A pump is formed by a housing (10) having an inlet (11) for connection to a source of fluid and an outlet (12) for pumped fluid. A rotor (15) is rotatable within the housing and the inlet (11) and the outlet (12) are spaced apart around the path of the rotor (15) in the housing. The rotor (15) has surfaces (16a, 16b, 16c, 16d) that form, with the housing (10), closed chambers (18a, 18b, 18c, 18d) which travel around the housing (10) to convey fluid from the inlet (11) to the outlet (12). The housing (10) carries a seal (14) that is located between the inlet (11) and the outlet (12) in the direction of travel of the rotor (15). The seal (14) co-operates with the rotor surfaces (16a, 16b, 16c, 16d) as the surfaces (16a, 16b, 16c, 16d) pass between the outlet (12) and the inlet (11) to prevent the formation of a chamber during said passage and so prevent fluid flow from the outlet (12) to the inlet (11). Such a pump is easily and cheaply produced and is particularly useful in medical applications.
|
0. 59. A pump comprising:
a housing;
a rotor path defined within the housing;
a rotor rotatable in the housing around an axis;
an inlet formed in the housing at a first position on the rotor path;
an outlet formed in the housing at a second position on the rotor path;
a resilient seal formed by a membrane; and
a resilient member that applies a resilient force to the membrane and resiliently supports the membrane, and
wherein the housing is formed of resilient material capable of being deformed under load and distended by the rotor,
wherein the rotor has an outer surface that seals against the rotor path and a concavity inwardly formed from the outer rotor surface, the concavity being surrounded by the outer surface and forming a conveying chamber travelling around the rotor path on rotation of the rotor to convey fluid around the housing,
wherein the membrane is located on the rotor path and adapted to seal with and be resiliently deformed by the outer surface to prevent the fluid from flowing from the outlet to the inlet past the membrane, and to seal with the concavity as the concavity passes between the outlet and the inlet to squeeze the fluid from the chamber into the outlet,
wherein the housing and membrane are a unit made by an insert molding process, or an over molding process, or a dual shot molding process, or a single injection molding process, such that the fluid is prevented from passing between the membrane and the housing in use.
0. 40. A pump comprising:
a generally cylindrical housing formed of a resilient material,
a generally cylindrical rotor path defined within the housing,
an inlet formed in the housing at a first position on said rotor path,
an outlet formed in the housing at a second position on said rotor path spaced from said first position,
a generally cylindrical rotor rotatable in said housing around an axis, the rotor having
a cylindrical outer surface which seals against said rotor path, and
at least one chamber-forming concavity inwardly formed from said cylindrical outer rotor surface, said concavity
a) having a concave surface which is concave in planes including the rotor axis,
b) being surrounded by said outer surface, and
c) solely forming a conveying chamber travelling around said rotor path on rotation of the rotor to convey fluid around the housing;
a resilient seal formed by a membrane carried by the housing, located on said rotor path, and extending between a first axial edge of the housing adjacent to the inlet and a second axial edge of the housing adjacent to the outlet in the direction of rotation of said rotor, and
a resilient member that applies a resilient force to the membrane and resiliently supports the membrane, and
wherein said membrane is adapted to seal with and be resiliently deformed by said resilient member against said outer surface surrounding said concavity to prevent fluid flow from said outlet to said inlet past the membrane, and to seal with said concave surface of said concavity axially and circumferentially, as said concavity passes between the outlet and the inlet to squeeze fluid from the chamber into the outlet,
wherein the resilient material of the housing is capable of being deformed under load and distended by the rotor,
wherein the rotor is arranged to distend the housing,
wherein the housing and membrane are a unit made by an insert molding process, or an over molding process, or a dual shot molding process, or a single injection molding process, such that the fluid is prevented from passing between the membrane and the housing in use.
0. 1. A pump comprising:
a housing,
a rotor path defined within the housing,
an inlet formed in the housing at a first position on said rotor path,
an outlet formed in the housing at a second position on said rotor path spaced from said first position,
a rotor rotatable in said housing around an axis, the rotor having
an outer surface which seals against said rotor path, and
at least one chamber-forming concavity inwardly formed from said outer rotor surface, said concavity
a) having a concave surface which is concave in planes including the rotor axis,
b) being surrounded by said outer surface, and
c) solely forming a conveying chamber travelling around said rotor path on rotation of the rotor to convey fluid around the housing; and
a resilient seal carried by the housing, located on said rotor path and extending between the outlet and the inlet in the direction of rotation of said rotor, said resilient seal being adapted to seal with and be resiliently deformed by said outer surface surrounding said concavity to prevent fluid flow from said outlet to said inlet past the seal, and to seal with said concave surface of said concavity, as said concavity passes between the outlet and the inlet to squeeze fluid from the chamber into the outlet.
0. 2. A pump according to
0. 3. A pump according to
0. 4. A pump according to
0. 5. A pump according to
0. 6. A pump according to
0. 7. A pump according to
0. 8. A pump according to
0. 9. A pump according to
0. 10. A pump according to
0. 11. A pump according to
0. 12. A pump according to
0. 13. A pump according to
0. 14. A pump according
0. 15. A pump according
wherein the housing includes a second inlet and a second outlet spaced axially along the rotor from first-mentioned inlet and outlet,
wherein the rotor includes at least one second chamber-forming concavity forming, with the housing, a second conveying chamber travelling around the housing between the second inlet and the second outlet to convey fluid from said second inlet to said second outlet,
wherein the housing between the second outlet and the second inlet in the direction of rotation of the rotor includes a second resilient seal adapted to seal with and be resiliently deformed by the outer surface of said at least one second chamber-forming concavity to prevent fluid flow from said second outlet to said second inlet past said second seal, and to seal with a concave surface of said second concavity, as said second concavity passes between the second outlet and the second inlet to squeeze fluid from the second chamber into the second outlet.
0. 16. A pump according to
movable axially in one direction to align the first-mentioned at least one chamber-forming concavity and the second inlet and second outlet while closing the first-mentioned inlet and the first-mentioned outlet, and
moveable axially in an opposite direction to align the at least one chamber-forming concavity with the first inlet-mentioned and the first-mentioned outlet while closing the second inlet and the second outlet.
0. 17. A pump according to
0. 18. A pump according to
wherein the housing has a generally cylindrical interior surface,
wherein the rotor has a co-operating generally cylindrical exterior surface sealing against said interior surface, and
wherein said at least one chamber-forming concavity is formed in said generally cylindrical exterior surface.
0. 19. A pump according to
0. 20. A pump according to
0. 21. A pump according to
0. 22. A pump according to
further including a second inlet and a second outlet spaced circumferentially around the housing from the first mentioned inlet and outlet,
the rotor further including a plurality of chamber-forming concavities conveying fluid from the first mentioned inlet to the first mentioned outlet and from the second inlet to the second outlet, and
wherein the first mentioned seal is located between the second inlet and the first mentioned outlet and a second seal is provided between the first mentioned outlet and the second inlet.
0. 23. A pump according to
0. 24. A pump according to
0. 25. A pump according to
0. 26. A pump according to
0. 27. A pump according to
0. 28. A pump comprising:
a housing,
a rotor path defined within the housing,
an inlet formed in the housing at a first position on said rotor path,
an outlet formed in the housing at a second position on said rotor path spaced from said first position,
a rotor rotatable in said housing, the rotor having
at least two apices formed on the rotor and sealing against said rotor path,
at least one first surface formed on said rotor between said at least two apices, and
a chamber formed in said at least one first surface between the at least two apices and the housing, and travelling around said rotor path on rotation of the rotor to convey fluid around the housing,
a resilient seal carried by the housing located on said rotor path and so extending between the outlet and the inlet in the direction of rotation of said rotor that each apex seals with, and resiliently deforms, the seal, as each apex passes between the outlet and the inlet to prevent fluid flow from said outlet to said inlet past the seal;
in which the rotor is movable axially relative to the housing between a first axial position and a second axial position, and
the rotor further including at least one second chamber-forming surface spaced axially from said at least one first chamber-forming surface, the at least one first chamber-forming surface forming a chamber with the housing in said first axial position of the rotor and the at least one second chamber-forming surface forming a chamber with the housing in said second axial position of the rotor.
0. 29. A pump according to
0. 30. A pump according to
0. 31. A pump according to
0. 32. A pump according to
in which rotation of said rotor in one direction acts to convey fluid from the inlet to the outlet with the rotor in the first axial position,
in which rotation of said rotor in an opposite direction will move said rotor axially between said first and second axial positions,
in which a reversal of rotation from the opposite direction to the one direction with the rotor in the second axial position will move the rotor back to the first axial position, and
in which rotation in said opposite direction acts to convey fluid from the outlet to the inlet by said at least one second chamber-forming surface.
0. 33. A pump according to
0. 34. A pump according to
0. 35. A pump comprising:
a housing,
a rotor path defined within the housing,
an inlet formed in the housing at a first position on said rotor path,
an outlet formed in the housing at a second position on said rotor path spaced from said first position,
a rotor rotatable in said housing, the rotor having
at least two apices formed on the rotor and sealing against said rotor path,
at least one surface formed on said rotor between said at least two apices, and
a chamber formed by said at least one surface between the at least two apices and the housing, and travelling around said rotor path on rotation of the rotor to convey fluid around the housing,
a resilient seal carried by the housing located on said rotor path and so extending between the outlet and the inlet in the direction of rotation of said rotor that each apex seals with, and resiliently deforms, the seal, as each apex passes between the outlet and the inlet to prevent fluid flow from said outlet to said inlet past the seal; and
in which the rotor is movable axially relative to the housing between a first axial position in which the at least one chamber-forming surface forms a chamber with the housing and a second axial position in which the rotor cooperates with the housing to provide a direct communication between the inlet and the outlet.
0. 36. A pump according to
0. 37. A pump according to
in which rotation of said rotor in one direction acts to convey fluid from the inlet to the outlet with the rotor in the first axial position,
in which rotation of said rotor in an opposite direction will move said rotor axially between said first and second axial positions, and
in which a reversal of rotation from the opposite direction to the one direction with the rotor in the second axial position will move the rotor back to the first axial position.
0. 38. A pump according to
0. 39. A pump according to
0. 41. A pump according to claim 40, wherein the membrane has a rotor-engaging surface having an axial and angular extent generally the same as the axial and angular extent of the at least one chamber-forming concavity of the rotor.
0. 42. A pump according to claim 40, wherein the housing includes a generally cylindrical interior surface co-operating with the rotor to form said chamber.
0. 43. A pump according to claim 42, wherein the membrane interrupts said cylindrical interior surface, extending axially and circumferentially relative to said cylindrical interior surface.
0. 44. A pump according to claim 43, wherein the membrane projects radially inwardly of the cylinder defined by said cylindrical interior surface.
0. 45. A pump according to claim 40, wherein the membrane has angularly spaced first and second ends around the path of the rotor, the outlet being formed adjacent said first end.
0. 46. A pump according to claim 45, wherein the housing includes a generally cylindrical interior surface forming said rotor path and co-operating with the rotor to form said chamber, the inlet and the outlet being formed in said cylindrical interior surface of the housing.
0. 47. A pump according to claim 45, wherein the inlet and the outlet are partly formed in said membrane.
0. 48. A pump according to claim 40, wherein the membrane has angularly spaced first and second ends around the path of the rotor, the inlet being formed adjacent said second end.
0. 49. A pump according to claim 40, wherein the resilient member is formed by a container of fluid or gas under pressure.
0. 50. A pump according to claim 40, wherein the resilient member is formed by a spring.
0. 51. A pump according claim 40, wherein two or more chamber-forming concavities are provided on said rotor at axially aligned angularly spaced positions around the rotor, each chamber-forming concavity co-operating with said membrane as the concave surface passes from said outlet to said inlet in the direction of rotation of the rotor.
0. 52. A pump according to claim 40, wherein the housing has a generally cylindrical interior surface,
wherein the rotor has a co-operating generally cylindrical exterior surface sealing against said interior surface;
wherein said at least one chamber-forming concavity is formed in said generally cylindrical exterior surface;
wherein said exterior surface is formed by a land on the rotor, the land having axially spaced ends and the rotor being provided with radially relieved portions at said ends; and
wherein a circumferential rib is formed on each relieved portion, each rib sealing resiliently against the interior surface of said housing.
0. 53. A pump according to claim 40, wherein only a single inlet and a single outlet are provided, the rotor conveying fluid from said inlet to said outlet.
0. 54. A pump according to claim 40, further including a second inlet and a second outlet spaced circumferentially around the housing from the first mentioned inlet and outlet, the rotor further including a plurality of chamber-forming concavities conveying fluid from the first mentioned inlet to the first mentioned outlet and from the second inlet to the second outlet, and wherein the first mentioned membrane is located between the second inlet and the first mentioned outlet and a second membrane is provided between the first mentioned outlet and the second inlet.
0. 55. A pump according to claim 54, wherein the rotor has at least four chamber-forming concavities.
0. 56. A pump according to claim 40, wherein the rotation of the rotor is reversible to pump fluid from the outlet to the inlet.
0. 57. A pump according to claim 40, further including a drive for rotating the rotor.
0. 58. A pump according to claim 40, wherein the housing and the membrane are a single injection molding.
|
The natural resilience of the material will tend to return the seal 14 to the undistorted disposition after distortion by the rotor 15 and this may be assisted by a spring (not shown) acting on the radially outer end of the seal 14.
The operation of the pump described above with reference to
Referring next to
Referring next to
The rotor 15 then moves to a position equivalent to the position shown in
It will be appreciated that the rate of flow of liquid is proportional to the rate of rotation of the rotor 15 and the volumes of the chambers 18a, 18b, 18c and 18d. Although the rotor 15 is shown as having four surfaces 16a, 16b, 16c, 16d, it could have any number of surfaces such as one or two or three surfaces or more than four surfaces. The surfaces 16a, 16b, 16c, 16d may be planar, or may be, for example, convexly or concavely curved. Preferably they are shaped as indentations formed by the intersection with the rotor 15 of an imaginary cylinder having its axis at 90° to the axis of the rotor and offset to one side of the rotor axis. As described above, the rotor engaging surface 21 of the seal 14 may be shaped to compliment the shape of the surfaces 16a, 16b, 16c, 16d.
At all times, the seal 14 acts to prevent the formation of a chamber between the outlet 12 and the inlet 11 in the direction of the rotor 15. The resilience of the seal 14 allows it always to fill the space between the inlet 11 and the outlet 12 and the portion of the rotor 15 in this region. As the pressure differential between the inlet 11 or the outlet 12 increases, there is an increased tendency for fluid to pass between the seal 14 and the rotor 15. The use of a spring acting on the seal 14, as described above, will decrease that tendency and so allow the pump to operate at higher pressures. Thus, the force applied by the spring determines the maximum pump pressure. Pumps are known in which the outlet and the inlet are separated by a thin vane extending from the housing and contacting the rotor. In such pumps, there is a volume of fluid between the outlet and the inlet and a large pressure gradient across the vane that will increase as the speed of rotation of the rotor. As a result, there is an increased liability to leakage across the vane. In the pump described above with reference to the drawings, although there is a pressure differential between the inlet and the outlet, there is a much more gradual gradient as the fluid is gradually squeezed out of the chambers 18a, 18b, 18c and 18d into the outlet 12 and then, after further rotation of the rotor 15, gradually introduced into a chamber 18a, 18b, 18c and 18d on the inlet side. This reduces the possibility of leakage and allows the pump to provide an accurate metered flow. The seal 14 acts as a displacer displacing the fluid between the inlet 11 and the outlet 12.
Referring next to
In this embodiment, the rotor 15 is formed in two parts; an outer cylindrical sleeve 25 and an inner rod 26. The rod 26 is provided with a radially extending pin 27 that engages a helical slot 28 provided in the sleeve 25.
The sleeve 25 is provided with a first set of surfaces 16a, 16b, 16c, 16d as described above with reference to
In addition, however, the sleeve 25 is also provided with a second set of recessed surfaces 29a, 29b, 29c, 29d at a position on the sleeve 25 axially spaced relative to the first mentioned surfaces 16a, 16b, 16c, 16d. These second surfaces 29a, 29b, 29c, 29d have a smaller circumferential extent than the first-mentioned surfaces 16a, 16b, 16c, 16d. In addition, the sleeve 25 is also formed with a circumferential groove 30 spaced axially from the first mentioned surfaces 16a, 16b, 16c, 16d and the other side of the surfaces 16a, 16b, 16c, 16d from the second surfaces 29a, 29b, 29c, 29d.
In use, rotation of the rotor 15 in a direction shown in
It will be appreciated that, since the pump is symmetrical about a plane including the rotor axis and midway between the inlet 11 and the outlet 12, the pump would operate on reverse rotation of the rotor 15 to draw fluid from the outlet 12 and deliver it to the inlet 11. It will also be appreciated that the surfaces 16a, 16b, 16c and 16d will need to have a curvature that is similar to a corresponding portion of the curvature on the seal 14 however because the surfaces are smaller the seal with have a permanently bowed disposition.
The end 32 of the sleeve 25 remote from the rotor drive projects from the housing 10. It is possible manually to push this end 32 so moving the sleeve 25 into the housing 10 until a groove 30 is aligned with the inlet 11 and the outlet 12. When in this position, as shown in
An alternative proposal is shown in
In the embodiments described above with reference to the drawings the rotor 15 is shown as a solid cylinder with the recessed surfaces 16a, 16b, 16c and 16d formed in that surface. This need not be so. As shown in
In
This is shown in
The pumps described above with reference to the drawings can be used for pumping any fluid preferably containing no particulates. Such pumps may, however, find particular application in the pumping of medical fluids and may be used with intravenous administration sets. Such pumps allow aseptic pumping and metering of fluid to high volumetric accuracies. In this case, the inlet 11 and the outlet 12 may be connected in line before the housing 10 and the rotor 15 assembly are connected to a drive. The housing 10 and rotor assembly 15 may be supplied with the inlet 11 and the outlet 12 aligned with the groove 30 so that a delivery tube of the set is in a free flow condition and able to be primed as soon as the housing 10 and rotor 15 assembly is connected in-line. When the rotor 15 is connected to the drive, the making of the connection moves the rotor 15 to a position in which the rotor surfaces 16a, 16b, 16c, 16d are aligned with the inlet 11 and the outlet 12 so that the pump 10 is ready for metered operation. It is thus mechanically impossible for the rotor 15 to be in the free flow position when connected to the drive so that, should the drive fail, free flow is not possible.
Referring next to
In the arrangement shown in
In this embodiment, the seal 14 is formed by a membrane 37 that extends between the first and second axial edges 19, 20 of the housing 10 and between the outlet 12 and the inlet 11. The membrane 37 is supported by a member 38 that applies a resilient force to the membrane 37. This member 38 can have a number of forms. Some examples of this are shown in
The membrane 37 has a low coefficient of friction with the rotor 15 but is sufficiently stretched to prevent the formation of wrinkles when deformed outwardly by the apices 17. The membrane 37 seals closely against the rotor 15 to displace fluid in the chambers 18 and prevent leakage between the outlet 12 and the inlet 11.
The problem of communication between an outlet and an adjacent inlet is not confined to the case disclosed above where a single inlet and a single outlet are provided with fluid being conveyed between the single inlet and the single outlet. It is possible to have two or more inlets and two or more outlets spaced around the housing 10. In this case, the problem will still exist of preventing fluid communication between an outlet and a succeeding inlet, in the direction of rotation of the rotor, but the outlet and the inlet will not be associated with the same flow paths. An example of this will now be described with reference to
Referring next to
In use, as the rotor 15 rotates, starting from the rotor position shown in
It will be appreciated that, in this configuration, the seals formed by the membranes 37, 37a act to prevent fluid flow not between the inlet 11 and the associated outlet 12 and between the second inlet 11a and the associated second outlet 12a, but between the first outlet 12 and the second inlet 11a and between the second outlet 12a and the first inlet 11. The problem overcome is, however, the same as described above with reference to
It will be appreciated that the pump described above with reference to
It will be appreciated that any of the pumps described above with reference to the drawings may have more or less than four chambers 18a, 18b, 18c, 18d. A single chamber is possible but will only give an output once per rotation of the rotor 15. A number of smaller chambers having a total volume of one large chamber may provide a smoother (less pulsed) output flow per revolution. In relation to the embodiment of
It will be appreciated, that the pumps described above with reference to the drawings are formed from few parts—effectively, the housing 10, a rotor 15 and a seal 14. It is possible to form the housing 10 and seal 14 in a two-shot injection moulding process. Alternatively all three elements can be produced in a single assembly injection moulding process in which the rotor 15 is moulded first with the housing 10 then being moulded around the rotor 15 and finally the seal 14 moulded into the housing. The use of such a moulding process allows a pump to be manufactured cheaply and simply to an extent that may allow the pump to be used as a disposable pump.
Hayes-Pankhurst, Richard P., Lacy, Graham K., Nightingale, Christopher E.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
1983033, | |||
2840991, | |||
2845872, | |||
3059583, | |||
3282496, | |||
3375789, | |||
3642390, | |||
3771901, | |||
3829259, | |||
4017208, | Jun 13 1975 | The United States of America as represented by the Secretary of the Navy | Two-way fluid meter pump |
4028021, | Dec 08 1975 | ROTARY POWER INTERNATIONAL, INC | Rotary trochoidal compressor with compressible sealing |
4390328, | Mar 09 1979 | P. A. Rentrop, Hubbert & Wagner Fahrzeugausstattungen GmbH & Co. | Machine with rotary piston including a flexible annular member |
6022201, | May 14 1996 | Kasmer Hydristor Corporation; KYSAMER HYDRISTOR CORPORATION | Hydraulic vane pump with flexible band control |
6095783, | Feb 21 1997 | Fluid mover | |
20020059913, | |||
20060228245, | |||
DE19916252, | |||
EP799996, | |||
GB1109374, | |||
GB482750, | |||
JP58187595, | |||
JP60111078, | |||
JP60240890, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 06 2005 | HAYES-PANKHURST, RICHARD P | Carbonate Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060337 | /0969 | |
Jun 06 2005 | LACY, GRAHAM K | Carbonate Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060337 | /0969 | |
Jun 06 2005 | NIGHTINGALE, CHRISTOPHER E | Carbonate Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060337 | /0969 | |
Mar 14 2006 | Carbonate Limited | PDD INNOVATIONS LTD | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 060338 | /0087 | |
Sep 27 2010 | PDD INNOVATIONS LTD | QUANTEX PATENTS LIMITED | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 060338 | /0242 | |
Apr 14 2014 | QUANTEX PATENTS LIMITED | (assignment on the face of the patent) | / | |||
Jun 23 2021 | QUANTEX PATENTS LIMITED | QUANTEX ARC LIMITED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 060338 | /0615 |
Date | Maintenance Fee Events |
Aug 11 2021 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 03 2022 | 4 years fee payment window open |
Mar 03 2023 | 6 months grace period start (w surcharge) |
Sep 03 2023 | patent expiry (for year 4) |
Sep 03 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 03 2026 | 8 years fee payment window open |
Mar 03 2027 | 6 months grace period start (w surcharge) |
Sep 03 2027 | patent expiry (for year 8) |
Sep 03 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 03 2030 | 12 years fee payment window open |
Mar 03 2031 | 6 months grace period start (w surcharge) |
Sep 03 2031 | patent expiry (for year 12) |
Sep 03 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |