A three-dimensional integrated circuit non-volatile memory array includes a memory array of vertical channel NAND flash strings connected between a substrate source line and upper layer connection lines which each include n-type drain regions and p-type body line contact regions alternately disposed on each side of undoped or lightly doped string body regions so that each NAND flash string includes a vertical string body portion connected to a horizontal string body portion formed from the string body regions of the upper body connection lines.
|
1. A non-volatile memory device, comprising:
a substrate comprising a source line region of a first conductivity type formed at a surface of the substrate; and
a NAND flash memory array formed over the substrate comprising a plurality of NAND flash strings, each comprising a vertical channel string body connected between the source line region and an upper semiconductor layer which extends parallel to the surface of the substrate, where the upper semiconductor layer comprises:
a horizontal string body region connected to each vertical channel string body,
a drain region of the first conductivity type connected to each horizontal string body region, and
a body line contact region of a second, opposite conductivity type connected to each horizontal string body region.
12. A NAND flash memory cell array formed on a substrate comprising a plurality of semiconductor string bodies running in a direction perpendicular to a surface of the substrate, where each semiconductor string body is connected between an n-type source region formed in the substrate and an upper semiconductor layer formed over the substrate, where each upper semiconductor layer comprises:
a horizontal string body region connected to and formed over an associated semiconductor string body,
an n-type conductivity region connected through each horizontal string body region to the associated semiconductor string body, and
a p-type conductivity region connected through each horizontal string body region to the associated semiconductor string body,
where the n-type conductivity region and p-type conductivity region are each laterally offset from the associated semiconductor string body.
0. 22. A flash memory device comprising
a semiconductor substrate;
a plurality of word lines running parallel to the semiconductor substrate;
a plurality of bit lines running parallel to the semiconductor substrate and perpendicular to the plurality of word lines;
a plurality of pillars extending perpendicularly from the semiconductor substrate, each pillar comprising a stacked plurality of memory cells and having a top portion remote from the semiconductor substrate; and
a connection layer comprising semiconducting material, the connection layer being spaced apart from the semiconductor substrate, the connection layer being continuous on a plane that is parallel to the plurality of word lines and parallel to the plurality of bit lines, the connection layer being directly connected to top portions of at least four of the plurality of pillars in a first direction and to top portions of at least four of the plurality of pillars in a second direction that is different from the first direction.
21. A method for erasing an erase block of NAND flash strings, each comprising a vertical channel string body in which a plurality of series-connected transistors are formed between a substrate source line region and an upper semiconductor layer, the plurality of series-connected transistors comprising an upper select gate transistor, a lower select gate transistor, and a plurality of memory cell transistors formed between the upper and lower select gate transistors, comprising:
applying a large positive erase voltage to a body line conductor which is connected through p-type string regions formed in the upper semiconductor layer to the erase block of NAND flash strings, thereby charging the vertical channel string bodies in the erase block of NAND flash strings;
applying a smaller erase gate voltage to the plurality of series-connected transistors formed on the erase block of NAND flash strings; and
floating the substrate source line and one or more bit line conductors which are connected through an n-type string drain regions formed in the upper semiconductor layer to the erase block of NAND flash strings.
19. A method for reading an addressed memory cell transistor from a plurality of NAND flash strings, each comprising a vertical channel string body in which a plurality of series-connected transistors are formed between a substrate source line region and an upper semiconductor layer, the plurality of series-connected transistors comprising an upper select gate transistor, a lower select gate transistor, and a plurality of memory cell transistors formed between the upper and lower select gate transistors, comprising:
applying a bit line read voltage to a bit line conductor which is connected through an n-type string drain region formed in the upper semiconductor layer to a selected flash string on which the addressed memory cell transistor is formed;
applying a body voltage to a body line conductor which is connected through a p-type string region formed in the upper semiconductor layer to the selected flash string on which the addressed memory cell transistor is formed; and
applying a read gate voltage to the addressed memory cell transistor while otherwise applying a positive gate voltage to the other series-connected transistors formed on the selected flash string, thereby reading a value from the addressed memory cell transistor that is transferred through the n-type string drain region formed in the upper semiconductor layer and to the bit line conductor under control of the upper select gate transistor for the selected flash string.
2. The non-volatile memory device of
3. The non-volatile memory device of
4. The non-volatile memory device of
5. The non-volatile memory device of
6. The non-volatile memory device of
7. The non-volatile memory device of
8. The non-volatile memory device of
9. The non-volatile memory device of
where each first connection strip is formed over a column of NAND flash strings and comprises a horizontal string body region connected to each underlying NAND flash string, and a drain region connected to each horizontal string body region for electrically connecting a bit line through said drain region and horizontal string body region to said underlying NAND flash string; and
where each second connection strip is formed adjacent to a corresponding first connection strip and comprises a body line contact region connected to each horizontal string body region in the corresponding first connection strip for electrically connecting a body line through said body line contact region and each connected horizontal string body region to said underlying NAND flash string.
10. The non-volatile memory device of
11. The non-volatile memory device of
13. The NAND flash memory cell array of
14. The NAND flash memory cell array of
15. The NAND flash memory cell array of
16. The NAND flash memory cell array of
17. The NAND flash memory cell array of
18. The NAND flash memory cell array of
20. The method of
0. 23. The flash memory device of claim 22, wherein the connection layer is electrically connected to a bit line.
0. 24. The flash memory device of claim 22, wherein the connection layer is electrically connected to a body line.
0. 25. The flash memory device of claim 22, wherein the semiconducting material of the connection layer comprises a polysilicon semiconductor material.
0. 26. The flash memory device of claim 22, wherein the connection layer comprises an N-type doped region.
|
This application is a Reissue of U.S. patent application Ser. No. 14/532,048 filed Nov. 4, 2014, now issued as U.S. Pat. No. 9,236,394, this application claims the benefit to Provisional Application No. 61/901,830, filed Nov. 8, 2013, all of which are incorporated by reference herein.
1. Field of the Invention
The present invention is directed in general to integrated circuit devices and methods for manufacturing same. In one aspect, the present invention relates to nonvolatile memory devices, such as NAND flash memory and other types of flash memory.
2. Description of the Related Art
With the increasing demand for nonvolatile data storage in consumer electronics having mass storage, such as video or audio players, digital cameras, and other computerized devices, there continues to be interest in having nonvolatile memory devices progress over time towards having smaller sizes, larger memory capacity, and improved performance. Flash memory is a commonly used type of nonvolatile memory which can take the form of memory cards or USB type memory sticks, each having at least one memory device and a memory controller formed therein. For example, the need to reduce manufacturing costs per data bit is driving the NAND flash industry to continuously reduce the size of the cell transistors. But as fabrication process limitations (for example, limitations imposed by photolithography tools) limit the ability to reduce physical transistor sizes, there have been structural and/or design schemes proposed to increase memory density, such as, for example, stacking NAND cells in a direction perpendicular to the chip surface, thereby reducing the effective chip area per data bit without requiring shrinkage of the physical cell transistor size. However, there continue to be challenges associated with designing, fabricating, and operating vertical NAND flash memory devices.
The present invention may be understood, and its numerous objects, features and advantages obtained, when the following detailed description is considered in conjunction with the following drawings, in which:
It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to other elements for purposes of promoting and improving clarity and understanding. Further, where considered appropriate, reference numerals have been repeated among the drawings to represent corresponding or analogous elements.
In a three-dimensional vertical channel NAND flash memory device, a stacked memory architecture and cell array structure are provided with upper connection lines formed with semiconductor strips or in a single semiconductor layer. The upper connection lines include n-type bit line nodes for connection to vertical string channels through horizontal string body portions. The upper connection lines also include p-type body nodes for direct electrical connection to vertical string bodies through horizontal string body portions to provide direct charging through a common body node during erase operations. By connecting the flash cell strings between the upper connection lines and an n-type source line formed in the substrate, the transistors on each string may include a plurality of series-connected transistors, including a string select transistor having a drain which is electrically connected to an n-type bit line node of the upper connection line and a source which is connected to one out of multiple cell transistors connected in series through a ground select transistor to the n-type source line in the substrate. In selected embodiments, a plurality of upper connection lines running in the bit line direction is formed over a stacked array of vertical gate NAND flash cell strings, such as by depositing, patterning, and etching a polysilicon layer to form the plurality of upper connection lines, and then selectively implanting the upper connection lines to define alternating n-type bit line contact regions and p-type body contact regions which are laterally spaced apart from vertical string body portions of the underlying flash cell strings by horizontal string body portions formed in the upper connection lines. In other embodiments, the upper connection lines may be formed by depositing, patterning, and selectively implanting a polysilicon layer to form upper connection lines having implanted n-type bit line contact regions and p-type body contact regions which surround horizontal string body portions formed around vertical string body portions of the underlying flash cell strings. By forming and positioning each upper connection line to include a horizontal string body portion in direct electrical contact with a corresponding vertical string body portion, each semiconductor body of the cell array transistors is not confined to a straight pillar structure, and is connected to an n-type bit line contact region and p-type body contact region in a corresponding upper connection line. In addition, by forming n-type and p-type node regions in the upper connection lines after fabrication of the stacked cell structures to be laterally spaced apart from the vertical string bodies by the horizontal string body portions, the risk of dopant ion diffusion into the vertical string bodies may be reduced or eliminated.
In this disclosure, an improved system, apparatus, and fabrication method are described for fabricating vertical channel NAND flash memory devices with upper connection line structures and substrate source line regions positioned on opposing ends of adjacent NAND strings that address various problems in the art where various limitations and disadvantages of conventional solutions and technologies will become apparent to one of skill in the art after reviewing the remainder of the present application with reference to the drawings and detailed description provided herein. For example, there are performance limitations with performing erase operations in conventional floating-body type stacked NAND flash memories due to difficulties with directly charging cell bodies in such memories. There are also manufacturing challenges that can impair device performance, such as when source lines are implanted into the substrate through the stacked cell structures, resulting in increased resistance due to limited implantation area and/or dopant concentration. While there have been attempts to address such limitations, such solutions typically include doped n-type drain contact regions formed on top of the vertical string bodies, resulting in other technical challenges when dopants diffuse into the string body structures during high-temperature fabrication processing used to make stacked cell structures. Various illustrative embodiments of the present invention will now be described in detail with reference to the accompanying figures. While various details are set forth in the following description, it will be appreciated that the present invention may be practiced without these specific details, and that numerous implementation-specific modifications may be made to the invention described herein to achieve the device designer's specific goals, such as compliance with process technology or design-related constraints, which will vary from one implementation to another. While such a development effort might be complex and time-consuming, it would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. For example, selected aspects are depicted with reference to simplified drawings and representations of a flash memory device without including every device feature, geometry, or circuit detail in order to avoid limiting or obscuring the present invention. Such descriptions and representations are used by those skilled in the art to describe and convey the substance of their work to others skilled in the art. In addition, although specific example materials are described herein, those skilled in the art will recognize that other materials with similar properties can be substituted without loss of function. It is also noted that, throughout this detailed description, certain materials will be formed and removed to fabricate the semiconductor structure. Where the specific procedures for forming or removing such materials are not detailed below, conventional techniques to one skilled in the art for growing, depositing, removing or otherwise forming such layers at appropriate thicknesses shall be intended. Such details are well known and not considered necessary to teach one skilled in the art how to make or use the present invention.
To provide a contextual framework for selected embodiments of the present disclosure, reference is now made to
In order to read cell data, the control gate 8A, 8B is biased to a lower voltage (for example, Vss=0V). If the cell is in an erased state, the erased cell has a negative threshold voltage so that the cell current (Icell) from the drain 3B to the source 3A flows under the given read bias condition. On the other hand, if the cell is in a programmed state, the programmed cell has a positive threshold voltage so that there is no cell current from the drain 3B to the source 3A under read bias condition. An erased cell (on-cell) is thus read or sensed as data ‘1’ and a programmed cell (off-cell) is read or sensed as data ‘0’.
During an erase operation, the control gate 8A, 8B of a cell is biased to a low voltage (for example, Vss=0V) while the cell body 2 is biased to an erase voltage V_erase (for example 18 V) and the source and drain 3A/3B of the cell are floated. In the erase bias conditions, no conductive inversion layer channel 4A, 4B exists because the cell transistors are strongly turned off, in which case the trapped electrons in the floating node 6A, 6B are emitted uniformly to the substrate 2 through the tunnel dielectric 5. As a result, the cell threshold voltage (Vth) of the erased cell becomes negative. In other words, the erased cell transistor is in an on-state if the gate bias of the control gate is 0V. Because of the cell body bias requirement for erase bias conditions, erase operations are not applied to individual NAND Flash memory cells, but are instead applied to erase entire blocks of cells.
To further illustrate the contextual framework for selected embodiments of the present disclosure, reference is now made to
On or around the semiconductor body or well layer 2, a multi-layered memory film structure 5-7 is formed for each transistor 11, 12, including a tunnel dielectric layer 5 that is formed (for example, deposited or grown) on the semiconductor body/well layer 2, a charge storage layer 6 that is formed on the tunnel dielectric 5, and a coupling dielectric 7 (a.k.a., blocking dielectric) that is formed (for example, deposited) on the charge storage layer 6. Sandwiched between the tunnel dielectric layer 5 and the coupling dielectric layer 7, the charge storage layer 6 performs a charge trap function by including charge storage nodes or locations 6A, 6B where electrons are trapped. In selected embodiments, the charge storage nodes 6A, 6B may be formed as a SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) structure, though other charge storage node structures may be used. As will be appreciated, the charge storage nodes 6A, 6B are formed to prevent unintentional charge flow between adjacent cells, such as by forming the charge storage layer 6 with dielectric charge trapping material or with conductive material in each cell which is isolated from adjacent cells (e.g., by patterned dielectric layers between adjacent floating gates). In selected floating gate embodiments (not shown), the charge storage layer 6 is patterned into separate floating gates that are isolated from one another. However, in embodiments where the charge storage layer 6 and storage nodes 6A, 6B are formed as a single continuous layer, the multi-layered memory film structure 5-7 may be fabricated as a continuous thin film without patterned, isolated segments. On the multi-layered memory film structure 5-7, patterned control gates 8A, 8B are formed, such as by depositing a polysilicon layer or other conductive control gate layer on the coupling dielectric 7.
In the semiconductor body/well layer 2, source/drain regions 3A-3C are formed using any desired technique. For example, the source/drain regions 3 may be formed by implanting or diffusing regions with appropriate polarity dopants (for example, n-type doping). In other embodiments, the source/drain regions 3 are not formed through ion implantation as permanently conducting implant regions, but instead have their conductivity controlled by applying electric fringe-fields from the control gates 8A, 8B. For example, a large bias applied at the control gates 8A, 8B can induce conductive inversion layers in the source/drain regions 3A-3C in the same manner as a channel inversion layer forms when a transistor is turned on. These types of cells are called “junction-free” or “junctionless” cells. In such junction-free cells, the channel regions 4A, 4B and the source/drain regions 3A, 3B, 3C are only conductive if the electric field between the charge storage node 6A, 6B and the substrate 2 is sufficiently large to induce an inversion layer. This electric field is caused by a combination of the charge stored in the charge storage layer 6A, 6B and the external bias that is applied to the control gate 8A, 8B.
Turning now to
In the depicted NAND string 20A, the cells are connected in series in a group of a predetermined numbers of cells (for example, 16, 32 or 64). To connect each string to its corresponding source line (SL) and bit line (for example, BL(j+k)*8−2), selection transistors are placed at the edges of the string. For example, the NAND cell string 20A includes at least one string select transistor (SST, SSL gate or SSL transistor) and at least one ground select transistor (GST, GSL gate or GSL transistor). The gate of the string select transistor (SST) is connected to a string select line (SSL), while the drain of a string select transistor (SST) is connected to a bit line for the string (for example, BL(j+k)*8−2). The gate of a ground select transistor (GST) is connected to a ground select line (GSL), while the source of the ground select transistor (GST) is connected to a source line (SL or CSL) for the string. Connected in series between the string select transistor SST and ground select transistor GST is a plurality of memory cell transistors CT(i), each having a control gate connected to a respective word line WL(i). In the depicted configuration, the NAND string 20A shares the bit line contact with another string, and any desired number of memory cell transistors may be connected in a string so that the number of cells per string may vary with 4 cells per string, 8 cells per string, 16 cells per string, 32 cells per string, 64 cells per string, 128 cells per string, and so on. To specify a direction within the string 20A, the direction towards the string select line SSL of a string is referred to as “drain direction” or “drain side,” and the direction towards the ground select line GSL of a string is referred to as “source direction” or “source side.”
In the depicted NAND page 20B, the cells are addressed by a row address to specify the smallest unit of cells for which a read or program operation can be performed. In selected embodiments, the page 20B includes the cells connected to the same word line (for example, WL(2)). In other embodiments, the number of pages per word line depends upon the storage capabilities of the memory cell. For example, the cells connected to a certain word line may be subdivided into multiple subgroups so that the array 20 includes multiple pages per word line, whereby each one of the multiple pages in one word line has a different row address. In the case of multiple bit storage in one physical cell, different bits can belong to different pages although they are physically located in the same cell transistor and thus connected to the same word line.
The NAND Flash array 20 may also be grouped into a series of blocks (for example, 20C). For example, the depicted NAND flash block 20C includes all strings which share the same word lines, string select lines, and ground select lines. Stated another way, a block 20C includes all pages sharing the same string select lines and ground select lines. In other embodiments, different groupings of NAND flash cells may be used for the flash erase blocks. In selected embodiments, the smallest unit for which an erase operation is performed is one cell block, which is therefore often named “erase block.”
To illustrate the block-base erase operations for a NAND flash array, reference is now made to
As memory array sizes increase, the need to reduce manufacturing costs per data bit is driving the NAND Flash industry to continuously reduce the size of the cell transistors. Due to the limitations imposed by photolithography tools and the limits of shrinking the physical transistor size, schemes have been proposed whereby NAND cells are stacked in a direction perpendicular to the chip surface. Thereby, the effective chip area per data bit can be reduced without relying on the shrinkage of the physical cell transistor size. Generally speaking, there are two main types of stacked NAND flash memory device architectures. First, and as illustrated in simplified cross-sectional schematic form in
In the illustrated example, the cell transistors formed along each silicon flash cell string (for example, 103A-D) are formed as gate-all-around devices by forming stacked word line gate structures 108A-D with multi-layered memory film structure 104A-D to surround the silicon flash cell string with cell transistor gates where each cell channel is formed. In addition, separate stacks of word line gate structures 108E-H, 108I-L, 108M-P may be formed around other groups of flash cell strings (e.g., 103E/104E, 103I/104I, 103M/104M). Though not separately shown, it will be appreciated that each multi-layered memory film structure 104 formed around each string 103 for each memory cell transistor may include a tunnel dielectric layer formed to surround the channel region of the silicon strip, a charge storage layer (for example, silicon nitride) formed around the tunnel dielectric layer, and a coupling dielectric formed around the charge storage layer. Around each multi-layered memory film structure (e.g., 104A-D), a stack of word line gate structures (e.g., 108A-D) may be formed with one or more patterned polysilicon layers to extend across multiple strings (e.g., 103A-D). While the transistors formed in each silicon string may include implanted and/or diffused source/drain regions (for example, n+ regions) for each defined transistor cell, in other embodiments, the transistors formed in at least the bottom or vertical pillar portion 103-V may be formed as junction-free cells with virtual source/drain regions formed to have conductivity that depends on the existence of electric fringe fields between gates adjacent to the source/drain regions and the source/drain silicon itself.
In addition to the stacked word line gate structures (e.g., 108A-D) defining multiple memory cells, each string may also include additional gate structures on each end of the string to define ground and string select line transistors. For example, ground select line transistors may be formed as a lower select gate at the bottom of each string with separate poly gate structures (e.g., 110A) which connect the source node of each vertical flash cell string (e.g., 103A-D) to a shared or common source line diffusion 102 formed in the substrate 101. In addition, string select transistors may be formed as an upper select gate at the top of each vertical flash cell string (e.g., 103A-D) with separate poly gate structures (e.g., 109A) which connect the drain nodes of each vertical flash cell string (e.g., 103A-D) to a corresponding drain region formed in the upper layer connection line (e.g., 120) which is electrically connected to a bit line (e.g., 163) of the cell array under control of a string select signal. In this way, the source nodes of all strings in a designated block are connected to the shared source line 102 in the substrate 101, but the drain nodes of each string (e.g., 103A) is shared only horizontally with other strings in a first lateral direction (e.g., 103E, 103I, 103M) via a shared bitline (e.g., 163), but not with strings in a second lateral direction. If desired, the ground and string select transistors may be formed as gate-all-around devices substantially as described above. For example, the string select transistor at the drain node of each string may be formed with a poly gate structure (for example, 109A-D) formed around a multi-layered memory film structure (e.g., 104A, 104E, 104I, 104M), while the ground select transistor at the source node of each string may be formed with a poly gate structure (e.g., 110A-D) formed around the corresponding multi-layered memory film structure.
As depicted in
Each NAND flash string is formed with a semiconductor body 103 which is shared by the string select, cell, and ground select transistors belonging to that string 103. In selected embodiments, each NAND flash string has a shape which resembles a cylinder or vertical pillar so that the string body or channel runs along the long axes of the cylinders in the z-direction. As shown more clearly in
When a transistor is turned on, a conductive channel of a first conductivity type (for example n-type) is formed in the transistor body 103. When all transistors of a string are turned on during a read or program operation, a continuous conductive channel of the first conductivity type forms throughout the entire string 103 from the string drain to the string source, thereby forming a conductive path from a bit line to a source line node. During an erase operation, the string body 103 is charged with a high positive voltage (e.g., 18V-20V), thereby inducing a second, opposite conductivity type (for example p-type). To control the different read, program, and erase modes, each cell string has four different terminals to which external voltages can be applied: a drain terminal (bit line node) in the upper layer connection line, a source terminal (source line node) in the substrate, a body terminal (body line) in the upper layer connection line, and multiple gate terminals 108-110 which are the gate terminals of string select transistors, cell transistors and ground select transistors.
By forming each word line gate structure (e.g., 108A) to extend horizontally across separate multi-layered memory film structures (e.g., 104A-D) surrounding the vertical channel NAND flash cell strings (e.g., 103A-D), separate word line (WLi) signals may be connected across the word line gate structure 108A to cell transistors in the adjacent flash cell strings in a first horizontal or lateral direction that share the poly gate node 108A. Bit lines can also be shared by one or more adjacent flash cell strings formed in a second horizontal or lateral direction (for example, 103E, 103I, 103M) by connecting the strings through bit line contact regions in the upper layer connection line (e.g., 120) to a shared bit line (for example, 163) which is used to establish electrical connection from the connected strings to the common bit line through one or more via contacts or conductors 163V1-3. As illustrated, each of the bit line conductors 163-165 is connected to bit line contact regions in a corresponding upper layer connection line 120, 130, 140, 150) through via contacts or conductors. By the same token, separate body charging voltages may be connected to adjacent flash cell strings in a first horizontal or lateral direction that share a body line conductor (e.g., 161) by connecting the strings through body contact regions in the upper layer connection lines (e.g., 120, 130, 140, 150) to the shared body line (for example, 161) through one or more via contacts or conductors (e.g., 161V3-4) which apply a voltage for holding the body nodes of the connected strings at a predetermined or low voltage.
The depicted vertical channel NAND flash memory 100 illustrates selected example embodiments of a three-dimensional vertical channel NAND flash memory array which allows individual pages to be selected for read and program operation and which may erase selected blocks in a VG NAND structure using the upper layer connection lines 120, 130, 140, 150 to connect bit line and erase voltages to the flash cell strings. However, it will be appreciated that a vertical channel NAND flash memory may be implemented with different features and structures. For example, the cell string structures are described has having a dielectric filler at the core of the vertical pillar structures, but such structures are not functionally required in all embodiments. In addition, the different semiconductor structures, such as the flash strings or transistor gates, may be formed with polysilicon or with any desired semiconductor material. There are also numerous variations in the charge storage structures used to store charge in NAND flash devices, such as, for example, floating gate devices, charge-trap devices, etc. And while the string bodies may be formed with implanted p-type semiconductor material, selected embodiments may form the string bodies with undoped or even lightly n-type doped semiconductor material, such as silicon. Even in these cases, the conductivity type may be controlled during read/program or erase operation by way of external biasing conditions. It will also be appreciated that the vertical channel NAND flash memory 100 shown in
Turning now to
In selected embodiments, the upper layer connection lines 120, 130, 140, 150 may be formed with different polysilicon film regions (e.g., 121-129) which each include lightly doped (or undoped) string body cap regions (shown in cross-hatch), string drain regions (shown in dark grey), and body line contact regions (shown in light gray). The string body cap regions (e.g., 122, 124, 126, 128, 152, 154, 156, 158) are positioned and aligned for connection to underlying vertical flash cell strings (e.g., 103M, 103I, 103E, 103A, 103P, 103L, 103H, 103D), and may be formed with a lightly doped or undoped semiconductor material (e.g., polysilicon) that is not permanently n-type or p-type conductive or permanently insulating, and may include either n-type or p-type sub-regions depending on externally applied voltage conditions. For example, the string body cap regions (e.g., 122, 124, 126, 128, 152, 154, 156, 158) may be lightly doped with p-type dopants and may therefore be of p-type conductivity at times when transistors are in a turned-off state. In similar fashion, the string drain regions (e.g., 121, 125, 129, 151, 155, 159) may be formed with polysilicon film regions having permanent n-type conductivity to form string drains for underlying vertical flash cell strings connected thereto (e.g., 103M, 103I, 103E, 103A, 103P, 103L, 103H, 103D). In addition, the body line contact regions (e.g., 123, 127, 153, 157) to form body line contact regions for underlying vertical flash cell strings connected thereto (e.g., 103M, 103I, 103E, 103A, 103P, 103L, 103H, 103D). The conductivity type and concentrations for the string body cap regions, string drain regions, and body line contact regions may be controlled by using patterning mask and implantation techniques to selectively implant ions of the desired conductivity type and amount into the target regions.
To illustrate additional structural details of the vertical channel NAND flash memory shown in
The first vertical portion of each string 103A, 103E, 103I, 103M may be shaped as a hollow (or optionally filled) cylindrical semiconductor tube surrounding a dielectric fill layer 115A, 115E, 115I, 115M, that is directly electrically connected to the n-type source line region 102 formed in the substrate 101. Each vertical string portion runs between the string source line 102 and the uppermost vertical portion adjacent to the string select transistor gates 109A, 109B, 109C, 109D. The uppermost part of the first vertical portion 103-V is therefore controlled by the sidewall-facing portion of the corresponding string select transistor 109A, 109B, 109C, 109D.
The second horizontal portion 103-V of each string 103A, 103E, 103I, 103M is formed with the string body regions 122, 124, 126, 128 in the upper layer connection line 120 to be located above the string stack and facing the upper side of the corresponding string select transistor 109A, 109B, 109C, 109D. The second horizontal portion faces the corresponding string select transistor gate 109A, 109B, 109C, 109D across the gate dielectric 106A, and is therefore controlled by the upward-facing portion of the string select transistor 109A, 109B, 109C, 109D in the same way the vertical portions of the string select transistor channels are controlled. Formed as part of the upper layer connection line 120, the second horizontal portion 103-V of each string 103A, 103E, 103I, 103M is directly connected to a corresponding drain region 121, 125, 129 (shown in dark grey) having a permanent first conductivity type (e.g., N+) to function as a string drain region. In read and program operations for the strings 103A, 103E, 103I, 103M, each drain region 121, 125, 129 is connected to a shared bit line 163 through one or more interconnect or via structures 163V1-3. The second horizontal portion 103-V of each string 103A, 103E, 103I, 103M is also directly electrically connected to a corresponding body line region 123, 127 of a second, opposite conductivity type (e.g., P+) (shown in light grey). During erase operations for the strings 103A, 103E, 103I, 103M, each body line region 123, 127 is connected to a corresponding body line 161, 162 through one or more corresponding interconnect or via structures 161V4, 162V4.
To illustrate additional structural details of the vertical channel NAND flash memory shown in
To illustrate additional structural details of the vertical channel NAND flash memory shown in
To illustrate additional structural details of the vertical channel NAND flash memory shown in
To give a clearer understanding of the three-dimensional shape of the portions of the device which consist of semiconducting material, reference is now made to
In operation, selected embodiments of the vertical channel NAND flash memory array 100 described herein are operative to perform basic read, program, and erase operations using the cell structures disclosed herein. Examples of such operations will now be provided with reference to
Turning now to
Turning now to
While any desired fabrication sequence may be used to form the vertical channel NAND flash memory structures disclosed herein, the manufacturing process may include an initial step of forming a NAND flash memory cell array in which transistors are vertically stacked on NAND flash strings arranged in a matrix pattern to extend up from a substrate. For example, alternating layers of polysilicon and dielectric insulator layers may be deposited, patterned, and selectively etched to define a laminated stack of patterned gate conductor layers over a substrate. In the laminated stack, a matrix pattern of memory holes may be selectively etched down to the substrate, and then sequentially filled with memory film structure layers and semiconductor body layers to thereby form the vertical channel NAND flash strings. Over the VC NAND flash strings, a plurality of body connection layer strips may then be formed with alternating n-type drain and p-type body contact regions surrounding undoped or lightly doped string body regions which are positioned and connected to underlying vertical string structures. Subsequently, additional interconnect structures are formed to connect bit line conductors to the n-type drain contact regions, and to connect body line conductors to the p-type body contact regions.
As will be appreciated, the patterning and positioning of the drain and body contact regions in the upper body connection layers may be arranged in any way which prevents two adjacent strings having different x-coordinates from being connected to the same bit line. As described hereinabove with reference to
Selected embodiments of the vertical channel NAND flash memory disclosed herein may be used to provide a VC NAND cell structure which facilitates application of external voltages to access cell nodes (such as string gates, drains, sources and bodies) to improve performance. For example, by forming the upper body connection layers with different lateral locations for string drains and string bodies, these locations are exposed in such a way that they can easily by connected to contact vias and metal interconnection lines. In addition, the upper body connection layers facilitate the direct biasing of string body nodes so that the string body nodes are not floating and can be directly biased from an external connection during erase operation. Another benefit of providing string body node connections through the upper body connection layer is that the substrate source line diffusion layer is not restricted to be formed or patterned into any particular shape. In addition, the substrate source line diffusion layer need not be patterned into long, thin high-resistance lines as is the case in conventional schemes where the body connection is located under the cell stack. Yet another benefit from selected embodiments is that the n-type and p-type regions in the upper body connection layer may be laterally positioned and displaced away from the underlying vertical cell string portions and connected to the horizontal string portions to reduce or eliminate the risk of dopant diffusion into the vertical string portions which can adversely affect the transistor characteristics of the string select transistors or the cell transistors. The formation of the n-type and p-type regions in the upper body connection layer also allows these regions to be implanted after the cell stacking process so that any high temperature fabrication processes that occur during the cell stacking process do not cause any unwanted n-type/p-type dopant diffusion.
By now it should be appreciated that there is provided herein a three-dimensional integrated circuit non-volatile memory device with upper connection line for providing bit line and body line voltages. The disclosed NVM device includes a NAND flash memory array formed over a substrate having a source line region of a first conductivity type (e.g., a heavily doped N+ source line region) formed at a surface of the substrate. The NAND flash memory array includes a plurality of NAND flash strings, each having a vertical channel string body connected between the source line region and an upper semiconductor layer which extends parallel to the surface of the substrate. In selected embodiments, the NAND flash memory array includes multiple upper semiconductor layer strips running in a bit line direction which are electrically isolated from one another in a word line direction, each upper semiconductor layer strip electrically connecting a shared bit line through one or more drain regions in said upper semiconductor layer strip to NAND flash strings from different word lines. In such cases, the upper semiconductor layer strips electrically connect a shared body line through body line contact regions in said upper semiconductor layer strips to NAND flash strings sharing one or more common word lines. In other embodiments, the upper semiconductor layer is formed with alternating first and second connection strips running in the bit line direction and formed in a continuous semiconductor layer. Formed over a column of NAND flash strings, each first connection strip includes a horizontal string body region connected to each underlying NAND flash string, and a drain region connected to each horizontal string body region for electrically connecting a bit line through said drain region and horizontal string body region to said underlying NAND flash string. Each second connection strip is formed adjacent to a corresponding first connection strip and includes a body line contact region connected to each horizontal string body region in the corresponding first connection strip for electrically connecting a body line through said body line contact region and each connected horizontal string body region to said underlying NAND flash string. In such cases, the upper semiconductor layer may include a plurality of first connection strips formed over a corresponding plurality of NAND flash string columns, and a plurality of second connection strips formed between the plurality of first connection strips for electrically connecting one or more shared body line conductors through body line contact regions formed in each second connection strip to the plurality of NAND flash strings. Each NAND flash string includes a plurality of series-connected transistors formed along a corresponding vertical channel string body between the source line region and the upper semiconductor layer which includes a horizontal string body region connected to each vertical channel string body, a drain region of the first conductivity type connected to each horizontal string body region, and a body line contact region of a second, opposite conductivity type connected to each horizontal string body region. For example, the drain region may be an n+ doped region formed in the upper semiconductor layer to be laterally offset from the vertical channel string body, and the body line contact region may be a p+ doped region formed in the upper semiconductor layer to be laterally offset from the vertical channel string body. The series-connected transistors may include an upper select gate transistor, a lower select gate transistor, and a plurality of memory cell transistors formed between the upper and lower select gate transistors. The upper select gate transistor may be a string select transistor formed adjacent to a corresponding horizontal string body region that is connected to the vertical channel string body, thereby defining horizontal and vertical string body portions for the NAND flash string. In this way, the upper select gate transistor has a first channel portion that runs parallel to the surface of the substrate and a second channel portion that runs perpendicular to the surface of the substrate. In addition, the upper select gate transistor may include a gate electrode that is located between the first channel portion of the upper select gate transistor and the surface of the substrate.
In another form, there is provided a NAND Flash memory cell array that is formed on a substrate with a plurality of semiconductor string bodies running in a direction perpendicular to a surface of the substrate. As formed, each semiconductor string body is connected between an n-type source region formed in the substrate and an upper semiconductor layer formed over the substrate, where each upper semiconductor layer comprises a horizontal string body region connected to and formed over an associated semiconductor string body, an n-type conductivity region connected through each horizontal string body region to the associated semiconductor string body, and a p-type conductivity region connected through each horizontal string body region to the associated semiconductor string body, where the n-type conductivity region and p-type conductivity region are each laterally offset from the associated semiconductor string body. In addition, an upper select gate may be formed at an upper end of each semiconductor string body, where each upper select gate controls a first channel portion formed in the horizontal string body region that runs parallel to the surface of the substrate and a second channel portion formed in the semiconductor string body that runs perpendicular to the surface of the substrate. In this way, the upper select gate may be located between the first channel portion and the surface of the substrate. Each upper select gate is positioned and connected upon application of a first voltage to induce n-type conductivity in the first and second channel portions to electrically connect the first channel portion to an associated n-type conductivity region in the upper semiconductor layer. Each upper select gate may also be positioned and connected upon application of a second voltage to induce p-type conductivity in the first and second channel portions to electrically connect the first channel portion to an associated p-type conductivity region in the upper semiconductor layer. The n-type conductivity region in each upper semiconductor layer is electrically connected to a first conductive line, and the p-type conductivity connective region in each upper semiconductor layer is electrically connected to a second conductive line. With these connections, the first conductive line may function as a bit line for transferring data bits to or from one or more semiconductor string bodies, and the second conductive line may function as a body line for transferring a positive voltage to one or more semiconductor string bodies.
In yet another form, there is provided a method for reading an addressed memory cell transistor from a plurality of NAND flash strings, where each string includes a vertical channel string body in which a plurality of series-connected transistors are formed between a substrate source line region and an upper semiconductor layer. The series-connected transistors on each string may include an upper select gate transistor, a lower select gate transistor, and a plurality of memory cell transistors formed between the upper and lower select gate transistors. In the disclosed methodology, a bit line read voltage is applied to a bit line conductor which is connected through an n-type string drain region formed in the upper semiconductor layer to a selected flash string on which the addressed memory cell transistor is formed. In addition, a body voltage is applied to a body line conductor which is connected through a p-type string region formed in the upper semiconductor layer to the selected flash string on which the addressed memory cell transistor is formed. Finally, a read gate voltage is applied to the addressed memory cell transistor while otherwise applying a positive gate voltage to the other series-connected transistors formed on the selected flash string, thereby reading a value from the addressed memory cell transistor that is transferred through the n-type string drain region formed in the upper semiconductor layer and to the bit line conductor under control of the upper select gate transistor for the selected flash string. In selected embodiments, the application of the positive gate voltage to the other series-connected transistors includes applying the positive gate voltage to an upper select gate formed at an upper end of the selected flash string to control a first channel portion of a horizontal string body region formed in the upper semiconductor layer and a second channel portion of a vertical string body formed in the selected flash string.
In still yet another form, there is provided a method for erasing an erase block of NAND flash strings, where each string includes a vertical channel string body in which a plurality of series-connected transistors are formed between a substrate source line region and an upper semiconductor layer. The series-connected transistors may include an upper select gate transistor, a lower select gate transistor, and a plurality of memory cell transistors formed between the upper and lower select gate transistors. In the disclosed methodology, a large positive erase voltage is applied to a body line conductor which is connected through p-type string regions formed in the upper semiconductor layer to the erase block of NAND flash strings, thereby charging the vertical channel string bodies in the erase block of NAND flash strings. In addition, a smaller erase gate voltage is applied to the series-connected transistors formed on the erase block of NAND flash strings. Also, the substrate source line is floated along with one or more bit line conductors which are connected through an n-type string drain regions formed in the upper semiconductor layer to the erase block of NAND flash strings.
Although the described exemplary embodiments disclosed herein are directed to various non-volatile memory device structures and methods for making and operating same by forming body contact regions and string drain regions over a stacked NAND string array, the present invention is not necessarily limited to the example embodiments which illustrate inventive aspects of the present invention that are applicable to a wide variety of fabrication processes and/or structures. Thus, the particular embodiments disclosed above are illustrative only and should not be taken as limitations upon the present invention, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. For example, while the NAND cell transistors are described as n-channel transistors on p-type (or undoped) substrate, this is merely for illustration purposes, and it will be appreciated that n and p-type impurities may be interchanged so as to form p-channel transistors on n-type substrate, or the substrate may consist of undoped silicon. In addition, the flash memory cells are illustrated herein as being embodied as vertical channel NAND memory cell strings, but this is merely for convenience of explanation and not intended to be limiting and persons of skill in the art will understand that the principles taught herein apply to other suitable kinds of cell structures and the resulting different bias conditions. It will also be appreciated that the disclosed cell array structure bias voltage scheme for read, program, and erase operations is not tied to any specific cell technology. For example, the figures illustrate examples in which there are sixteen vertical channel NAND strings which each have four memory cells and two select gate transistors; however, other embodiments are not restricted to any specific number of strings or transistors, and even work for single layer cell arrays. In addition, the terms of relative position used in the description and the claims, if any, are interchangeable under appropriate circumstances such that embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein. The term “coupled,” as used herein, is defined as directly or indirectly connected in an electrical or non-electrical manner. Accordingly, the foregoing description is not intended to limit the invention to the particular form set forth, but on the contrary, is intended to cover such alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims so that those skilled in the art should understand that they can make various changes, substitutions and alterations without departing from the spirit and scope of the invention in its broadest form.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
Patent | Priority | Assignee | Title |
11201169, | Mar 31 2020 | Macronix International Co., Ltd.; MACRONIX INTERNATIONAL CO , LTD | Memory device and method of fabricating the same |
Patent | Priority | Assignee | Title |
5907170, | Oct 06 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Circuit and method for an open bit line memory cell with a vertical transistor and trench plate trench capacitor |
6643159, | Apr 02 2002 | Hewlett Packard Enterprise Development LP | Cubic memory array |
7692950, | Jan 08 2007 | Samsung Electronics Co., Ltd. | Semiconductor memory device |
7852676, | Apr 23 2008 | Kioxia Corporation | Three dimensional stacked nonvolatile semiconductor memory |
7994011, | Nov 12 2008 | Samsung Electronics Co., Ltd. | Method of manufacturing nonvolatile memory device and nonvolatile memory device manufactured by the method |
8188530, | Jun 24 2009 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device and method for manufacturing same |
8199573, | Sep 25 2009 | Kioxia Corporation | Nonvolatile semiconductor memory device |
8427881, | Jul 22 2009 | Samsung Electronics Co., Ltd. | Semiconductor memory device and programming method thereof |
8531901, | Sep 07 2010 | Kioxia Corporation | Three dimensional NAND type memory device having selective charge pump activation to minimize noise |
8587998, | Jan 06 2012 | Macronix International Co., Ltd. | 3D memory array with read bit line shielding |
8891300, | Jan 27 2012 | Samsung Electronics Co., Ltd. | Nonvolatile memory device, memory system having the same and block managing method, and program and erase methods thereof |
9070442, | Aug 29 2013 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Memory devices with local and global devices at substantially the same level above stacked tiers of memory cells and methods |
9076879, | Sep 11 2012 | Samsung Electronics Co., Ltd. | Three-dimensional semiconductor memory device and method for fabricating the same |
20060138522, | |||
20060237851, | |||
20090173981, | |||
20100208511, | |||
20100224928, | |||
20100265773, | |||
20110024816, | |||
20110051527, | |||
20110147824, | |||
20110157989, | |||
20110216597, | |||
20110284946, | |||
20110298013, | |||
20120033503, | |||
20120043673, | |||
20120132981, | |||
20120248525, | |||
20130016561, | |||
20130069141, | |||
20130248974, | |||
20130264631, | |||
20130286735, | |||
20140047246, | |||
20140252363, | |||
20140307508, | |||
20150115344, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 12 2018 | Conversant Intellectual Property Management Inc. | (assignment on the face of the patent) | / | |||
Jul 31 2018 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | CPPIB CREDIT INVESTMENTS, INC | AMENDED AND RESTATED U S PATENT SECURITY AGREEMENT FOR NON-U S GRANTORS | 046900 | /0136 | |
Oct 28 2020 | CPPIB CREDIT INVESTMENTS INC | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 054445 | /0390 | |
Apr 01 2021 | CONVERSANT INTELLECTUAL PROPERTY INC | Mosaid Technologies Incorporated | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 057857 | /0204 | |
Apr 01 2021 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Mosaid Technologies Incorporated | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 064859 | /0807 |
Date | Maintenance Fee Events |
Jan 12 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 28 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 14 2023 | 4 years fee payment window open |
Jul 14 2023 | 6 months grace period start (w surcharge) |
Jan 14 2024 | patent expiry (for year 4) |
Jan 14 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 14 2027 | 8 years fee payment window open |
Jul 14 2027 | 6 months grace period start (w surcharge) |
Jan 14 2028 | patent expiry (for year 8) |
Jan 14 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 14 2031 | 12 years fee payment window open |
Jul 14 2031 | 6 months grace period start (w surcharge) |
Jan 14 2032 | patent expiry (for year 12) |
Jan 14 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |