An auto-injector for administering a dose of a liquid medicament (M) comprises of a substantially cylindrical housing arranged to contain a pre-filled syringe with an injection needle, a plunger and a stopper for sealing a syringe barrel and a drive means releasably coupled to the plunger for advancing the syringe in the proximal direction (P) for needle insertion into an injection site and for displacing the dose of medicament (M) into the injection site. The drive means is arranged to be decoupled from the plunger for advancing a needle shroud to a safe position (PS) to surround the injection needle after the injection. According to the invention, the drive means bears against a thrust collar arranged to be releasably coupled to the plunger through a ramped engagement of a first tongue and a first recess so as to rotate the thrust collar on translation in proximal direction (P). At least one longitudinal gap (G1, G2) is provided for guiding at a first and/or second protrusion of the thrust collar to prevent a rotation of the thrust collar. A circumferential gap (G3) is arranged to allow the thrust collar to rotate out of engagement to the plunger on removal of the auto-injector from the injection site.
|
1. Auto-injector for administering a dose of a liquid medicament (M), comprising:
a substantially cylindrical housing arranged to contain a pre-filled syringe with an injection needle, a plunger and a stopper for sealing a syringe barrel and
a driver releasably coupled to the plunger for advancing the syringe in the proximal direction (P) for needle insertion into an injection site and for displacing the dose of medicament (M) into the injection site,
wherein the driver is arranged to be decoupled from the plunger for advancing a needle shroud to a safe position (PS) to surround the injection needle after the injection,
wherein the driver bears against a thrust collar arranged to be releasably coupled to the plunger through a ramped engagement so as to rotate the thrust collar on translation in proximal direction (P), wherein guiding mechanism are provided for guiding the thrust collar during at least a part of its axial translation when inserting the needle and displacing the medicament (M) to prevent a rotation of the thrust collar, wherein the thrust collar is arranged to rotate out of engagement to the plunger on removal of the auto-injector from the injection site.
0. 17. An auto-injector for administering a dose of a liquid medicament, the auto-injector comprising:
a housing defining a cavity configured to receive a syringe;
a thrust member comprising a radial projection, the radial projection configured to engage a ramped surface within the housing when the thrust member is in a first rotational position and to disengage from the ramped surface when the thrust member is moved to a second rotational position;
a drive spring disposed within the housing and configured to apply an axial force to the thrust member such that when the thrust member is in the first rotational position, the engagement between the radial projection and the ramped surface biases the thrust member from the first rotational position toward the second rotational position; and
a needle shroud configured to move from an extended position to a retracted position, the needle shroud having a surface configured to engage the radial projection to inhibit rotation of the thrust member relative to the needle shroud when the needle shroud is in the extended positon and the thrust member is in the first rotational position, and the needle shroud defining an opening arranged to receive the radial projection when the needle shroud is in the retracted positon to allow the thrust member to rotate from the first rotational position to the second rotational position, and the opening being arranged to permit the radial projection to move axially within the opening when the thrust member has been rotated to the second rotational position and is moved axially by the drive spring.
2. Auto-injector according to
3. Auto-injector according to
4. Auto-injector according to
5. Auto-injector according to
6. Auto-injector according to
7. Auto-injector according to
8. Auto-injector according to
9. Auto-injector according to
10. Auto-injector according to
11. Auto-injector according to
12. Auto-injector according to
13. Auto-injector according to
14. Auto-injector according to
15. Auto-injector according to
16. Auto-injector according to
0. 18. The auto-injector of claim 17, wherein the ramped surface is a surface of the housing.
0. 19. The auto-injector of claim 18, wherein the radial projection of the thrust member has a ramp that engages the ramped surface within the housing when the thrust member is in the first rotational position.
0. 20. The auto-injector of claim 19, wherein the radial projection of the thrust member is quadrangular in shape.
0. 21. The auto-injector of claim 17, wherein the thrust member comprises a plunger configured to contact a stopper of the syringe and advance the stopper within a chamber of the syringe to administer the dose of the liquid medicament when the thrust member is moved axially by the drive spring and the syringe is disposed within the cavity of the housing.
0. 22. The auto-injector of claim 17, wherein the thrust member is coupled to the syringe when the syringe is disposed in the cavity of the housing, and the thrust member is configured to advance the syringe axially within the housing when the thrust member is moved axially by the drive spring.
0. 23. The auto-injector of claim 17, wherein the surface of the needle shroud that is configured to engage the radial projection of the thrust member is a longitudinal surface that is configured to circumferentially engage the radial projection.
0. 24. The auto-injector of claim 17, wherein the opening of the needle shroud includes a first portion and a second portion, at least part of the second portion being circumferentially offset from the first portion.
0. 25. The auto-injector of claim 24, wherein the first portion of the opening is defined at least in part by the surface of the needle shroud that is configured to engage the radial projection of the thrust member such that the radial projection resides within the first portion of the opening when the thrust member is in the first rotational position.
0. 26. The auto-injector of claim 25, wherein the opening of the needle shroud is arranged to permit the radial projection of the thrust member to move axially within the second portion of the opening when the thrust member has been rotated to the second rotational position and is moved axially by the drive spring.
0. 27. The auto-injector of claim 17, wherein the needle shroud is configured to move from the retracted position to a safe position in which the needle shroud extends forward of the housing.
0. 28. The auto-injector of claim 27, wherein a portion of the housing is configured to engage the needle shroud to lock the needle shroud in the safe position.
0. 29. The auto-injector of claim 28, wherein the portion of the housing that is configured to engage the needle shroud is a clip that extends radially inward from a body of the housing.
0. 30. The auto-injector of claim 28, wherein the shroud and the housing are configured such that an end of the shroud moves beyond the portion of the housing that is configured to engage the needle shroud when the needle shroud is moved to the safe position thereby allowing the portion of the housing to engage an end surface of the needle shroud.
0. 31. The auto-injector of claim 17, further comprising a needle shroud spring that biases the needle shroud toward the extended position.
0. 32. The auto-injector of claim 17, wherein the opening of the needle shroud is at least partially defined by an axially extending arm of the needle shroud.
0. 33. The auto-injector of claim 32, wherein the needle shroud further comprises a cylindrical end body from which the axially extending arm extends.
0. 34. The auto-injector of claim 17, further comprising the syringe disposed in the cavity of the housing.
0. 35. The auto-injector of claim 34, wherein the syringe defines a chamber containing the liquid medicament and a stopper slidably arranged within the chamber.
0. 36. The auto-injector of claim 35, wherein the syringe further comprises an injection needle in fluid communication with the chamber.
0. 37. The auto-injector of claim 36, wherein the needle shroud is configured to surround at least a portion of the needle when the needle shroud is in the extended position.
0. 38. The auto-injector of claim 17, further comprising a syringe retainer defining a chamber configured to receive the syringe, the cavity of the housing being configured to receive both the syringe retainer and the syringe disposed in the chamber of the syringe retainer.
|
The present application is a reissue application of U.S. Pat. No. 9,272,098, which is a U.S. National Phase Application pursuant to 35 U.S.C. §371 of International Application No. PCT/EP2011/073505 filed Dec. 21, 2011, which claims priority to European Patent Application No. 10196070.6 filed Dec. 21, 2010 and U.S. Provisional Patent Application No. 61/432,250 filed Jan. 13, 2011. The entire disclosure contents of these applications are herewith incorporated by reference into the present application.
The invention relates to an auto-injector for administering a dose of a liquid medicament.
Administering an injection is a process which presents a number of risks and challenges for users and healthcare professionals, both mental and physical.
Injection devices (i.e. devices capable of delivering medicaments from a medication container) typically fall into two categories—manual devices and auto-injectors.
In a manual device—the user must provide the mechanical energy to drive the fluid through the needle. This is typically done by some form of button/plunger that has to be continuously pressed by the user during the injection. There are numerous disadvantages to the user from this approach. If the user stops pressing the button/plunger then the injection will also stop. This means that the user can deliver an underdose if the device is not used properly (i.e. the plunger is not fully pressed to its end position). Injection forces may be too high for the user, in particular if the patient is elderly or has dexterity problems.
The extension of the button/plunger may be too great. Thus it can be inconvenient for the user to reach a fully extended button. The combination of injection force and button extension can cause trembling/shaking of the hand which in turn increases discomfort as the inserted needle moves.
Auto-injector devices aim to make self-administration of injected therapies easier for patients. Current therapies delivered by means of self-administered injections include drugs for diabetes (both insulin and newer GLP-1 class drugs), migraine, hormone therapies, anticoagulants etc.
Auto-injectors are devices which completely or partially replace activities involved in parenteral drug delivery from standard syringes. These activities may include removal of a protective syringe cap, insertion of a needle into a patient's skin, injection of the medicament, removal of the needle, shielding of the needle and preventing reuse of the device. This overcomes many of the disadvantages of manual devices. Injection forces/button extension, hand-shaking and the likelihood of delivering an incomplete dose are reduced. Triggering may be performed by numerous means, for example a trigger button or the action of the needle reaching its injection depth. In some devices the energy to deliver the fluid is provided by a spring.
US 2002/0095120 A1 discloses an automatic injection device which automatically injects a pre-measured quantity of fluid medicine when a tension spring is released. The tension spring moves an ampoule and the injection needle from a storage position to a deployed position when it is released. The content of the ampoule is thereafter expelled by the tension spring forcing a piston forward inside the ampoule. After the fluid medicine has been injected, torsion stored in the tension spring is released and the injection needle is automatically retracted back to its original storage position.
It is an object of the present invention to provide an improved auto-injector.
The object is achieved by an auto-injector according to claim 1.
Preferred embodiments of the invention are given in the dependent claims.
In the context of this specification, the terms distal and proximal are defined from the point of view of a person receiving an injection. Consequently, a proximal direction refers to a direction pointing towards the body of a patient receiving the injection and a proximal end defines an end of an element that is directed towards the body of the patient. Respectively, the distal end of an element or the distal direction is directed away from the body of the patient receiving the injection and opposite to the proximal end or proximal direction.
An auto-injector for administering a dose of a liquid medicament comprises
According to the invention the drive means bears against a thrust collar arranged to be releasably coupled to the plunger through a ramped engagement so as to rotate the thrust collar on translation in the proximal direction, wherein guiding means are provided for guiding the thrust collar during at least a part of its axial translation when inserting the needle and displacing the medicament to prevent a rotation of the thrust collar, wherein the thrust collar is arranged to rotate out of engagement to the plunger on removal of the auto-injector from the injection site.
The ramped engagement between the thrust collar and the plunger may comprise a first tongue and a first recess engageable in a manner to rotate the thrust collar on translation in the proximal direction. At least one longitudinal gap may be provided as the guiding means for guiding a first or second protrusion of the thrust collar to prevent a rotation of the thrust collar. A circumferential gap may be arranged to allow the thrust collar to rotate out of engagement to the plunger on removal of the auto-injector from the injection site.
A crucial step in delivering medicaments with auto-injectors is the decoupling of the plunger from the drive means at the appropriate point in time. If the plunger is decoupled early, the dose of the medicament might not be completely expelled. Consequently, the medicament is partially wasted during the injection. However, such an early release might be necessary to ensure that the plunger is decoupled at the end of an injection stroke, so that in particular functions that ensure needle safety are reliably carried out. The injection mechanism of the auto-injector is designed in a manner that allows for a complete emptying of the syringe barrel containing the dose of the medicament before the plunger is decoupled from the drive means without compromising needle safety. According to the invention, the plunger is releasably coupled to a thrust collar. The coupling between the thrust collar and plunger is released upon rotation. The rotation between the thrust collar relative to the plunger may be caused by the first tongue engaging the first recess. No radial space is taken up for the release mechanism of the plunger and the thrust collar, so that the auto-injector may be designed in a particularly compact manner. Furthermore, the auto-injector comprises only a few parts and may thus be cost-efficiently produced.
At least one longitudinal gap may be provided that accommodates a first or second protrusion formed to the thrust collar. The first or second protrusion travels along the at least one gap when the thrust collar coupled to the plunger is driven proximally by the drive means, whereby a rotation of the thrust collar is prevented until the stopper, which is pushed proximally by the plunger to expel the dose of the medicament, reaches the proximal end of the syringe barrel and the first and/or second protrusion reaches the circumferential gap. The circumferential gap allows the thrust collar to rotate, whereby the thrust collar is decoupled from the plunger when the dose of medication has been completely injected and the auto-injector is removed from the injection site.
According to one possible embodiment of the invention, the thrust collar is releasably mounted to a coupling shroud rotationally fixed to the housing and firmly attached to the plunger. The coupling between the plunger and the thrust collar is released by disconnecting the thrust collar from the coupling shroud by rotating the thrust collar relative to coupling shroud.
According to another possible embodiment of the invention, the needle shroud is biased in the proximal direction towards an initial advanced position and slidable from the advanced position in a distal direction to a retracted position. In particular, the needle shroud may be slid to the retracted position by placing the auto-injector onto the skin of the patient receiving the injection and pressing the needle shroud against the skin of the patient. The needle shroud in the retracted position activates the delivery mechanism of the auto-injector delivering the medicament to the patient by releasing the drive means. The needle shroud is slidable from the retracted position in the proximal direction beyond the advanced position to the safe position, wherein the needle shroud surrounds the injection needle of the pre-filled syringe and protrudes beyond the needle tip in the proximal direction sufficient to prevent accidental needle stick injuries after the injection has been carried out.
Preferably, the needle shroud is arranged to prevent rotation of the thrust collar and thus release of the connection between the coupling shroud and the thrust collar until the dose of the medicament has been completely expelled and the auto-injector is withdrawn from the injection site. The auto-injector provides a reliable mechanism that covers the injection needle to avoid accidental needle stick injuries after the injection without wasting any medicament initially contained in the pre-filled syringe.
In one possible embodiment of the invention, the needle shroud incorporates a u-shaped indentation for receiving the second protrusion of the thrust collar in the retracted position. The second protrusion is retained in the u-shaped indentation to rotationally affix the thrust collar after full delivery of the medicament and until the needle shroud leaves the retracted position, which may in particular be achieved by removing the auto-injector from the injection site after the dose of the medicament has been injected. Thus, the needle shroud with the u-shaped indentation prevents the release of the connection between the thrust collar and the coupling shroud until the stopper has bottomed out and the injection is completed. The needle shroud is arranged to open the circumferential gap on translation into the advanced position for allowing the thrust collar to rotate out of engagement to the plunger. The auto-injector is suitable to be used for administering relative expensive medicaments as it is designed to completely empty the syringe barrel containing the dose of the medicament.
According to another possible embodiment of the invention, the needle shroud is releasably mounted to the housing by a clip preventing travel in the proximal direction beyond the advanced position. The thrust collar is disconnected from the coupling shroud at the end of the injection stroke delivering the medication. Upon the release, the thrust collar is driven proximally by the drive means to engage and deflect the clip to release the needle shroud. The needle shroud is then allowed to be moved in the proximal direction to the safe position, wherein the injection needle is covered to prevent accidental needle stick injuries.
According to another embodiment of the invention, a syringe retainer is arranged for mounting the syringe within the housing, wherein a retaining element is attached to the syringe retainer. The retaining element releasably couples the plunger to the syringe retainer. A force exerted upon the plunger by the drive means is thus directed via the retaining element to the syringe retainer, so that the syringe retainer carrying the pre-filled syringe may be moved in the proximal direction to insert the injection needle into the skin of the patient, whereby a displacement of the plunger relative to the syringe barrel containing the dose of the medicament is avoided. This prevents a premature expelling of the medicament before the injection needle penetrates the skin of the patient. Thus, unpleasant wet injections are avoided.
The retaining element may comprise at least one first catch that latches to a notch formed into the plunger to releasably couple the plunger to the syringe retainer. The first catch is released by a radial deflection and thus operates independently of the angular orientation of the coupling shroud and the thrust collar.
Preferably, the first catch is arranged to abut against an inner sleeve of the housing to prevent the decoupling of the plunger and the syringe retainer. An aperture is formed into the inner sleeve that allows for a radial outward deflection of the first catch to decouple the syringe retainer from the plunger. The aperture is located in a position that ensures that the decoupling takes place when the syringe retainer is in a proximal position and the injection needle protrudes from the proximal end of the auto-injection by a length that corresponds to a desired injection depth. The aperture is formed into the inner sleeve and is shielded by an outer casing of the housing. This prevents a user trying to re-use the auto-injector after an injection has been completed, by tampering with the first catch retained in the aperture. The auto-injector is designed as a single use device to minimize the risk of infections that are transmitted by needle stick injuries with used injection needles.
According to another possible embodiment of the invention, the coupling shroud comprises a flat first lateral wall that abuts against a corresponding flat second lateral wall of the inner sleeve to prevent a rotation of the coupling shroud relative to the housing. The interaction of the first and second lateral walls comprises a simple and effective means to ensure that the coupling shroud is rotationally affixed to the housing. This in turn ensures that the thrust collar may be reliably disconnected by a rotation about a relative small angle with respect to the coupling shroud.
According to yet another possible embodiment of the invention, a biasing means biases the needle shroud in the proximal direction. The biasing means and the drive means are fitted into each other to optimally use available space within the housing. This allows for a particular compact design of the auto-injector.
The biasing means is arranged as a compression spring having a diameter that differs from the diameter of the drive means in a manner that allows the drive means and the biasing means to expand independently from each other without interfering. The two nested compression springs provide a simple arrangement to efficiently use the space available within the housing of the auto-injectors and are inexpensive to produce.
According to yet another possible embodiment of the invention, the drive means is arranged as a single compression spring. The mechanism of the auto-injector is arranged in a manner that a plurality of functions is executed by the single drive means. The injection needle is inserted into the skin of the patient, the plunger is translated to expel the medicament and the needle shroud is moved proximally to provide needle safety after the injection is completed by the action of the spring means. Conventional auto-injectors usually comprise a plurality of spring means to accomplish these tasks. The auto-injector according to the invention comprises only few parts and is particularly inexpensive to mass-produce. Consequently, the auto-injector is particularly suited as a single-use device that may be disposed after an injection has been carried out.
In another possible embodiment of the invention, a rotating collar is arranged within the housing and axially fixed to the housing of the auto-injector. The rotating collar engages the needle shroud in a manner that forces the rotating collar to rotate within the housing when the needle shroud is axially displaced from the advanced position into the safe position. The rotating collar creates friction to slow down the proximal movement of the needle shroud that rests on the skin of the patient during the injection. The rotating collar acts as a dampening element that alleviates the pressure exerted upon the skin of the patient by the needle shroud. Thus, the risk of injuries is reduced and, in particular, bruises may be avoided. Furthermore, the modulus of resilience of the single drive means driving the needle shroud may be chosen to be sufficiently large without having to worry about potential injury risks. Thus, the modulus of resilience of the drive means is adapted to reliably provide an energy supply for executing a plurality of actions comprising, among others, the advancing and releasing of the needle shroud, the displacement of the stopper to expel the medicament and the decoupling of the plunger and the coupling shroud.
Preferably, the rotating collar comprises a pin that engages a track formed into the needle shroud. The track comprises a straight first section for guiding the pin between the retracted position and the advanced position and a second section oriented at an angle with respect to the first section for guiding the pin between the advanced position and the safe position. The pin travels along the track when the needle shroud is axially displaced. When the pin travels along the angled second section of the track, the rotating collar is forced to rotate around the needle shroud. This dampens the proximal movement of the needle shroud and thus reduces the pressure exerted upon the skin of the patient by generating friction.
The auto-injector may preferably be used for subcutaneous or intra-muscular injection, particularly for delivering one of an analgetic, an anticoagulant, insulin, an insulin derivate, heparin, Lovenox, a vaccine, a growth hormone, a peptide hormone, a protein, antibodies and complex carbohydrates.
Further scope of applicability of the present invention will become apparent from the detailed description given hereinafter. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings which are given by way of illustration only, and thus, are not limitive of the present invention, and wherein:
Corresponding parts are marked with the same reference symbols in all figures.
The releasable connection between the thrust collar 7 and the coupling shroud 6 is released by a rotation about a relative small angle around the axis of the substantially cylindrical auto-injector 1, like, for example, a quarter twist. The thrust collar 7 and the coupling shroud 6 may be connected by a bayonet kind of coupling or, alternatively, a thread connection with a corresponding lead that allows for a release by a relative small twist.
A drive means 8 is arranged between the distal end of the housing 2 and the thrust collar 7. The drive means 8 biases the thrust collar 7 in a proximal direction P towards the skin of a patient receiving an injection. The thrust collar 7 carries a threaded connection to the coupling shroud 6 with a steep pitch angle, and the coupling shroud 6 is restrained against rotation relative to the housing 2, so that the thrust collar 7 is additionally biased to rotate around the axis of the auto-injector 1.
According to one possible embodiment of the invention, the drive means 8 is arranged as a single, conventional compression spring.
The coupling shroud 6 is firmly attached to a plunger 9 arranged to push on a stopper 10 fluid-tightly sealing a distal end of a syringe barrel 11 containing a dose of a medicament M. A plunger collar 9.2 of the plunger 9 protrudes into a locking recess 6.1 formed into the distal end of the coupling shroud 6 to attach the plunger 9 to the coupling shroud 6.
An inner cavity of the syringe barrel 11 is in fluid communication with an injection needle 12, so that the dose of the medicament M may be expelled through the injection needle 12 by displacing the stopper 10 in the proximal direction P.
The needle shroud 3 is designed to be pushed against the skin of the patient during the injection. Edges of the needle shroud 3 may thus be smoothed to avoid injuries. The needle shroud 3 is slidably arranged with the housing 2 of the auto-injector 1, so that the needle shroud 3 may be pushed from an advanced position PA shown in
The biasing means 13 and the drive means 8 are fitted into each other to optimally use available space within the housing 2.
In a possible embodiment of the invention, the biasing means 13 is arranged as a compression spring having a diameter that differs from the diameter of the compression spring of the drive means 8 in a manner that allows the drive means 8 and the biasing means 13 to expand independently from each other without interfering.
A retaining element 14 is attached to a distal end of the syringe retainer 4 that releasably couples the plunger 9 to the syringe retainer 4, so that the syringe retainer 4 may jointly move with the plunger 9 in the proximal direction P to expose the injection needle 12. The retaining element 14 comprises at least one and preferably two or more first catches 14.1 arranged equi-spaced around retaining element 14, wherein each first catch 14.1 latches to a respective notch 9.1 formed into the plunger 9. The first catch 14.1 abuts against an inner sleeve 2.2 of the housing 2 in the radial outward direction, so that a deflection of the first catch 14.1 and hence a decoupling of the plunger 9 and the syringe retainer 4 is prevented.
The plunger 9 is coupled to the retaining element 14 and the syringe retainer 4 until the syringe retainer 4 mounting the pre-filled syringe 5 is moved proximally to expose the injection needle 12. A longitudinal aperture 2.3 is formed into the inner sleeve 2.2 of the housing 2 that allows for a radial outward deflection of the first catch 14.1 when the syringe retainer 4 is in a proximal position and the injection needle 12 is exposed. The plunger 9 is released from the retaining element 14 in the proximal position and may move proximally to displace the stopper 10, whereby the dose of medication M is expelled through the injection needle 12.
A ring-shaped rotating collar 15 is circumferentially arranged around a tubular proximal section of the needle shroud 3. A pin 15.1 is formed to an inner surface of the rotating collar 15 that engages a track 3.1 formed into an outer surface of the needle shroud 3. The track 3.1 comprises a straight first section 3.1.1 and a helical second section 3.1.2 that can best be seen in
The coupling shroud 6 is slidably arranged within the housing 2 and comprises a flat first lateral wall 6.3 that abuts a corresponding flat second lateral wall 2.4 of the inner sleeve 2.2 to prevent a rotation of the coupling shroud 6 relative to the housing 2.
The essentially ring-shaped thrust collar 7 comprises an outer surface with a plurality of first and second protrusions 7.2, 7.3 formed thereto. The first and second protrusions 7.2, 7.3 are circumferentially displaced from each other and protrude radially outwards. The first protrusions 7.2 have a quadrangular shape, whereas the second protrusion 7.3 comprises a triangular shape.
The quadrangular first protrusion 7.2 comprises a first ramp 7.2.1 that abuts against a corresponding second ramp 2.5 formed to the housing 2. Furthermore, the first protrusion 7.2 abuts against the needle shroud 3 in a circumferential direction. Before the injection, the biased thrust collar 7 is retained in a first position I by the first protrusion 7.2 abutting against the needle shroud 3 and the second ramp 2.5 of the housing 2.
The injection is initiated by pressing the needle shroud 3 against the skin of the patient receiving the injection, whereby the needle shield 3 is displaced from the advanced position PA in the distal direction D to a retracted position PR. As shown in detail in
The thrust collar 7 is connected to the coupling shroud 6 that is attached to the plunger 9. The plunger 9 in turn is coupled to syringe retainer 4 via the retaining element 14. Thus, the coupling shroud 6 driven by the drive means 8 first translates the syringe retainer 4 holding the pre-filled syringe 5 in the proximal direction P until the syringe retainer 4 bears against a bearing surface 2.6 formed to the housing 2 as best seen in
The deflectable first catches 14.1 that couple the plunger 9 to the syringe retainer 4 are now located adjacent to the longitudinal apertures 2.3 formed into the inner sleeve 2.2 of the housing 2. The first catches 14.1 deflect in the radial outward direction due to their ramped engagement with the notches 9.1 and disengage from the notches 9.1 to decouple the plunger 9 from the syringe retainer 4.
The drive means 8 further relaxes and drives the coupling shroud 6, the thrust collar 7 and the plunger 9 in the proximal direction P. The plunger 9 pushes the stopper 10 proximally to expel the dose of medication M contained in the syringe barrel 11 through the injection needle 12.
When the stopper 10 reaches a proximal end of the syringe barrel 11, the injection stroke is completed and the dose of medication M is completely expelled. At the same time, the thrust collar 7 reaches a proximal second position II shown in
The needle shroud 3 is still pressed against the injection site to retain the needle shroud 3 in the retracted position PR. At the same time, the thrust collar 7 is located in the second position II. The triangular second protrusion 7.3 of the thrust collar 7 is retained in a u-shaped indentation 3.2 formed to the needle shroud 3. The u-shaped indentation 3.2 constitutes a proximal end of the second gap G2 and comprises a circumferential width that corresponds to the second protrusion 7.3. The u-shaped indentation 3.2 abuts against the second protrusion 7.3 in the circumferential direction, so that a rotation of the thrust collar 7 and thus a decoupling of the thrust collar 7 and the coupling shroud 6 are prevented until the needle shield 3 leaves the retracted position PR.
The auto-injector 1 is removed from the injection site. The biasing means 13 relaxes to return the needle shroud 3 to the advanced position PA. As a consequence, the needle shroud 3 moves proximally with respect to the housing 2 and the thrust collar 7 connected to the coupling shroud 6.
The clip 2.8 is deflectable in the radial inward direction to release the needle shroud 3. As shown in
When the needle shield 3 moves proximally from the advanced position PA to the safe position PS, the pin 15.1 of the rotating collar 15 travels along the second section 3.1.2 of the track 3.1 formed into the needle shroud 3. As the second section 3.1.2 is oriented at an angle with respect to the axis of the auto-injector, the translatory movement of the needle shroud 3 causes the rotating collar 15 to rotate around the axis, whereby friction is generated. The generated friction slows down and damps the proximal movement of the needle shroud 3.
As the thrust collar 7 and the needle shroud 3 have travelled proximally beyond the clip 2.8, the clip 2.8 deflects outwards to return to its prior position. The needle shroud 3 abuts against the t-shaped clip 2.8 in the distal direction D, so that a distal movement of the needle shroud 3 in the safe position PS relative to the housing 2 is prevented. Thus, the needle shroud 3 is permanently locked in the safe position PS and a re-exposure of the injection needle 12 is prevented. The thrust collar 7 travelled over the fifth ramp 2.7 and is located in a maximum proximal fourth position IV, wherein the thrust collar 7 abuts the needle shroud 3.
Hourmand, Yannick, Ekman, Matthew, Brereton, Simon Francis
Patent | Priority | Assignee | Title |
11400217, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
11458252, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
11471601, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
11607495, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
11612691, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
11833331, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
11883260, | Dec 23 2014 | AUTOMED INC | Delivery apparatus, system and associated methods |
11957542, | Apr 30 2020 | Automed Patent Holdco, LLC | Sensing complete injection for animal injection device |
RE48593, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
Patent | Priority | Assignee | Title |
6004297, | Jan 30 1998 | Novo Nordisk A S | Injection syringe |
6277099, | Aug 06 1999 | Becton, Dickinson and Company | Medication delivery pen |
6620137, | May 15 1998 | TecPharma Licensing AG | Automatic injection device |
7195616, | May 16 2001 | Eli Lilly and Company | Medication injector apparatus with drive assembly that facilitates reset |
7291132, | Aug 09 2004 | Eli Lilly and Company; IDEO PRODUCT DEVELOPMENT, INC | Medication dispensing apparatus with triple screw threads for mechanical advantage |
7297135, | Dec 17 2002 | Safe-T Limited | Hollow needle applicators |
7341575, | Oct 22 1999 | FERRING INTERNATIONAL CENTER S A | Medical injector and medicament loading system for use therewith |
7597685, | Nov 24 2004 | SHL MEDICAL AG | Injection device |
7678085, | Aug 14 2002 | TecPharma Licensing AG | Injection device |
7717877, | Jul 31 2003 | WEST PHARMACEUTICAL SERVICES OF DELAWARE, INC | Injecting apparatus |
7771398, | Jan 18 2005 | WOCKHARDT AMERICAS INC | Pen shaped medication injection devices |
7976494, | Dec 31 2004 | Ypsomed AG | Device for the dosed administration of a fluid product, adapted for the replacement of a container |
8038649, | Sep 18 2007 | SHL MEDICAL AG | Automatic injection device with needle insertion |
8048037, | May 11 2007 | Ypsomed AG | Injection device comprising several coupling mechanisms |
8062255, | Dec 13 2006 | SHL MEDICAL AG | Auto-injector |
8083711, | Oct 21 2004 | Novo Nordisk A S | Injection device with internal dose indicator |
8276583, | Jan 17 2007 | SHL MEDICAL AG | Device for delivering medicament |
8323238, | Sep 18 2008 | Becton, Dickinson and Company | Medical injector with rotatable body portions |
8357125, | Sep 25 2007 | Becton Dickinson France | Autoinjector with deactivating means moveable by a safety shield |
8361025, | Jul 02 2010 | SHL MEDICAL AG | Preservative-free follicle stimulating hormone solution delivery device |
8366680, | Dec 12 2008 | Sanofi-Aventis Deutschland GmbH | Resettable drive mechanism for a medication delivery device and medication delivery device |
8376993, | Aug 05 2008 | Antares Pharma, Inc. | Multiple dosage injector |
8376997, | Jun 19 2007 | SHL MEDICAL AG | Device for delivering medicament |
8403883, | Sep 18 2008 | Becton, Dickinson and Company | Medical injector with dose knob activation for automated reconstitution |
8409141, | Nov 12 2007 | BANG & OLUFSEN MEDICOM A S | Auto injector with automatic needle retraction |
8409148, | Dec 31 2004 | Ypsomed AG | Device for the dosed administration of a fluid product, provided with a coupling |
8439864, | Apr 05 2007 | Ypsomed AG | Device for administering fluid from a multi-chamber ampoule in incremental steps |
8491538, | Sep 15 2006 | Ypsomed AG | Injection device comprising several coupling mechanisms |
8568359, | Sep 25 2007 | Becton Dickinson France | Autoinjector |
8617109, | Jun 01 2005 | SHL MEDICAL AG | Device for delivering medicament |
8617124, | Jun 05 2009 | SHL MEDICAL AG | Medicament delivery device |
8632507, | Feb 12 2008 | SHL MEDICAL AG | Auto-injector |
8684969, | Oct 21 2004 | Novo Nordisk A/S | Injection device with torsion spring and rotatable display |
8708973, | Oct 01 2008 | SHL MEDICAL AG | Medicament delivery device powered by volute spring |
8734402, | Jan 20 2009 | Future Injection Technologies Limited | Injection device |
8758292, | Apr 05 2007 | Ypsomed AG | Administering apparatus with functional drive element |
8808250, | Feb 18 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector with a torsion spring |
8808251, | Jan 20 2009 | Sanofi-Aventis Deutschland GmbH | Drive assembly and medication delivery device |
8821451, | Mar 31 2010 | SHL MEDICAL AG | Medicament delivery device |
8834431, | Sep 15 2006 | Ypsomed AG | Injection device comprising an improved delivery element |
8840591, | Dec 12 2008 | Sanofi-Aventis Deutschland GmbH | Drive mechanism for a medication delivery device and medication delivery device |
8858510, | Apr 27 2009 | SHL MEDICAL AG | Safety pen needle device |
8882723, | Jun 11 2010 | Sanofi-Aventis Deutchland GmbH | Drive mechanism for a drug delivery device and drug delivery device |
8911411, | Jul 08 2005 | Novo Nordisk A/S | Injection device |
8939934, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
8945063, | Mar 20 2009 | OTTER PHARMACEUTICALS, LLC | Hazardous agent injection system |
8956331, | Nov 12 2007 | BANG & OLUFSEN MEDICOM A S | Auto injector with a rotatable release shaft |
8961473, | Jun 11 2010 | Sanofi-Aventis Deutschland GmbH | Drive mechanism for a drug delivery device and drug delivery device |
8968256, | Dec 12 2008 | Sanofi-Aventis Deutschland GmbH | Resettable drive mechanism for a medication delivery device and medication delivery device |
8968258, | Dec 12 2008 | Sanofi-Aventis Deutschland GmbH | Resettable drive mechanism for a medication delivery device and medication delivery device |
8992484, | Jan 23 2008 | Novo Nordisk A S | Device for injecting apportioned doses of liquid drug |
8992487, | Feb 29 2008 | Ypsomed AG | Dual-function spring |
9005160, | Oct 26 2009 | SHL MEDICAL AG | Medicament delivery device |
9011386, | Jun 01 2005 | SHL MEDICAL AG | Device for delivering medicament |
9011387, | Feb 22 2010 | Sanofi-Aventis Deutschland GmbH | Force transmission arrangement for auto-injector |
9022991, | Jun 16 2000 | Novo Nordisk A/S | Injection device |
9022993, | Dec 07 2009 | Sanofi-Aventis Deutschland GmbH | Drive assembly for a drug delivery device and drug delivery device |
9022994, | Aug 14 2006 | TecPharma Licensing AG | Injection device with a variable thread guide |
9044548, | Dec 08 2003 | Novo Nordisk A S | Medical delivery device having air shot means |
9044553, | Mar 13 2009 | Eli Lilly and Company | Apparatus for injecting a pharmaceutical with automatic syringe retraction following injection |
9057369, | Dec 31 2004 | Ypsomed AG | Device for the dosed administration of a fluid product, adapted for the replacement of a container |
9061104, | Mar 09 2010 | SHL MEDICAL AG | Medicament injection device |
9067024, | Jul 02 2010 | Sanofi-Aventis Deutschland GmbH | Safety device for a pre-filled syringe and injection device |
9089652, | Dec 12 2008 | Sanofi-Aventis Deutschland GmbH | Drive mechanism for a medication delivery device and medication delivery device |
9108002, | Jan 21 2005 | Novo Nordisk A/S | Automatic injection device with a top release mechanism |
9125988, | May 07 2010 | SHL MEDICAL AG | Medicament delivery device |
9132235, | Nov 18 2010 | SHL MEDICAL AG | Medicament delivery device |
9199038, | Mar 31 2010 | SHL MEDICAL AG | Medicament delivery device |
9205199, | Feb 22 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector with needle shroud and needle protection cap |
9233214, | Mar 09 2010 | Sanofi-Aventis Deutschland GmbH | Injection device |
9233215, | Jun 28 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector with injection damper |
9242044, | Jul 06 2007 | Novo Nordisk A S | Automatic injection device |
9272098, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
9283326, | Oct 08 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
9283327, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
9308327, | Dec 08 2005 | OWEN MUMFORD LTD | Substance delivery devices |
9333304, | Jun 28 2010 | Sanofi-Aventis Deutschland GmbH | Needle safety arrangement and method for operating it |
9339607, | Mar 31 2009 | Sanofi-Aventis Deutschland GmbH | Medicament delivery devices |
9352088, | Jun 28 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
9358345, | Oct 08 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
9358351, | Feb 22 2010 | Sanofi-Aventis Deutschland GmbH | Gearbox |
9393368, | Nov 12 2010 | Sanofi-Aventis Deutschland GmbH | Drive mechanism for a drug delivery device and drug delivery device |
9408897, | Jun 20 2002 | The Trustees of the University of Pennsylvania | Vaccines for suppressing IgE-mediated allergic disease and methods for using the same |
9408977, | Jun 11 2010 | Sanofi-Aventis Deutschland GmbH | Drive mechanism for a drug delivery device and drug delivery device |
9408979, | Mar 03 2003 | Sanofi-Aventis Deutschland GmbH | Pen-type injector |
9415165, | Oct 16 2009 | Owen Mumford Limited | Injector apparatus having a clutch to inhibit forward movement of the plunger |
9421336, | Feb 18 2010 | Sanofi-Aventis Deutschland GmbH | Finger guard for an injection device |
9427525, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
9446196, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Auto-injector |
9446201, | Apr 26 2010 | SHL MEDICAL AG | Medicament delivery device |
9457149, | Dec 21 2010 | Sanofi-Aventis Deutschland GmbH | Back-end device for an auto-injector and auto-injector |
9457152, | Dec 12 2008 | Sanofi-Aventis Deutschland GmbH | Drive mechanism for a medication delivery device and medication delivery device |
9492622, | Jun 28 2010 | Sanofi-Aventis Deutschland GmbH | Needle safety arrangement and method for operating it |
20020007154, | |||
20020095120, | |||
20050222539, | |||
20050273055, | |||
20060153693, | |||
20060287630, | |||
20070027430, | |||
20070112310, | |||
20070129686, | |||
20100185178, | |||
20100280460, | |||
20100305512, | |||
20110092915, | |||
20110152781, | |||
20110313364, | |||
20120010575, | |||
20120041387, | |||
20120172817, | |||
20130035647, | |||
20130041328, | |||
20130123710, | |||
20130131590, | |||
20130261556, | |||
20130274662, | |||
20130274677, | |||
20130289525, | |||
20130310759, | |||
20130345643, | |||
20140288504, | |||
20150100029, | |||
20150273157, | |||
20160089498, | |||
DE102005052502, | |||
DE19819409, | |||
DE202007000578, | |||
EP666084, | |||
EP824923, | |||
EP991441, | |||
EP2399634, | |||
EP2468334, | |||
EP2468335, | |||
WO2005025636, | |||
WO2005097238, | |||
WO2009062508, | |||
WO2010146358, | |||
WO1999053979, | |||
WO2003062672, | |||
WO2006057604, | |||
WO2007099044, | |||
WO2007129324, | |||
WO2008059385, | |||
WO2008116688, | |||
WO2009040607, | |||
WO2010063707, | |||
WO2011012903, | |||
WO2011109205, | |||
WO2011111006, | |||
WO2011117592, | |||
WO2011126439, | |||
WO2012045350, | |||
WO2012085024, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 26 2018 | Sanofi-Aventis Deutschland GmbH | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 26 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Aug 16 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 17 2023 | 4 years fee payment window open |
Sep 17 2023 | 6 months grace period start (w surcharge) |
Mar 17 2024 | patent expiry (for year 4) |
Mar 17 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 17 2027 | 8 years fee payment window open |
Sep 17 2027 | 6 months grace period start (w surcharge) |
Mar 17 2028 | patent expiry (for year 8) |
Mar 17 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 17 2031 | 12 years fee payment window open |
Sep 17 2031 | 6 months grace period start (w surcharge) |
Mar 17 2032 | patent expiry (for year 12) |
Mar 17 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |