wherein the first set of RSs is used for demodulation of control data signals or for demodulation of information data signals and for obtaining channel quality estimates.
0. 33. The BS of claim 31, wherein the transceiver is further configured to:
transmit the first set of RSs over an entire operating bandwidth, and
transmit the second set of RSs over a portion of the operating bandwidth that is less than the entire operating bandwidth.
|
More than one Reissue Application has been filed for U.S. Pat. No. 8,634,385. This application is a Continuation Reissue of U.S. application Ser. No. 14/842,548, which is a Reissue Application of U.S. Pat. No. 8,634,385. Additionally, Continuation Reissues application Ser. Nos. 14/877,482 and 14/877,494 have been filed, which are also Continuation Reissues of U.S. application Ser. No. 14/842,548.
The present application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/088,886, entitled “Support of Multiple Reference Signals in OFDMA Communication Systems”, which was filed on Aug. 14, 2008, the contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention is directed to a wireless communication system and, more specifically, to an Orthogonal Frequency Division Multiple Access (OFDMA) communication system, in light of the development of the 3nd Generation Partnership Project (3GPP) Evolved Universal Terrestrial Radio Access (E-UTRA) Long Term Evolution (LTE).
2. Description of the Art
A User Equipment (UE), also commonly referred to as a terminal or a mobile station, may be fixed or mobile and may be a wireless device, a cellular phone, a personal computer device, a wireless modem card, etc. A Node B (or base station) is generally a fixed station and may also be referred to as a Base Transceiver System (BTS), an access point, or some other terminology.
Several types of signals should be supported for the proper functionality of a communication system. The DownLink (DL) signals consist of data signals, control signals, and reference signals (also known as pilot signals). The data signals carry the information content and can be conveyed from the serving Node B to UEs through a Physical Downlink Shared CHannel (PDSCH). The control signals may be of broadcast or UE-specific. Broadcast control signals convey system information to all UEs. UE-specific control signals convey information related to the scheduling of data signal transmissions from the serving Node B to a UE or from a UE to the serving Node B. The signal transmissions from UEs to a serving Node B occur in the UpLink (UL) of the communication system. The transmission of UE-specific control signals from the serving Node B to UEs is assumed to be through a Physical Downlink Control CHannel (PDCCH).
The DL Reference Signals (RS) can serve for the UEs to perform multiple functions, as known in the art, such as: channel estimation in order to perform demodulation of data signals or control signals; phase reference for Multiple-Input Multiple Output (MIMO) or beam-forming reception; measurements assisting in a cell search and a handover; or Channel Quality Indication (CQI) measurements for link adaptation and channel-dependent scheduling.
The DL RS transmission can have certain characteristics including: time multiplexed (transmitted only during certain Orthogonal Frequency Division Multiplexing (OFDM) symbols); scattered (having a pattern in both the time and frequency domains); common (can be received by all UEs in a serving Node B); dedicated (can be received only by one or a few UEs in a serving Node B); or multiple antennas (in support of MIMO, beam-forming, or transmission (TX) diversity).
An exemplary structure for a Common RS (CRS) transmitted from four antennas of a serving Node B is shown in
The RS structures illustrated in
An OFDM transmitter is illustrated in
The reverse functions are performed at the OFDM receiver as illustrated in
The total operating BW may consist of elementary scheduling units, referred to as Physical Resource Blocks (PRBs). For example, a PRB may consist of 12 consecutive sub-carriers. This allows the serving Node B to configure, through the PDCCH, multiple UEs to simultaneously transmit or receive data packets in the UL or DL by assigning different PRBs for the packet transmission or reception from or to each UE. For the DL, this concept is illustrated in
The Node B scheduler can select the PRBs used to transmit the data packet to a scheduled UE based on the CQI feedback from the scheduled UE over a set of PRBs. The CQI feedback is typically a Signal-to-Interference and Noise Ratio (SINR) estimate over a set of PRBs as illustrated in
If the set of PRBs is a set corresponding to the entire operating BW, a RS for the respective Node B transmission antenna port is needed over the operating BW to obtain the CQI estimate and, as previously mentioned, requires the use of a CRS. For the sub-frame structure and the RS structure in
The maximum and average supportable data rates in a communication system depend, among other factors, on the number of transmission antennas. In order to increase these data rate metrics, and thereby more effectively utilizing the BW resource, additional antennas are often required. To enable gains in system throughput and peak data rates afforded by increasing the number of transmission antennas to be realized in practice, it is essential to avoid a substantial increase in the total RS overhead as required to support signal transmission from the additional antennas. For example, for eight Node B transmission antennas, even if antennas 5-8 employed the RS structure with reduced time density as antennas 3 and 4 in
Additionally, it is often desirable to support PDSCH transmission to UEs with different capabilities. For example, some UEs may be able to receive PDSCH transmissions from a maximum of only four Node B antennas (legacy UEs) while other UEs may be able to receive PDSCH transmissions from a maximum of eight Node B antennas (non-legacy UEs). Support for RS transmitted from eight Node B antennas should not conflict with the capability of legacy UEs to receive PDSCH transmitted from a maximum of four Node B antennas without requiring additional receiver operations.
Therefore, there is a need to avoid proportionally increasing the RS overhead as the number of Node B transmission antennas increases.
There is another need to support RS transmissions for providing reliable data scheduling at the Node B, by enabling the UEs to provide the appropriate CQI feedback, and to enable reliable signal reception at UEs as the number of Node B transmission antennas increases.
There is yet another need to support RS transmissions from a number of Node B antennas without affecting the signal processing at UE receivers capable of processing only signals transmitted from a smaller number of Node B antennas.
Accordingly, the present invention has been designed to solve at least the aforementioned problems in the prior art, and the present invention provides methods and apparatus for enabling the transmission of Reference Signals (RS) from a new subset of Node B transmission antennas in the set of Node B transmission antennas to allow the estimation of channel quality indicator metrics while controlling the associated overhead and minimizing the impact on the operation on legacy User Equipments (UEs) which utilize only the legacy subset of Node B transmission antennas from the set of Node B transmission antennas.
Further, the present invention provides methods and apparatus for the placement of the RS from the new subset of Node B transmission antennas.
The present invention also provides methods and apparatus for the Node B, legacy UEs, and non-legacy UEs, to address the resource collisions between RS transmissions from the new subset of Node B transmission antennas and transmissions of information signals.
Additionally, the present invention provides methods and apparatus for the Node B to multiplex RS transmissions from the new subset of Node B transmission antennas in a transmission time interval for the purpose of channel quality indicator estimation.
Additionally, the present invention provides methods and apparatus for the Node B to multiplex RS transmissions from the new subset of Node B transmission antennas in a transmission time interval for the purpose of information data signal demodulation.
Finally, the present invention also provides methods and apparatus for the Node B to multiplex RS transmissions from the new subset of Node B transmission antennas for the purpose of channel quality indicator estimation over multiple transmission time intervals and to determine which transmission time intervals have RS transmissions from the new subset of Node B transmission antennas.
In accordance with an embodiment of the present invention, the RS transmissions from the new subset of Node B transmission antennas are located only in the region of the transmission time interval where data information signals are transmitted, unlike RS transmissions from the legacy subset of Node B transmission antennas which are additionally located in the region of the transmission time interval where control information signals are transmitted. Moreover, the present invention considers that legacy UEs treat RS transmissions from the new subset of Node B transmission antennas as data information signals while non-legacy UEs puncture the respective resources from the reception of data information signals.
In accordance with another embodiment of the present invention, RS transmissions from the new subset of Node B transmission antennas is code division multiplexed in the time domain and in the frequency domain while RS transmissions from the legacy subset of Node B transmission antennas uses time division multiplexing and frequency division multiplexing.
In accordance with another embodiment of the present invention, RS transmissions from the new subset of Node B transmission antennas for the purpose of channel quality indicator estimation can be periodic in non-consecutive transmission time intervals. The starting transmission time interval, in a set of transmission time intervals, can be determined by the identity of the cell served by the Node B and the transmission period can be signaled by the Node B through a broadcast channel.
In accordance with another embodiment of the present invention, RS transmissions from the new subset of Node B transmission antennas for the purpose of information signal demodulation can be transmitted over only a portion of the operating bandwidth while RS transmissions from the legacy subset of Node B transmission antennas is substantially transmitted over the entire operating bandwidth.
The above and other aspects, features, and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:
The present invention will now be described more fully hereinafter with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art.
Additionally, although the present invention is described in relation to a Single-Carrier Frequency Division Multiple Access (SC-FDMA) communication system, the present invention also applies to all Frequency Division Multiplexing (FDM) systems in general and to Orthogonal Frequency Division Multiple Access (OFDMA), OFDM, FDMA, Discrete Fourier Transform (DFT)-spread OFDM, DFT-spread OFDMA, Single-Carrier OFDMA (SCOFDMA), and SC-OFDM in particular.
System and methods of the embodiments of the present invention are related to the need for the Node B to transmit Reference Signals (RS) to enable User Equipments (UEs) to demodulate information signals and estimate a Channel Quality Indicator (CQI) metric which is then fed back to the Node B to enable channel-dependent scheduling for the transmission of information signals. Supporting the transmission of information signals from a number of Node B transmission antennas beyond the one existing in legacy communication systems, requires RS transmissions from the additional Node B antennas. However, this should minimize the associated overhead, the impact to legacy UEs, while enabling additional transmission features.
The first object of the present invention aims to provide methods and means for introducing transmission of RS from multiple Node B antennas while providing the desired reliability for the associated RS functionalities without proportionally increasing the total RS overhead.
The second object of the present invention assumes in its exemplary embodiment that the RS transmission structure from a maximum of four Node B antennas, for example as described in
The present invention takes into consideration that RS from additional Node B antennas, beyond the ones supported for legacy UEs, are always placed outside the PDCCH region. Note however that PDCCH transmission from all Node B antennas may still apply for UEs supporting reception of signals transmitted from all Node B antennas.
Continuing from
RS5: {1, 1} in the time domain and {1, 1} in the frequency domain;
RS6: {1, 1} in the time domain and {1, −1} in the frequency domain;
RS7: {1, −1} in the time domain and {1, 1} in the frequency domain; and
RS8: {1, −1} in the time domain and {1, −1} in the frequency domain.
At the UE receiver, the reverse operations are performed to remove the covering of WH codes. For example, if the {1, 1} WH code is applied at the Node B transmitter, the UE receiver needs to sum (average) the RS from two consecutive locations in time or frequency while if the {1, −1} WH code is applied at the Node B transmitter, the UE receiver needs to sum (average) the RS from two consecutive locations in time or frequency after having reversed the sign of the RS value in the second location. A requirement for successfully applying CDM is that the response of the channel medium remains practically the same within two consecutive locations (in time or frequency) so that orthogonality is maintained in the received signal.
S11 and S12 denote the received signal on odd and even RS sub-carriers, respectively, in the first OFDM symbol with RS transmission, and S21 and S22 denote the received signal on odd and even RS sub-carriers, respectively, in the second OFDM symbol with RS transmission. Ignoring normalization factors, the respective channel estimates for the signals transmitted Node B antennas 5 through 8 in each OFDM symbol at sub-carriers at or between odd and even RS sub-carriers could be obtained as:
Channel Estimate for Antenna 5: S11+S12+S21+S22;
Channel Estimate for Antenna 6: S11−S12+S21−S22;
Channel Estimate for Antenna 7: S11+S12−S21−S22; and
Channel Estimate for Antenna 8: S11−S12−S21+S22.
Other averaging methods preserving and restoring orthogonality may also apply. For example, the channel estimate at an even RS sub-carrier may incorporate both odd RS sub-carriers at each side of the even RS sub-carrier and vice versa.
With the use of CDM to transmit the RS from Node B antennas 5 through 8 in
The reduction in the received SINR for the RS from Node B antennas 5 through 8 is offset by the savings in time-frequency resources. Typically, PDSCH transmission using all eight Node B antennas is targeted to relatively high SINR UEs with low velocities for which channel estimation is highly accurate and a small loss in RS SINR does not lead to noticeably degraded PDSCH reception reliability. Additionally, legacy UEs capable of supporting reception of signals transmitted from a maximum of four Node B antennas are not affected by the transmission of RS from Node B antennas 5 through 8. The legacy UEs can assume PDSCH transmission in the sub-carriers where the RS from Node B antennas 5 through 8 are actually transmitted with the only ramification being a small degradation in the PDSCH reception reliability which the Node B scheduler can consider in advance when selecting the modulation and coding scheme. Moreover, as PDSCH benefits from HARQ, the overall impact on system throughput is negligible while no change in the receiver processing is needed for the legacy UEs.
Consequently, the RS transmission structure in
The RS transmission from Node B antennas 5 through 8 in
An alternative structure for the DRS transmission from Node B antennas 5 through 8 is illustrated in
It should be noted that although in all the described RS structures the separation of sub-carriers and OFDM symbols with RS transmission from Node B antennas 5 through 8 are shown to be the same as the ones for the RS transmission from Node B antennas 1 through 4, this is only an exemplary embodiment. The separation of RS sub-carriers and OFDM symbols with RS transmission can generally be different between Node B antennas 5 through 8 and Node B antennas 1 through 4. It is also possible for the RS structure from Node B antennas 5 through 8 to be configurable. For example, in channels with small frequency selectivity, CDM may apply as in
Although having a DRS transmitted from Node B antennas 5 through 8 is sufficient for PDSCH reception by a UE, this cannot apply for PDCCH transmission which typically needs to be frequency diverse and not located only in a sub-set of contiguous sub-carriers, and cannot apply for CQI estimation enabling scheduling from Node B antennas 5 through 8. To address the first issue, an embodiment of the invention considers that a Node B having eight antennas uses only four of these antennas for PDCCH transmission (for example, by combining pairs from eight antennas) while the Node B can use all eight antennas for PDSCH transmission.
To address the second issue, another embodiment of the present invention considers that a CRS is also transmitted from Node B antennas 5 through 8 to at least enable UEs to obtain a CQI estimate from antennas 5 through 8. This CQI estimate can then be provided by UEs to the serving Node B through the uplink communication channel in order for the Node B to perform scheduling of PDSCH transmissions to UEs from Node B antennas 5 through 8 using the appropriate parameters, such as the set of sub-carriers and the modulation and coding scheme, for each scheduled UE. As this CRS transmitted from Node B antennas 5 through 8 is intended to primarily serve for CQI estimation, and not for channel estimation to perform PDSCH demodulation in each sub-frame, the CRS does not need to be transmitted in every sub-frame, thereby avoiding significantly increasing the total RS overhead. Considering that PDSCH transmissions from Node B antennas 5 through 8 are primarily intended for UEs with low or medium velocities, the CQI variations in time are slow and the CRS transmission from Node B antennas 5 through 8 does not need to be frequent. Naturally, in sub-frames where CRS from Node B antennas 5 through 8 is transmitted, it can also be used in PDSCH reception and possibly in the reception of control channels if a method involving all Node B transmission antennas in the respective sub-frames is used for their transmission.
To minimize the CRS overhead from Node B antennas 5 through 8, an exemplary embodiment of the invention considers that each of these CRS is transmitted in only one OFDM symbol. Otherwise, the same structure with the CRS from Node B antennas 1 through 4 is maintained to allow for similar processing at a UE receiver. Nevertheless, the CRS from each of the Node B antennas 5 through 8 may be transmitted in two OFDM symbols or CDM can be used for the transmission of RS5, RS6, RS7, and RS8 as described in
The sub-frames having CRS transmission from Node B antennas 5 through 8 can be either pre-determined or signaled by the serving Node B using a broadcast channel. In the former case, CRS transmission can be pre-determined, for example, that every fifth sub-frame contains CRS transmission from Node B antenna ports 5 through 8 (at predetermined time-frequency locations). The exact sub-frames with CRS transmission from Node B antennas 5 through 8 may also be pre-determined, such as sub-frame 0 and sub-frame 4, or may simply have a predetermined offset with the first sub-frame depending on the cell identity (Cell-ID). For example, for a first Cell-ID the first sub-frame is sub-frame 0 while for a second Cell-ID the first sub-frame is sub-frame 3. This further assumes that UEs obtain the Cell-ID after initial synchronization with their serving cell.
With broadcast signaling of the sub-frames where the Node B transmits the CRS from antennas 5 through 8, several such configurations can be supported, for example, depending on the system load. If the cell primarily serves legacy UEs supporting RS transmission from only Node B antennas 1 through 4, no sub-frames may contain CRS transmission from Node B antennas 5 through 8. If the cell primarily serves UEs supporting RS transmission from all eight Node B antennas, all sub-frames may contain CRS transmission from Node B antennas 5 through 8. Naturally, intermediate configurations can also be supported. Table 1 outlines possible configurations of sub-frames with CRS transmission from Node B antennas 5 through 8 assuming that 3 bits are included in a broadcast channel to specify the configuration.
TABLE 1
Broadcasted 3-bit Field Specifying Sub-Frames with CRS
Transmission from Antennas 5 through 8.
Sub-Frame Configuration with CRS
Broadcasted Value
Transmission from Antennas 5 through 8
000
No sub-frame
001
One every 60 sub-frames
010
One every 20 sub-frames
011
One every 10 sub-frames
100
One every 5 sub-frames
101
One every 3 sub-frames
110
One every 2 sub-frames
111
All sub-frames
The starting sub-frame may always be the same, for example, the first sub-frame every 60 sub-frames, or may depend on the Cell-ID as previously described. As legacy UEs may not be able to interpret the broadcasted field specifying the sub-frames with CRS transmission from Node B antennas 5 through 8, this field may be in a broadcast channel that is received only by UEs capable of receiving this CRS transmission.
While the present invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the appended claims.
Papasakellariou, Aris, Cho, Joon-Young, Lee, Ju-Ho, Han, Jin-Kyu
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5511067, | Jun 17 1994 | Qualcomm Incorporated | Layered channel element in a base station modem for a CDMA cellular communication system |
20060029157, | |||
20070097908, | |||
20080139237, | |||
20090022235, | |||
20090252077, | |||
20110070891, | |||
20110116572, | |||
20110134867, | |||
JP2011528887, | |||
WO2006034577, | |||
WO2007024935, | |||
WO2008050964, | |||
WO2009157167, | |||
WO2010017628, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 07 2015 | Samsung Electronics Co., Ltd | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 21 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 02 2022 | 4 years fee payment window open |
Jan 02 2023 | 6 months grace period start (w surcharge) |
Jul 02 2023 | patent expiry (for year 4) |
Jul 02 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 02 2026 | 8 years fee payment window open |
Jan 02 2027 | 6 months grace period start (w surcharge) |
Jul 02 2027 | patent expiry (for year 8) |
Jul 02 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 02 2030 | 12 years fee payment window open |
Jan 02 2031 | 6 months grace period start (w surcharge) |
Jul 02 2031 | patent expiry (for year 12) |
Jul 02 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |