A PiP semiconductor device has an inner known good semiconductor package. In the semiconductor package, a first via is formed in a temporary carrier. A first conductive layer is formed over the carrier and into the first via. The first conductive layer in the first via forms a conductive bump. A first semiconductor die is mounted to the first conductive layer. A first encapsulant is deposited over the first die and carrier. The semiconductor package is mounted to a substrate. A second semiconductor die is mounted to the first conductive layer opposite the first die. A second encapsulant is deposited over the second die and semiconductor package. A second via is formed in the second encapsulant to expose the conductive bump. A second conductive layer is formed over the second encapsulant and into the second via. The second conductive layer is electrically connected to the second die.
|
7. A semiconductor device, comprising:
a first semiconductor die or component;
a first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant;
a first conductive layer disposed over a first surface of the first encapsulant including the encapsulant bump to form a conductive bump; and
a second encapsulant deposited over and around the first encapsulant, the second encapsulant including a via formed through a surface of the second encapsulant and extending to conductive bump.
1. A semiconductor device, comprising:
a support layer;
a semiconductor package disposed over the support layer, the semiconductor package including,
(a) a first semiconductor die or component,
(b) a first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant, and
(c) a first conductive layer disposed over the first encapsulant including the encapsulant bump to form a conductive bump;
a second encapsulant deposited over a surface of the semiconductor package opposite the support layer, the second encapsulant including an opening over the conductive bump; and
a second conductive layer formed in the opening over the conductive bump.
2. The semiconductor device of
3. The semiconductor device of
4. The semiconductor device of
5. The semiconductor device of
6. The semiconductor device of
8. The semiconductor device of
9. The semiconductor device of
a support layer disposed over a second surface of the first encapsulant opposite the first surface of the first encapsulant;
the second encapsulant deposited over the support layer; and
an interconnect structure formed over the second encapsulant and within the via.
10. The semiconductor device of
11. The semiconductor device of
a second conductive layer formed over the second encapsulant;
an insulating layer formed over the second conductive layer; and
a third conductive layer formed over the second conductive layer.
12. The semiconductor device of
13. The semiconductor device of
0. 14. A semiconductor device, comprising:
a support layer; and
a semiconductor package disposed over the support layer, the semiconductor package including,
(a) a first semiconductor die or component,
(b) a first non-conductive encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first nonconductive encapsulant, and
(c) a first conductive layer disposed over a first surface of the first non-conductive encapsulant including the encapsulant bump to form a conductive bump.
0. 15. The semiconductor device of
0. 16. The semiconductor device of
a second encapsulant deposited over the support layer and semiconductor package; and
an interconnect structure formed over the second encapsulant.
0. 17. The semiconductor device of
a second conductive layer formed over the second encapsulant;
an insulating layer formed over the second conductive layer; and
a third conductive layer formed over the second conductive layer.
0. 18. The semiconductor device of
0. 19. The semiconductor device of
0. 20. The semiconductor device of
0. 21. A semiconductor device, comprising:
a support layer; and
a semiconductor package disposed over the support layer, the semiconductor package including a bump comprising an inner insulating material and outer conductive material.
0. 22. The semiconductor device of
a first semiconductor die or component;
an encapsulant deposited over the first semiconductor die or component, wherein a portion of the encapsulant constitutes the inner insulating material of the bump; and
a conductive layer formed over the encapsulant, wherein a portion of the conductive layer constitutes the outer conductive material of the bump.
0. 23. The semiconductor device of
an encapsulant deposited over the support layer and semiconductor package; and
an interconnect structure formed over the encapsulant.
0. 24. The semiconductor device of
0. 25. The semiconductor device of
|
The present application is a reissue of U.S. patent application Ser. No. 13/606,451, now U.S. Pat. No. 8,884,418, filed Sep. 7, 2012, which is a division of U.S. patent application Ser. No. 12/635,631, now U.S. Pat. No. 8,283,209, filed Dec. 10, 2009, which application is incorporated herein by reference and which is a continuation-in-part of U.S. patent application Ser. No. 12/136,768, now U.S. Pat. No. 7,977,779, filed Jun. 10, 2008.
The present invention relates in general to semiconductor devices and, more particularly, to a semiconductor device and method of forming a package-in-package configuration with an inner known good die interconnected with conductive bumps formed in shallow vias.
Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).
Semiconductor devices perform a wide range of functions such as high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays. Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.
Semiconductor devices exploit the electrical properties of semiconductor materials. The atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.
A semiconductor device contains active and passive electrical structures. Active structures, including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current. Passive structures, including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions. The passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.
Semiconductor devices are generally manufactured using two complex manufacturing processes, i.e., front-end manufacturing, and back-end manufacturing, each involving potentially hundreds of steps. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components. Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.
One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products. A smaller die size may be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.
Some semiconductor devices are configured as a package-in-package (PiP). The semiconductor die are interconnected by bond wires or deep conductive through silicon vias (TSV) or deep conductive through hole vias (THV). The interconnect structure increases the PiP thickness and manufacturing costs.
A need exists to electrically interconnect PiP without deep TSV or THV. Accordingly, in one embodiment, the present invention is a semiconductor device comprising a support layer and semiconductor package disposed over the support layer. The semiconductor package includes a first semiconductor die or component, first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant, and first conductive layer disposed over the first encapsulant including the encapsulant bump to form a conductive bump. A second encapsulant is deposited over the semiconductor package and support layer.
In another embodiment, the present invention is a semiconductor device comprising a first semiconductor die or component. A first encapsulant is deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant. A first conductive layer is disposed over a first surface of the first encapsulant including the encapsulant bump to form a conductive bump.
In another embodiment, the present invention is a semiconductor device comprising a support layer and semiconductor package disposed over the support layer. The semiconductor package includes a first semiconductor die or component, first encapsulant deposited over the first semiconductor die or component with an encapsulant bump extending from a body of the first encapsulant, and first conductive layer disposed over a first surface of the first encapsulant including the encapsulant bump to form a conductive bump.
In another embodiment, the present invention is a semiconductor device comprising a support layer and semiconductor package disposed over the support layer. The semiconductor package includes a bump comprising an inner insulating material and outer conductive material.
The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.
Semiconductor devices are generally manufactured using two complex manufacturing processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits. Active electrical components, such as transistors and diodes, have the ability to control the flow of electrical current. Passive electrical components, such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.
Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current. Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.
Active and passive components are formed by layers of materials with different electrical properties. The layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition may involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes. Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.
The layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned. A pattern is transferred from a photomask to the photoresist using light. The portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned. The remainder of the photoresist is removed, leaving behind a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.
Depositing a thin film of material over an existing pattern can exaggerate the underlying pattern and create a non-uniformly flat surface. A uniformly flat surface is required to produce smaller and more densely packed active and passive components. Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.
Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation. To singulate the die, the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes. The wafer is singulated using a laser cutting tool or saw blade. After singulation, the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components. Contact pads formed over the semiconductor die are then connected to contact pads within the package. The electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.
Electronic device 50 may be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 may be a sub-component of a larger system. For example, electronic device 50 may be a graphics card, network interface card, or other signal processing card that can be inserted into a computer. The semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components.
In
In some embodiments, a semiconductor device has two packaging levels. First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier. Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB. In other embodiments, a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.
For the purpose of illustration, several types of first level packaging, including wire bond package 56 and flip chip 58, are shown on PCB 52. Additionally, several types of second level packaging, including ball grid array (BGA) 60, bump chip carrier (BCC) 62, dual in-line package (DIP) 64, land grid array (LGA) 66, multi-chip module (MCM) 68, quad flat non-leaded package (QFN) 70, and quad flat package 72, are shown mounted on PCB 52. Depending upon the system requirements, any combination of semiconductor packages, configured with any combination of first and second level packaging styles, as well as other electronic components, can be connected to PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages. By combining one or more semiconductor packages over a single substrate, manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.
In
BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112. Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110, signal lines 114, and bumps 112. A molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device. The flip chip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flip chip style first level packaging without intermediate carrier 106.
In
In
An encapsulant or molding compound 136 is deposited over semiconductor die 124, conductive layer 122, and bond wires 134 using a paste printing, compressive molding, transfer molding, liquid encapsulant molding, vacuum lamination, spin coating, or other suitable applicator. Encapsulant 136 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. Encapsulant 136 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants.
In another embodiment, semiconductor wafer 140 may also contain a plurality of semiconductor die each having an active region 148 containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 148 to implement baseband analog circuits or digital circuits, such as DSP, memory, or other signal processing circuit. Semiconductor wafer 140 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing. Conductive layer 144 is electrically connected to the active and passive circuits in active region 148.
The temporary carrier 120 is removed by chemical etching, mechanical peel-off, CMP, mechanical grinding, thermal bake, laser scanning, or wet stripping to expose conductive bumps 122a. The semiconductor package 138 is inverted and mounted to substrate 142 with encapsulant 136 contacting adhesive layer 146, as shown in
In
An adhesive layer 152, such as thermal epoxy or epoxy resin, is formed over a portion of conductive layer 122 opposite semiconductor die 124. A semiconductor die or component 154 is mounted with back surface 156 to conductive layer 122 and contact pads 158 on active surface 160 oriented upward away from conductive layer 122. Active surface 160 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit may include one or more transistors, diodes, and other circuit elements formed within active surface 160 to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 154 may also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.
In
In
In
In
An electrically conductive layer 168 is formed over conductive layer 164 and insulating layer 166 using a patterning and deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 168 forms a multi-layer under bump metallization (UBM) including a barrier layer and adhesion layer. In one embodiment, the barrier layer contains Ni, titanium tungsten (TiW), chromium copper (CrCu), nickel vanadium (NiV), platinum (Pt), or palladium (Pd). The adhesion layer contains Al, titanium (Ti), chromium (Cr), or titanium nitride (TiN). UBM 168 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
An electrically conductive bump material is deposited over UBM 168 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to UBM 168 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 170. In some applications, bumps 170 are reflowed a second time to improve electrical contact to UBM 168. The bumps can also be compression bonded to UBM 168. Bumps 170 represent one type of interconnect structure that can be formed over UBM 168. The interconnect structure can also use stud bumps, micro bumps, conductive pillars, or other electrical interconnect.
Semiconductor die 124 is a known good die (KGD) having been tested and passed functionality, reliability, and interconnect specifications. Semiconductor die 124 is packaged within encapsulant 136 and serves as an inner KGD of wafer-level PiP 172. The active and passive circuits of KGD 124 are electrically connected through contact pads 126, bond wires 134, conductive layer 122, conductive layer 144, conductive bumps 122a and 164a, and contact pads 158 to the active and passive circuits of semiconductor die 154. The active and passive circuits of KGD 124 and semiconductor die 154 are also electrically connected through bond wires 150 to conductive layer 144 of substrate 142, and through conductive layer 168 and bumps 170 to external devices. The shallow via 121 and 167 with associated conductive bumps 122a and 164a have reduced the headroom needed for semiconductor die 154 and to electrically interconnect semiconductor die 124 and 154 in PiP 172.
In
In
In
In
In
An electrically conductive layer 242 is formed over conductive layer 238 using a patterning and deposition process such as PVD, CVD, sputtering, electrolytic plating, and electroless plating. Conductive layer 242 forms a multi-layer UBM including a barrier layer and adhesion layer. In one embodiment, the barrier layer contains Ni, NiV, TiW, CrCu, Pt, or Pd. The adhesion layer contains Al, Ti, Cr, or TiN. UBM 242 provides a low resistive interconnect, as well as a barrier to Cu or solder diffusion.
An electrically conductive bump material is deposited over UBM 242 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to UBM 242 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 244. In some applications, bumps 244 are reflowed a second time to improve electrical contact to UBM 242. The bumps can also be compression bonded to UBM 242. Bumps 244 represent one type of interconnect structure that can be formed over UBM 242. The interconnect structure can also use stud bumps, micro bumps, conductive pillars, or other electrical interconnect.
In
Semiconductor die 124 is a known good die (KGD) having been tested and passed functionality, reliability, and interconnect specifications. Semiconductor die 124 is packaged within encapsulant 136 and serves as an inner KGD of PiP 246. The active and passive circuits of KGD 124 are electrically connected through contact pads 126, bond wires 134, conductive layer 122, conductive layer 144, conductive bumps 122a and 238a, and contact pads 230 to the active and passive circuits of semiconductor die 226. The active and passive circuits of KGD 124 and semiconductor die 226 are also electrically connected through conductive layer 242 and bumps 244 to external devices. The shallow vias 121, 167, and 236 with associated conductive bumps 122a, 164a, and 238a have reduced the headroom needed for semiconductor die 226 and to electrically interconnect semiconductor die 124 and 226 in PiP 246.
While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.
Trasporto, Arnel Senosa, Bathan, Henry Descalzo, Tay, Lionel Chien Hui, Camacho, Zigmund R., Dahilig, Frederick R.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6072239, | Nov 08 1995 | SOCIONEXT INC | Device having resin package with projections |
6191494, | Jun 30 1998 | Fujitsu Semiconductor Limited | Semiconductor device and method of producing the same |
6759739, | Oct 31 2001 | Shinko Electric Industries Co., Ltd. | Multilayered substrate for semiconductor device |
6774449, | Sep 16 1999 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Semiconductor device and method for fabricating the same |
6815254, | Mar 10 2003 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Semiconductor package with multiple sides having package contacts |
6894382, | Jan 08 2004 | International Business Machines Corporation | Optimized electronic package |
6906416, | Oct 08 2002 | STATS CHIPPAC PTE LTE | Semiconductor multi-package module having inverted second package stacked over die-up flip-chip ball grid array (BGA) package |
7364945, | Mar 31 2005 | STATS CHIPPAC PTE LTE | Method of mounting an integrated circuit package in an encapsulant cavity |
7687897, | Dec 28 2006 | STATS CHIPPAC PTE LTE | Mountable integrated circuit package-in-package system with adhesive spacing structures |
7855342, | Sep 25 2000 | IBIDEN CO , LTD | Semiconductor element, method of manufacturing semiconductor element, multi-layer printed circuit board, and method of manufacturing multi-layer printed circuit board |
7919850, | Dec 09 2008 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Integrated circuit packaging system with exposed terminal interconnects and method of manufacturing thereof |
7944043, | Jul 08 2008 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Semiconductor device having improved contact interface reliability and method therefor |
7964450, | May 23 2008 | JCET SEMICONDUCTOR SHAOXING CO , LTD | Wirebondless wafer level package with plated bumps and interconnects |
7977779, | Jun 10 2008 | STATS CHIPPAC PTE LTE ; STATS CHIPPAC PTE LTD | Mountable integrated circuit package-in-package system |
20070178667, | |||
20070187826, | |||
20070257348, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 01 2016 | STATS ChipPAC Pte. Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 11 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 31 2023 | 4 years fee payment window open |
Oct 01 2023 | 6 months grace period start (w surcharge) |
Mar 31 2024 | patent expiry (for year 4) |
Mar 31 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 31 2027 | 8 years fee payment window open |
Oct 01 2027 | 6 months grace period start (w surcharge) |
Mar 31 2028 | patent expiry (for year 8) |
Mar 31 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 31 2031 | 12 years fee payment window open |
Oct 01 2031 | 6 months grace period start (w surcharge) |
Mar 31 2032 | patent expiry (for year 12) |
Mar 31 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |