A three-dimensionally stacked nonvolatile semiconductor memory of an aspect of the present invention including conductive layers stacked on a semiconductor substrate in such a manner as to be insulated from one another, a bit line which is disposed on the stacked conductive layers, a semiconductor column which extends through the stacked conductive layers, word lines for which the stacked conductive layers except for the uppermost and lowermost conductive layers are used and which have a plate-like planar shape, memory cells provided at intersections of the word lines and the semiconductor column, a register circuit which has information to supply a potential suitable for each of the word lines, and a potential control circuit which reads the information retained in the register circuit in accordance with an input address signal of a word line and which supplies a potential suitable for the word line corresponding to the address signal.
|
0. 13. A semiconductor memory comprising:
a semiconductor substrate;
a stacked body disposed above the substrate, the stacked body including:
a first conductive layer disposed above the semiconductor substrate and configured as a first word line,
a second conductive layer disposed above the first conductive layer and configured as a second word line,
a third conductive layer disposed above the second conductive layer and configured as a third word line, and
a semiconductor column formed in a hole which penetrates the first conductive layer, the second conductive layer, and the third conductive layer in the stacked body, and extends in a first direction perpendicular to the semiconductor substrate;
a first storage portion which surrounds the semiconductor column, is disposed between the first conductive layer and the semiconductor column, and is configured as a first memory cell, a gate of the first memory cell being electrically connected to the first word line, wherein the first word line, the first storage portion, and a portion of the semiconductor column surrounded by the first storage portion are disposed along a second direction parallel to the semiconductor substrate;
a second storage portion which surrounds the semiconductor column, is disposed between the second conductive layer and the semiconductor column, and is configured as a second memory cell, a gate of the second memory cell being electrically connected to the second word line, wherein the second word line, the second storage portion, and a portion of the semiconductor column surrounded by the second storage portion are disposed along the second direction;
a third storage portion which surrounds the semiconductor column, is disposed between the third conductive layer and the semiconductor column, and is configured as a third memory cell, a gate of the third memory cell being electrically connected to the third word line, wherein the third word line, the third storage portion, and a portion of the semiconductor column surrounded by the third storage portion are disposed along the second direction, and wherein the first memory cell, the second memory cell, and the third memory cell are connected in series and configured as a memory string; and
a control circuit configured to perform a read operation on a condition that a first read voltage for reading first level data is applied to the first word line when the first word line is selected, a second read voltage for reading the first level data is applied to the second word line when the second word line is selected, or a third read voltage for reading the first level data is applied to the third word line when the third line is selected,
wherein the third read voltage is larger than the second read voltage, and second voltage is larger than the first read voltage, and
wherein a third diameter of the semiconductor column surrounded by the third storage portion in the second direction is larger than a second diameter of the semiconductor column surrounded by the second storage portion in the second direction, and the second diameter of the semiconductor column is larger than a first diameter of the semiconductor column surrounded by the first storage portion in the second direction.
0. 1. A three-dimensionally stacked nonvolatile semiconductor memory comprising:
a memory cell array provided in a semiconductor substrate;
conductive layers stacked above the semiconductor substrate in the memory cell array in such a manner as to be insulated from one another;
a bit line which is disposed above the conductive layers in such a manner as to be insulated from the conductive layers;
a semiconductor column which extends through the conductive layers and which has an upper end connected to the bit line and a lower end connected to the semiconductor substrate;
word lines for which the conductive layers except for the uppermost and lowermost conductive layers are used;
memory cells provided at intersections of word lines and the semiconductor column, respectively;
a register circuit which retains operation setting information for the memory cell array and which has information to supply a potential suitable for each of the word lines; and
a potential control circuit which controls the potentials supplied to the word lines and which reads the information retained in the register circuit in accordance with a position of a word line in a direction perpendicular to the surface of the semiconductor substrate and which supplies a potential suitable for the word line corresponding to an input address signal.
0. 2. The three-dimensionally stacked nonvolatile semiconductor memory according to
the register circuit has registers which retain potential codes indicating the potentials suitable for the word lines, respectively, and
the potential control circuit selects the potential code corresponding to the input address signal from registers, and supplies the suitable potential to the word line corresponding to the input address signal in accordance with the selected potential code.
0. 3. The three-dimensionally stacked nonvolatile semiconductor memory according to
the register circuit has
a first register which retains, as a reference code, a value indicating the potential suitable for one of the word lines, and
one or more second registers which are respectively provided to correspond to the remaining word lines except for the one word line corresponding to the reference code and which retain a difference code between the reference code and a value indicating the potential suitable for each of the remaining word lines; and
the potential control circuit selects the difference code corresponding to the input address signal from the one or more second registers, and supplies the suitable potential to a word line corresponding to the input address signal in accordance with a calculation result obtained from the selected difference code and the reference code.
0. 4. The three-dimensionally stacked nonvolatile semiconductor memory according to
the register circuit has first and second registers which retain first and second coefficients of an approximation function, respectively, and
the potential control circuit uses the input address signal as a variable of the approximation function, and supplies the suitable potential to the word line corresponding to the input address signal in accordance with the approximation function using the first and second coefficients.
0. 5. The three-dimensionally stacked nonvolatile semiconductor memory according to
an external device which externally controls the operation of the memory cell array,
wherein the potential suitable for each of the word lines is set by an instruction from the external device.
0. 6. The three-dimensionally stacked nonvolatile semiconductor memory according to
the potential control circuit has
an arithmetic unit which outputs a value indicating the potential supplied to the one word line in accordance with an output of the register circuit and the address signal,
a converter which outputs a converted value of the value indicating the potential supplied to the one word line,
a comparator which outputs a comparison value between a reference value and the converted value, and
a potential generator which generates a potential suitable for each of the word lines in accordance with the comparison value.
0. 7. The three-dimensionally stacked nonvolatile semiconductor memory according to
the uppermost conductive layer is a straight first select gate line extending in a second direction intersecting with a first direction, and
the lowermost conductive layer is a plate-like second select gate line.
0. 8. The three-dimensionally stacked nonvolatile semiconductor memory according to
the potential supplied to upper one of word lines is equal to or more than the potential supplied to lower one of the word lines.
0. 9. The three-dimensionally stacked nonvolatile semiconductor memory according to
the memory cell has an insulating film functioning as a charge storage layer.
0. 10. The three-dimensionally stacked nonvolatile semiconductor memory according to
the number of bits indicating the difference value in each of the second registor is smaller than the number of bits indicating the reference value in the first registor.
0. 11. The three-dimensionally stacked nonvolatile semiconductor memory according to
0. 12. The three-dimensionally stacked nonvolatile semiconductor memory according to
at least one of the operation setting information and the information to supply a potential suitable for each of the word lines includes adjusted values in each of the word lines to supply the potential suitable for the word line, and the adjusted values are determined based on arithmetic processing for driving results of each of the word lines.
0. 14. The semiconductor memory according to claim 13, wherein
the control circuit is configured to perform the read operation on a condition that:
a first un-selection voltage is applied to the first word line when the second word line is selected,
a second un-selection voltage is applied to the second word line when the first word line is selected, the first un-selection voltage being different from the second un-selection voltage, and
a third un-selection voltage different from the first and second un-selection voltages is applied to the third word line when either of the first and second word lines is selected.
0. 15. The semiconductor memory according to claim 14, wherein
the first un-selection voltage is lower than the second and third un-selection voltages.
0. 16. The semiconductor memory according to claim 13, wherein the control circuit is configured to perform the read operation on a condition that:
a first un-selection voltage is applied to the first word line when the second word line is selected,
a second un-selection voltage is applied to the second word line when the first word line is selected, the first un-selected voltage being different from the second un-selection voltage, and
a third un-selection voltage different from the first and second un-selection voltages is applied to the third word line when either of the first and second word lines is selected.
0. 17. The semiconductor memory according to claim 16, wherein
the first un-selection voltage is lower than the second and third un-selection voltages.
0. 18. The semiconductor memory according to claim 13, wherein
the control circuit is configured to a perform a program operation on a condition that:
a first program voltage is applied to the first word line when the first word line is selected,
a second program voltage is applied to the second word line when the second word line is selected, the first program voltage being different from the second program voltage, and
a third program voltage different from the first and second program voltages is applied to the third word line when the third word line is selected.
0. 19. The semiconductor memory according to claim 18, wherein
the control circuit is configured to perform the program operation on a condition that:
a first pass voltage is applied to the first word line when the second word line is selected,
a second pass voltage is applied to the second word line when the first word line is selected, the first pass voltage being different from the second pass voltage, and
a third pass voltage different from the first and second pass voltages is applied to the third word line when either of the first and second word lines is selected.
0. 20. The semiconductor memory according to claim 13, wherein the control circuit is configured to perform a program operation on a condition that:
a first program voltage is applied to the first word line when the first word line is selected,
a second program voltage is applied to the second word line when the second word line is selected, the first program voltage being different from the second program voltage, and
a third program voltage different from the first and second program voltages is applied to the third word line when the third word line is selected.
0. 21. The semiconductor memory according to claim 20, wherein
the control circuit is configured to perform the program operation on a condition that:
a first pass voltage is applied to the first word line when the second word line is selected,
a second pass voltage is applied to the second word line when the first word line is selected, the first pass voltage being different from the second pass voltage, and
a third pass voltage different from the first and second pass voltages is applied to the third word line when either of the first and second word lines is selected.
|
Furthermore, the coefficient B indicates the intercept of the linear function, the coefficient B is calculated by the following equation using, for example, the calculated coefficient A, the address X1 and a sample value Y1 at the address X1:
B=Y1−A×X1
Consequently, the linear function Y=AX+B as an approximation function is obtained. In addition, the coefficient B may be obtained by the following equation:
B=Y2−A×X2
Subsequently, the obtained approximation function is inspected (ST14), and the coefficients A, B of the approximation function are stored (ST15).
As described above, in the third adjustment example of the embodiment of the present invention as well, characteristic variations are represented by the approximation function, so that the characteristic variations of the memory cells can be compensated for.
Although the coefficients A, B are calculated by the two-point approximation here, the number of samples may be increased to improve accuracy.
Moreover, the example shown here illustrates one method of setting the coefficients A, B suitable for the approximation function for providing potentials suitable for the respective word lines. As long as the characteristic variations of the memory cells can be compensated for using the approximation function, the present invention is not limited to the example in
A modification of the embodiment of the present invention is described with
In the configurations described in the first to third adjustment examples, the internal circuits provided in the memory chip 1 such as the register circuit 33 and the potential control circuit 35 are used to adjust and set the potential provided to each of the word lines to a suitable potential. However, in the embodiment of the present invention, an instruction (command) from the controller 2 or the host 3 may be output to the memory chip 1 via the pads 11A to 11H to adjust the supply potential for each of the word lines to a potential suitable therefor.
In
Thus, the devices outside the memory chip 1 such as the controller 2 and the host 3 can be used to adjust the supply potential for each of the word lines.
Consequently, in the modification of the embodiment of the present invention, the characteristic variations of the memory cells can be compensated for.
The technique of the present invention is advantageous to a BiCS-NAND flash memory in which one cell unit is composed of a plurality of serially connected memory cells (NAND strings) to achieve bit cost scalability. While one example of the BiCS-NAND flash memory has been described with
For example, the embodiment of the present invention can also be applied to a BiCS-NAND flash memory shown in
In the BiCS-NAND flash memory of the configuration shown in
In the BiCS-NAND flash memory shown in
Accordingly, the source line SL is provided on the side of the semiconductor substrate 23 in the configuration shown in
Source line side select gate lines SGS<4>, SGS<5> are provided, for example, in the same layer as the bit line side select gate lines SGD<4>, SGD<5>, and are linear (straight) conductive interconnections extending in the x-direction.
In the example shown in
Thus, in the BiCS-NAND flash memory shown in
As in the example shown in
Thus, the BiCS-NAND flash memory shown in
In the BiCS-NAND flash memory shown in
In addition, in the BiCS-NAND flash memory shown in
It goes without saying that, similarly to the two word lines WL<3>, WL<4>, the switch circuit and the register can be shared between the word line WL<2> and the word line WL<5>, between the word line WL<1> and the word line WL<6> and between the word line WL<0> and the word line WL<7> as long as the two word lines are located at the same position in the z-direction.
Thus, the embodiment of the present invention can be applied to the BiCS memory shown in
However, it goes without saying that the number of registers provided in the register circuit 33 or the number of switch circuits in the row decoder circuit 36A, for example, may be changed in accordance with the number (e.g., eight) of word lines in the BiCS-NAND flash memory shown in
The embodiment of the present invention is not only applicable to the BiCS-NAND flash memories shown in
Furthermore, as the memory cell structure of the BiCS memory, a MONOS type or MNOS type structure in which a charge storage layer is made of an insulator (e.g., nitride) is considered effective. However, the present invention is not limited to this example and can also be applied to a floating gate type structure in which a charge storage layer is made of conductive polysilicon.
Moreover, a data value stored in one memory cell may be binary or multi-level equal to or more than ternary.
The trimming processing for the write potential has been mainly described in the embodiment of the present invention. However, a similar configuration and method can be employed to various potentials provided to the word line, such as a supply potential for a selected word line during reading operation, a supply potential for a nonselected word line during writing or reading operation, or a supply potential for a word line during erasing operation.
In the embodiment of the present invention, processing in the test step during the manufacture of a memory chip has been described by way of example. However, in a user service environment, the optimum value of the write voltage may change due to the deterioration of writing characteristics associated with the deterioration of memory cells. Accordingly, the present embodiment can also be applied to such a case where a potential suitably supplied to each of the word lines is reset.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6034882, | Nov 16 1998 | SanDisk Technologies LLC | Vertically stacked field programmable nonvolatile memory and method of fabrication |
6166957, | Oct 08 1997 | Samsung Electronics Co., Ltd. | Nonvolatile semiconductor memory device with a level shifter circuit |
6420215, | Apr 28 2000 | SanDisk Technologies LLC | Three-dimensional memory array and method of fabrication |
7317654, | Jul 13 2004 | Samsung Electronics Co., Ltd. | Non-volatile memory devices having multi-page programming capabilities and related methods of operating such devices |
7679133, | Nov 08 2007 | Samsung Electronics Co., Ltd. | Vertical-type non-volatile memory devices |
7821058, | Jan 10 2007 | Kioxia Corporation | Nonvolatile semiconductor memory and method for manufacturing the same |
7852676, | Apr 23 2008 | Kioxia Corporation | Three dimensional stacked nonvolatile semiconductor memory |
7936004, | Mar 27 2006 | Kioxia Corporation | Nonvolatile semiconductor memory device and manufacturing method thereof |
8085595, | Nov 22 2004 | Samsung Electronics Co., Ltd. | Nonvolatile memory devices and methods of controlling the wordline voltage of the same |
20060133125, | |||
20060221702, | |||
20070147165, | |||
20070252201, | |||
20070263453, | |||
20080067583, | |||
20090219750, | |||
20100012980, | |||
JP2007266143, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 04 2016 | TOSHIBA MEMORY CORPORATION | (assignment on the face of the patent) | / | |||
Jun 30 2017 | Kabushiki Kaisha Toshiba | TOSHIBA MEMORY CORPORATION | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043328 | /0388 | |
Aug 01 2018 | TOSHIBA MEMORY CORPORATION | K K PANGEA | MERGER SEE DOCUMENT FOR DETAILS | 055659 | /0471 | |
Aug 01 2018 | K K PANGEA | TOSHIBA MEMORY CORPORATION | CHANGE OF NAME AND ADDRESS | 055669 | /0401 | |
Oct 01 2019 | TOSHIBA MEMORY CORPORATION | Kioxia Corporation | CHANGE OF NAME AND ADDRESS | 055669 | /0001 |
Date | Maintenance Fee Events |
Jan 17 2024 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 18 2023 | 4 years fee payment window open |
Aug 18 2023 | 6 months grace period start (w surcharge) |
Feb 18 2024 | patent expiry (for year 4) |
Feb 18 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 18 2027 | 8 years fee payment window open |
Aug 18 2027 | 6 months grace period start (w surcharge) |
Feb 18 2028 | patent expiry (for year 8) |
Feb 18 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 18 2031 | 12 years fee payment window open |
Aug 18 2031 | 6 months grace period start (w surcharge) |
Feb 18 2032 | patent expiry (for year 12) |
Feb 18 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |