A synchrocyclotron comprises includes a resonant circuit that includes electrodes having a gap therebetween across the magnetic field. An oscillating voltage input, having a variable amplitude and frequency determined by a programmable digital waveform generator generates an oscillating electric field across the gap. The synchrocyclotron can include a variable capacitor in circuit with the electrodes to vary the resonant frequency. The synchrocyclotron can further include an injection electrode and an extraction electrode having voltages controlled by the programmable digital waveform generator. The synchrocyclotron can further include a beam monitor. The synchrocyclotron can detect resonant conditions in the resonant circuit by measuring the voltage and or and/or current in the resonant circuit, driven by the input voltage, and adjust the capacitance of the variable capacitor or the frequency of the input voltage to maintain the resonant conditions. The programmable waveform generator can adjust at least one of the oscillating voltage input, the voltage on the injection electrode and the voltage on the extraction electrode according to beam intensity and in response to changes in resonant conditions.
|
0. 102. A synchrocyclotron comprising:
a magnetic field generator;
a resonant circuit comprising a variable reactive element to vary a resonant frequency of the resonant circuit;
a source to provide a voltage input to the resonant circuit, the voltage input being an oscillating voltage that varies over a time of acceleration of charged particles;
a feedback system to vary at least one property of the voltage input to the resonant circuit; and
one or more sensors to detect that there has been a deviation from a peak resonant condition in the resonant circuit;
wherein the voltage input is controlled by the feedback system based on the deviation in order to maintain the peak resonant condition.
0. 29. A particle accelerator configured to generate a particle beam, the particle accelerator comprising:
an ion source to inject charged particles into a resonant cavity;
magnetic pole pieces that border the resonant cavity, the resonant cavity having a radio frequency (RF) voltage to accelerate the charged particles to produce the particle beam;
a feedback system to provide at least one property of the particle beam; and
circuitry to receive an injection control pulse that extends over multiple cycles of the RF voltage and to control, based on the at least one property, the injection control pulse based on cycles of the RF voltage so that charged particles are injected continuously over at least some of the multiple cycles.
0. 90. A synchrocyclotron comprising:
magnetic pole pieces that border a cavity in which charged particles accelerate;
a resonant circuit to control a resonant frequency within the cavity;
a voltage circuit to provide voltage to the resonant circuit, the voltage comprising an oscillating voltage that varies over a time of acceleration of the charged particles; and
a feedback system to detect parameters based on operation of the resonant circuit, and to control the voltage circuit based on a least one of the parameters so as to maintain a resonant condition in the resonant circuit;
wherein the parameters comprises an amplitude of the voltage and a frequency of the voltage, and wherein the voltage circuit comprises an amplifier to change the amplitude of the voltage to maintain beam focusing.
0. 56. A particle accelerator comprising:
a cavity having a magnetic field;
an ion source to provide charged particles to the cavity;
a digital waveform generator to apply an oscillating voltage input to a resonant circuit that comprises accelerating electrodes having a gap therebetween across the magnetic field to drive an oscillating electric field across the gap and accelerate the charged particles within the cavity;
a beam monitor to measure a property of a particle beam comprised of the charged particles that have been accelerated;
wherein the digital waveform generator is configured to control the oscillating voltage input and the ion source to compensate for variations in the property of the particle beam; and
a programmable processor to control at least part of the digital waveform generator.
0. 71. A particle accelerator configured to generate a particle beam, the particle accelerator comprising:
an ion source to provide charged particles into a resonant cavity;
electrodes in the resonant cavity, the electrodes being separated by a gap;
a voltage circuit to output a radio frequency (RF) voltage to at least one of the electrodes to produce an oscillating electric field across the gap, the RF voltage having a frequency that varies to accelerate the charged particles to form the particle beam; and
a feedback system to detect information about the frequency of the oscillating electric field, and to adjust a timing of operation of the voltage circuit and the ion source based on the information so that the charged particles are provided to the resonant cavity in synchronism with a variation in the frequency of the RF voltage.
0. 21. A particle accelerator configured to generate a particle beam, the particle accelerator comprising:
an ion source to provide pulses of charged particles that are accelerated in a cavity to form the particle beam;
a beam monitor to obtain information about the particle beam, the information comprising information about an intensity of the particle beam; and
a waveform generator comprising a controller to receive the information about the intensity and to write data to memory, the waveform generator comprising a driver to provide voltage to the cavity to accelerate the charged particles; and
circuitry to control operation of the ion source based on the information about the intensity so that the pulses are provided at timed instances in synchronism with a sweep of a frequency of the voltage that accelerates the charged particles.
11. A method of accelerating particles in a synchrocyclotron, comprising:
providing particles in a cavity of the synchrocyclotron;
providing a resonant circuit in the cavity, the resonant circuit comprising accelerating electrodes having a gap therebetween across a magnetic field; and
using a sensor to measure a voltage in the resonant circuit;
with using a voltage input generator, applying an oscillating adjusting, based on an intensity of a particle beam output by the synchrocyclotron and a frequency of a voltage measured in the resonant circuit, a frequency of a voltage input that varies in frequency during acceleration of the particles to the resonant circuit, the oscillating voltage input creating an oscillating electric field across the gap that accelerates the particles in the synchrocyclotron cavity; and
receiving the particles from the cavity in an extraction channel and outputting a particle beam from the extraction channel.
0. 38. A synchrocyclotron comprising:
magnetic pole pieces that border a cavity;
an ion source to provide, to the cavity, ions that are accelerated to form a particle beam;
a voltage generator to provide voltage to the cavity, the voltage comprising an oscillating voltage having a frequency that varies over a time of acceleration of the ions;
a sensor to measure the oscillating voltage in the cavity; and
a control circuit to control, based on the oscillating voltage measured by the sensor, a timing at which ions are provided by the ion source, the timing being controlled so that ions are provided into the cavity for a limited time and at a same point in each of multiple frequency sweeps of the oscillating voltage, at least part of the control circuit comprising digital circuitry, the digital circuitry comprising an interface that provides a data link to a computer.
1. A synchrocyclotron comprising:
a magnetic field generator to produce a magnetic field;
a resonant circuit, comprising:
electrodes, disposed within a cavity between magnetic poles, having a gap therebetween across a the magnetic field; and
a variable reactive element in circuit with the electrodes to vary a resonant frequency of the resonant circuit; and
an extraction channel to receive charged particles from the cavity and to output a particle beam from the synchrocyclotron;
a sensor to measure a voltage in the resonant circuit; and
a voltage input generator to provide adjust a frequency of a voltage input to the resonant circuit based on an intensity of the particle beam output by the synchrocyclotron and a frequency of the voltage measured in the resonant circuit, the voltage input being an oscillating voltage that varies in frequency over a time of acceleration of the charged particles.
0. 80. A synchrocyclotron configured to output a particle beam, the synchrocyclotron comprising:
an ion source to provide charged particles to a resonant cavity for orbital acceleration to form the particle beam, the particle beam comprising multiple pulses;
a voltage source to provide a radio frequency (RF) voltage to the resonant cavity, the voltage source comprising an amplifier to change an amplitude of the RF voltage before providing the RF voltage to the resonant cavity;
a control system to control operation of the ion source in order to control intensities of individual pulses among the multiple pulses comprising the particle beam, the control system comprising a programmable processor to control the operation of the ion source based on a frequency of the RF voltage in the resonant cavity; and
a beam monitor to detect an intensity of the particle beam;
wherein the programmable processor is configured to control operation of the ion source based also on information about the detected intensity.
0. 64. A particle accelerator comprising
magnetic pole pieces that border a cavity;
a voltage generator to provide voltage to the cavity, the voltage comprising an oscillating voltage having a frequency that varies over a time of acceleration of charged particles;
an ion source that is controllable to output, over a period of time, pulses of charged particles that are accelerated in the cavity based on the oscillating voltage to form a particle beam;
control circuitry to regulate a current of the particle beam by controlling the ion source so as not to output at least some of the pulses during the period of time; and
a beam monitor to obtain at least one property of the particle beam;
wherein the control circuitry is configured to control a timing at which some of the pulses are output based on the oscillating voltage and an acceptance phase angle of the synchrocyclotron and to control, based on the at least one property, the ion source so as to change a number of the pulses that are not output during the period of time across different cycles of the voltage.
0. 47. A synchrocyclotron comprising:
a particle source to provide charged particles into a cavity having a magnetic field;
a voltage circuit to cause acceleration of the charged particles in the cavity via an oscillating electric field, the oscillating electric field to vary over a time of acceleration of the charged particles, the voltage circuit comprising a resonant circuit that comprises accelerating electrodes having a gap therebetween across the magnetic field and a driver to drive an oscillating voltage input to produce the oscillating electric field across the gap, the oscillating voltage input to vary over the time of acceleration of the charged particles; and
a control circuit to control the particle source to provide the charged particles for a limited time during each of multiple frequency sweeps of the oscillating electric field across the gap, the limited time synchronizing with an acceptance phase angle of the synchrocyclotron, at least part of the control circuit comprising digital circuitry, the digital circuitry comprising an interface that provides a data link to a computer.
3. The synchrocyclotron of
4. The synchrocyclotron of
5. The synchrocyclotron of
6. The synchrocyclotron of
7. The synchrocyclotron of
8. The synchrocyclotron of
9. The synchrocyclotron as claimed in
10. The synchrocyclotron of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
19. The method as in
20. The method as in
0. 22. The particle accelerator of claim 21, further comprising:
magnetic pole pieces that border the cavity, the cavity housing at least part of the ion source;
wherein the voltage comprises an oscillating voltage having a frequency that varies over a time to accelerate the charged particles.
0. 23. The particle accelerator of claim 21, wherein the voltage comprises an oscillating voltage having a frequency that varies over a time to accelerate the charged particles.
0. 24. The particle accelerator of claim 21, further comprising:
magnetic pole pieces that border the cavity, the cavity housing at least part of the ion source;
wherein the voltage comprises an oscillating voltage having a frequency that varies over a time to accelerate the charged particles; and
wherein the ion source is controlled to provide pulses of charged particles at a same point in each cycle of the oscillating voltage.
0. 25. The particle accelerator of claim 21, wherein the operation of the ion source is controlled by turning the ion source on and off during a time interval in order to obtain a desired beam current.
0. 26. The particle accelerator of claim 21, wherein the operation of the ion source is controlled by selecting a time interval and by dropping a number of pulses that occur during the time interval to obtain a desired beam current.
0. 27. The particle accelerator of claim 21, wherein the particle accelerator comprises a synchrocyclotron.
0. 28. The particle accelerator of claim 21, wherein the waveform generator comprises digital circuitry, the digital circuitry comprising a digital-to-analog converter (DAC) to generate an analog signal based on the data, the analog signal for controlling the ion source.
0. 30. The particle accelerator of claim 29, wherein the at least one property comprises an intensity of the particle beam.
0. 31. The particle accelerator of claim 29, wherein the at least one property comprises a spatial distribution of the particle beam.
0. 32. The particle accelerator of claim 29, wherein the at least one property comprises a timing associated with the particle beam.
0. 33. The particle accelerator of claim 29, wherein the injection control pulse controls operation of the ion source by turning the ion source on and off during a time interval in order to maintain a beam current.
0. 34. The particle accelerator of claim 29, wherein the injection control pulse controls operation of the ion source by selecting a time interval and wherein the circuitry is configured to drop a number of pulses that occur during the time interval to maintain a beam current.
0. 35. The particle accelerator of claim 29, wherein the particle accelerator comprises a synchrocyclotron.
0. 36. The particle accelerator of claim 29, wherein the feedback system comprises a beam monitor to monitor the particle beam to obtain the at least one property.
0. 37. The particle accelerator of claim 29, wherein the circuitry comprises a digital waveform generator.
0. 39. The synchrocyclotron of claim 38, further comprising:
a beam monitor to provide information about the particle beam, the information comprising information based on an intensity of the particle beam;
wherein the control circuit is configured to control the timing based also on the information based on the intensity.
0. 40. The synchrocyclotron of claim 38, further comprising:
a beam monitor to provide information about the particle beam, the information comprising information based on a spatial distribution of the particle beam;
wherein the control circuit is configured to control the timing based also on the information based on the spatial distribution.
0. 41. The synchrocyclotron of claim 38, further comprising:
a beam monitor to provide information about the particle beam, the information comprising information based on a timing of the particle beam;
wherein the control circuit is configured to control the timing based also on the information based on a timing of the particle beam.
0. 42. The synchrocyclotron of claim 38, wherein the at least part of the control circuit comprises a programmable processor.
0. 43. The synchrocyclotron of claim 38, wherein the control circuit is configured to control the timing so as to cause the ion source to provide particles into the cavity over a number of cycles of the oscillating voltage.
0. 44. The synchrocyclotron of claim 38, wherein the control circuit is configured to control the timing by turning the ion source on and off during a time interval in order to maintain a beam current.
0. 45. The synchrocyclotron of claim 38, wherein the digital circuitry comprises a programmable processor.
0. 46. The synchrocyclotron of claim 38, wherein voltage generator comprises a digital waveform generator that includes the control circuit.
0. 48. The synchrocyclotron of claim 47, further comprising:
a beam monitor to provide information about a particle beam, the information comprising information based on an intensity of the particle beam;
wherein the control circuit is configured to control the particle source based also on the information based on the intensity.
0. 49. The synchrocyclotron of claim 47, further comprising:
a beam monitor to provide information about a particle beam, the information comprising information based on a spatial distribution of the particle beam;
wherein the control circuit is configured to control the particle source based also on the information based on the spatial distribution.
0. 50. The synchrocyclotron of claim 47, further comprising:
a beam monitor to provide information about a particle beam, the information comprising information based on a timing of the particle beam;
wherein the control circuit is configured to control the particle source based also on the information based on a timing of the particle beam.
0. 51. The synchrocyclotron of claim 47, wherein the control circuit is configured to control the particle source based on variations of the oscillating electric field over time.
0. 52. The synchrocyclotron of claim 47, wherein the control circuit is configured to control the particle source so as to cause the particle source to inject particles at a same point in each cycle of the oscillating electric field.
0. 53. The synchrocyclotron of claim 47, wherein the control circuit is configured to control the particle source by turning the particle source on and off during a time interval in order to obtain a desired beam current.
0. 54. The synchrocyclotron of claim 47, wherein the digital circuitry comprises a programmable processor.
0. 55. The synchrocyclotron of claim 47, wherein voltage circuit and the control circuit are components of a digital waveform generator.
0. 57. The particle accelerator of claim 56, wherein digital waveform generator is configured to vary an amplitude of the oscillating voltage input.
0. 58. The particle accelerator of claim 56, wherein digital waveform generator is configured to vary a frequency of the oscillating voltage input.
0. 59. The particle accelerator of claim 56, wherein digital waveform generator is configured to vary an amplitude and a frequency of oscillating voltage input.
0. 60. The particle accelerator of claim 59, wherein digital waveform generator is configured to vary a frequency of the oscillating voltage input in order to maintain resonant conditions in the cavity.
0. 61. The particle accelerator of claim 60, further comprising:
a variable reactive element in circuit with the oscillating voltage input and the accelerating electrodes.
0. 62. The particle accelerator of claim 56, wherein the property comprises particle beam timing.
0. 63. The particle accelerator of claim 56, wherein the property comprises spatial distribution of the particle beam.
0. 65. The particle accelerator of claim 64, wherein the at least one property comprises an intensity of the particle beam.
0. 66. The particle accelerator of claim 64, wherein the at least one property comprises a timing associated with the particle beam.
0. 67. The particle accelerator of claim 64, wherein the at least one property comprises a spatial distribution of the particle beam.
0. 68. The particle accelerator of claim 64, further comprising:
a resonant circuit, comprising:
electrodes, disposed between magnetic pole pieces, having a gap therebetween across the magnetic field; and
a variable reactive element in circuit with the electrodes to vary a resonant frequency of the resonant circuit; and
wherein the voltage generator is configured to provide the voltage to the resonant circuit.
0. 69. The particle accelerator of claim 68, wherein the voltage generator is digitally controllable to change an amplitude of the voltage.
0. 70. The particle accelerator of claim 69, wherein the control circuit is configured to regulate the current based on the at least one property.
0. 72. The particle accelerator of claim 71, wherein the feedback system comprises a voltage sensor configured to measure the oscillating electric field across the gap.
0. 73. The particle accelerator of claim 71, wherein the feedback system comprises a digital control circuit configured to write data based on the information to memory, and to output data from memory to generate one or more waveforms upon which future outputs of the RF voltage are based.
0. 74. The particle accelerator of claim 71, wherein the feedback system comprises:
a beam monitor to detect an intensity of the particle beam; and
a control circuit to control operation of the ion source based on the intensity detected.
0. 75. The particle accelerator of claim 72, wherein the particle accelerator is a synchrocyclotron.
0. 76. The particle accelerator of claim 71, wherein the timing of operation of the voltage circuit is varied to compensate for physical features of the particle accelerator.
0. 77. The particle accelerator of claim 71, wherein the information comprises a peak resonant condition of the resonant cavity; and
wherein the feedback system is configured to control the timing of operation of the voltage circuit based on the peak resonant condition.
0. 78. The particle accelerator of claim 77, wherein the timing of operation of the voltage circuit is controlled so that the RF voltage output matches a voltage of the resonant circuit corresponding to the peak resonant condition.
0. 79. The particle accelerator of claim 71, wherein the feedback system comprises a programmable processor to control the timing of operation of at least one of the voltage circuit or the ion source based on the information.
0. 81. The synchrocyclotron of claim 80, wherein the operation of the ion source is controlled by turning the ion source on and off during a time interval.
0. 82. The synchrocyclotron of claim 80, wherein the operation of the ion source is controlled by selectively providing charged particles from the ion source over a number of cycles of the frequency of the RF voltage.
0. 83. The synchrocyclotron of claim 80, wherein the operation of the ion source is controlled to control a timing at which the charged particles are provided.
0. 84. The synchrocyclotron of claim 80, wherein the operation of the ion source is controlled to inject the charged particles at a same time relative to each cycle among multiple cycles of the frequency of the RF voltage.
0. 85. The synchrocyclotron of claim 80, wherein the operation of the ion source is controlled to inject the charged particles continuously over multiple cycles of the frequency of the RF voltage.
0. 86. The synchrocyclotron of claim 80, further comprising:
magnetic pole pieces that border the resonant cavity in which the charged particles accelerate; and
a resonant circuit to control a resonant frequency within the resonant cavity;
wherein the voltage source is configured to provide the RF voltage to the resonant circuit, the RF voltage comprising an oscillating voltage that varies over a time of acceleration of the charged particles; and
wherein the voltage source comprises a digital waveform generator that includes the control system.
0. 87. The synchrocyclotron of claim 80, wherein the operation of the ion source is controlled to inject the charged particles so as to compensate for detected variations of the particle beam.
0. 88. The synchrocyclotron of claim 80, wherein the operation of the ion source is controlled to inject the charged particles periodically.
0. 89. The synchrocyclotron of claim 80, wherein controlling intensities of individual pulses comprises controlling pulse widths of the individual pulses.
0. 91. The synchrocyclotron of claim 90, wherein the feedback system comprises a control circuit to control a property of the voltage based on the at least one parameter.
0. 92. The synchrocyclotron of claim 91, wherein the control circuit is configured to control the property of the voltage by writing data about the property to memory.
0. 93. The synchrocyclotron of claim 90, further comprising:
an ion source to provide the charged particles to the cavity, the charged particles to accelerate in the cavity to form a particle beam;
an extraction channel to output the particle beam from the synchrocyclotron; and
a beam monitor to obtain information about a property of the particle beam;
wherein the feedback system is configured to receive the information about the property of the particle beam, and to use the information to control operation of the ion source.
0. 94. The synchrocyclotron of claim 93, wherein the property of the particle beam is an intensity of the particle beam.
0. 95. The synchrocyclotron of claim 93, wherein the property of the particle beam is particle beam timing or spatial distribution of the particle beam.
0. 96. The synchrocyclotron of claim 90, wherein the resonant circuit comprises:
electrodes in the cavity, the electrodes having a gap therebetween across a magnetic field in the cavity produced by the magnetic pole pieces; and
a variable reactive element in circuit with the electrodes to vary the resonant frequency.
0. 97. The synchrocyclotron of claim 96, further comprising:
an angular position sensor associated with the variable reactive element to output information about a position of the variable reactive element;
wherein at least one parameter comprises the information about the position.
0. 98. The synchrocyclotron of claim 90, wherein at least part of the voltage circuit comprises digital circuitry.
0. 99. The synchrocyclotron of claim 90, wherein at least one parameter comprises a timing parameter.
0. 100. The synchrocyclotron of claim 93, wherein the feedback system is configured to use the information to generate, based on digital data, timing waveforms to control the voltage circuit.
0. 101. The synchrocyclotron of claim 90, wherein the feedback system is adaptive.
0. 103. The synchrocyclotron of claim 102, wherein the at least one property comprises amplitude of the voltage input.
0. 104. The synchrocyclotron of claim 102, wherein the at least one property comprises frequency of the voltage input.
0. 105. The synchrocyclotron of claim 102, wherein the at least one property comprises amplitude of the voltage input and frequency of the voltage input.
0. 106. The synchrocyclotron of claim 102, wherein the feedback system is configured to maintain the peak resonant condition.
0. 107. The synchrocyclotron of claim 102, further comprising:
an ion source to provide the charged particles that form a particle beam following acceleration; and
a beam monitor to monitor the at least one property of the particle beam;
wherein the feedback system comprises control circuitry to receive the at least one property of the particle beam, and to control at least one of the voltage input or the ion source based on the at least one property to compensate for variations in the particle beam.
0. 108. The synchrocyclotron of claim 107, wherein the at least one property comprises beam intensity, beam timing, or beam spatial distribution.
0. 109. The synchrocyclotron of claim 107, wherein the voltage input is generated by a programmable digital waveform generator.
|
This application is
where R is the active resistance of a resonant circuit, L is the inductance and C is the capacitance of this circuit.
Tuning means can be either a variable inductance coil or a variable capacitance. A variable capacitance device can be a vibrating reed or a rotating condenser. In the example shown in
The blade rotation can be synchronized with the RF frequency generation so that by varying the Q-factor of the RF cavity, the resonant frequency of the resonant circuit, defined by the cyclotron, is kept close to the frequency of the alternating voltage potential applied to “dees” 10 and 12.
The rotation of the blades can be controlled by the digital waveform generator, described below with reference to
A sensor that detects the peak resonant condition (not shown) can also be employed to provide feedback to the clock of the digital waveform generator to maintain the highest match to the resonant frequency. The sensors for detecting resonant conditions can measure the oscillating voltage and current in the resonant circuit. In another example, the sensor can be a capacitance sensor. This method can accommodate small irregularities in the relationship between the profile of the meshing blades of the rotating condenser and the angular position of the shaft.
A vacuum pumping system 40 maintains vacuum chamber 8 at a very low pressure so as not to scatter the accelerating beam.
To achieve uniform acceleration in a synchrocyclotron, the frequency and the amplitude of the electric field across the “dee” gap needs to be varied to account for the relativistic mass increase and radial (measured as distance from the center of the spiral trajectory of the charged particles) variation of magnetic field as well as to maintain focus of the beam of particles.
The instant invention uses a set of high speed digital to analog converters (DAC) that can generate, from a high speed memory, the required signals on a nanosecond time scale. Referring to
Referring to
Synchrocyclotron 300 includes digital waveform generator 319. Digital waveform generator 319 comprises one or more digital-to-analog converters (DACs) 320 that convert digital representations of waveforms stored in memory 322 into analog signals. Controller 324 controls addressing of memory 322 to output the appropriate data and controls DACs 320 to which the data is applied at any point in time. Controller 324 also writes data to memory 322. Interface 326 provides a data link to an outside computer (not shown). Interface 326 can be a fiber optic interface.
The clock signal that controls the timing of the “analog-to-digital” conversion process can be made available as an input to the digital waveform generator. This signal can be used in conjunction with a shaft position encoder (not shown) on the rotating condenser (see
The signal generated by DAC 320c is passed on to amplifying system 330, operated under the control of RF amplifier control system 332. In amplifying system 330, the signal from DAC 320c is applied by RF driver 334 to RF splitter 336, which sends the RF signal to be amplified by an RF power amplifier 338. In the example shown in
Upon exit from amplifying system 330, the signal from DAC 320c is passed on to particle accelerator 302 through matching network 348. Matching network 348 matches impedance of a load (particle accelerator 302) and a source (amplifying system 330). Matching network 348 includes a set of variable reactive elements.
Synchrocyclotron 300 can further include optimizer 350. Using measurement of the intensity of beam 318 by beam monitor 316, optimizer 350, under the control of a programmable processor can adjust the waveforms produced by DACs 320a, b and c and their timing to optimize the operation of the synchrocyclotron 300 and achieve a optimum acceleration of the charged particles.
The principles of operation of digital waveform generator 319 and adaptive feedback system 350 will now be discussed with reference to
The initial conditions for the waveforms can be calculated from physical principles that govern the motion of charged particles in magnetic field, from relativistic mechanics that describe the behavior of a charged particle mass as well as from the theoretical description of magnetic field as a function of radius in a vacuum chamber. These calculations are performed at step 402. The theoretical waveform of the voltage at the dee gap, RF(ω, t), where ω is the frequency of the electrical field across the dee gap and t is time, is computed based on the physical principles of a cyclotron, relativistic mechanics of a charged particle motion, and theoretical radial dependency of the magnetic field.
Departures of practice from theory can be measured and the waveform can be corrected as the synchrocyclotron operates under these initial conditions. For example, as will be described below with reference to
The timing of the accelerator waveform can be adjusted and optimized, as described below, on a cycle-by-cycle basis to correct for propagation delays present in the physical arrangement of the radio frequency wiring; asymmetry in the placement or manufacture of the dees can be corrected by placing the peak positive voltage closer in time to the subsequent peak negative voltage or vice versa, in effect creating an asymmetric sine wave.
In general, waveform distortion due to characteristics of the hardware can be corrected by pre-distorting the theoretical waveform RF(ω, t) using a device-dependent transfer function A, thus resulting in the desired waveform appearing at the specific point on the acceleration electrode where the protons are in the acceleration cycle. Accordingly, and referring again to
At step 405, a waveform that corresponds to an expression RF(ω, t)/A(ω,t) is computed and stored in memory 322. At step 406, digital waveform generator 319 generates RF /A waveform from memory. The driving signal RF(ω, t)/A(ω, t) is amplified at step 408, and the amplified signal is propagated through the entire device 300 at step 410 to generate a voltage across the dee gap at step 412. A more detailed description of a representative transfer function A(ω,t) will be given below with reference to
After the beam has reached the desired energy, a precisely timed voltage can be applied to an extraction electrode or device to create the desired beam trajectory in order to extract the beam from the accelerator, where it is measured by beam monitor at step 414a. RF voltage and frequency is measured by voltage sensors at step 414b. The information about beam intensity and RF frequency is relayed back to digital waveform generator 319, which can now adjust the shape of the signal RF(ω, t)/A(ω, t) at step 406.
The entire process can be controlled at step 416 by optimizer 350. Optimizer 350 can execute a semi- or fully automatic algorithm designed to optimize the waveforms and the relative timing of the waveforms. Simulated annealing is an example of a class of optimization algorithms that may be employed. On-line diagnostic instruments can probe the beam at different stages of acceleration to provide feedback for the optimization algorithm. When the optimum conditions have been found, the memory holding the optimized waveforms can be fixed and backed up for continued stable operation for some period of time. This ability to adjust the exact waveform to the properties of the individual accelerator decreases the unit-to-unit variability in operation and can compensate for manufacturing tolerances and variation in the properties of the materials used in the construction of the cyclotron.
The concept of the rotating condenser (such as condenser 28 shown in
The structure of rotating condenser 28 (see
As mentioned above, the timing of the waveform of the oscillating voltage input can be adjusted to correct for propagation delays that arise in the device.
In
As described above, the digital waveform generator produces an oscillating input voltage of the form RF(ω, t)/A(ω, t), where RF(ω, t) is a desired voltage across the dee gap and A(ω, t) is a transfer function. A representative device-specific transfer function A, is illustrated by curve 600 in
Another example of the type of effects that can be controlled with the programmable waveform generator is shown in
With the use of the programmable waveform generator, the amplitude of accelerating voltage 708 can be modulated in the desired fashion, as shown in
As mentioned above, the programmable waveform generator can be used to control the ion injector (ion source) to achieve optimal acceleration of the charged particles by precisely timing particle injections.
While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed by the appended claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2280606, | |||
2492324, | |||
2615129, | |||
2616042, | |||
2659000, | |||
2701304, | |||
2789222, | |||
2958327, | |||
3175131, | |||
3432721, | |||
3582650, | |||
3679899, | |||
3689847, | |||
3757118, | |||
3868522, | |||
3886367, | |||
3925676, | |||
3955089, | Oct 21 1974 | Varian Associates | Automatic steering of a high velocity beam of charged particles |
3958327, | May 01 1974 | Airco, Inc. | Stabilized high-field superconductor |
3992625, | Dec 27 1973 | Jersey Nuclear-Avco Isotopes, Inc. | Method and apparatus for extracting ions from a partially ionized plasma using a magnetic field gradient |
4038622, | Apr 13 1976 | The United States of America as represented by the United States Energy | Superconducting dipole electromagnet |
4047068, | Nov 26 1973 | Kreidl Chemico Physical K.G. | Synchronous plasma packet accelerator |
4112306, | Dec 06 1976 | Varian Associates, Inc. | Neutron irradiation therapy machine |
4129784, | Jan 16 1973 | Siemens Medical Systems, Inc | Gamma camera |
4139777, | Nov 19 1975 | Cyclotron and neutron therapy installation incorporating such a cyclotron | |
4197510, | Jun 23 1978 | The United States of America as represented by the Secretary of the Navy | Isochronous cyclotron |
4220866, | Dec 30 1977 | Siemens Aktiengesellschaft | Electron applicator |
4230129, | Jan 24 1974 | THERMAL DEVELOPMENTS, INC | Radio frequency, electromagnetic radiation device having orbital mount |
4256966, | Jul 03 1979 | Siemens Medical Laboratories, Inc. | Radiotherapy apparatus with two light beam localizers |
4293772, | Mar 31 1980 | Siemens Medical Laboratories, Inc. | Wobbling device for a charged particle accelerator |
4336505, | Jul 14 1980 | GIGA-TRONICS, INCORPORATED | Controlled frequency signal source apparatus including a feedback path for the reduction of phase noise |
4342060, | May 22 1980 | Siemens Medical Laboratories, Inc. | Energy interlock system for a linear accelerator |
4345210, | May 31 1979 | C.G.R. MeV | Microwave resonant system with dual resonant frequency and a cyclotron fitted with such a system |
4353033, | Mar 07 1979 | Rikagaku Kenkyusho | Magnetic pole structure of an isochronous-cyclotron |
4425506, | Nov 19 1981 | VARIAN ASSOCIATES, INC , A CORP OF DE | Stepped gap achromatic bending magnet |
4490616, | Sep 30 1982 | Cephalometric shield | |
4507614, | Mar 21 1983 | The United States of America as represented by the United States | Electrostatic wire for stabilizing a charged particle beam |
4507616, | Mar 08 1982 | Board of Trustees Operating Michigan State University | Rotatable superconducting cyclotron adapted for medical use |
4589126, | Jan 26 1984 | Radiotherapy treatment table | |
4598208, | Oct 04 1982 | Varian Associates, Inc. | Collimation system for electron arc therapy |
4628523, | May 13 1985 | B V OPTISCHE INDUSTRIE DE OUDE DELFT | Direction control for radiographic therapy apparatus |
4633125, | May 09 1985 | BOARD OF TRUSTEES, EAST LANSING, MI A CONSTITUTIONAL CORPORATION OF MI | Vented 360 degree rotatable vessel for containing liquids |
4641057, | Jan 23 1985 | Board of Trustees | Superconducting synchrocyclotron |
4641104, | Apr 26 1984 | BOARD OF TRUSTEES, EAST LANSING, MICHIGAN, A CONSTITUTIONAL CORPORATION OPERATING MICHIGAN | Superconducting medical cyclotron |
4651007, | Sep 13 1984 | Technicare Corporation | Medical diagnostic mechanical positioner |
4680565, | Jun 24 1985 | Siemens Aktiengesellschaft | Magnetic field device for a system for the acceleration and/or storage of electrically charged particles |
4705955, | Apr 02 1985 | Scanditronix AB | Radiation therapy for cancer patients |
4710722, | Mar 08 1985 | Siemens Aktiengesellschaft | Apparatus generating a magnetic field for a particle accelerator |
4726046, | Nov 05 1985 | VARIAN MEDICAL SYSTEMS TECHNOLOGIES, INC | X-ray and electron radiotherapy clinical treatment machine |
4734653, | Feb 25 1985 | Siemens Aktiengesellschaft | Magnetic field apparatus for a particle accelerator having a supplemental winding with a hollow groove structure |
4736173, | Jun 30 1983 | Hughes Electronics Corporation | Thermally-compensated microwave resonator utilizing current-null segmentation |
4737727, | Feb 12 1986 | Mitsubishi Denki Kabushiki Kaisha | Charged beam apparatus |
4739173, | Apr 11 1986 | Board of Trustees Operating Michigan State University | Collimator apparatus and method |
4745367, | Mar 28 1985 | Kernforschungszentrum Karlsruhe GmbH; Brown, Boveri & Cie AG | Superconducting magnet system for particle accelerators of a synchrotron radiation source |
4754147, | Apr 11 1986 | Michigan State University | Variable radiation collimator |
4763483, | Jul 17 1986 | Brooks Automation, Inc | Cryopump and method of starting the cryopump |
4767930, | Mar 31 1987 | Siemens Medical Laboratories, Inc. | Method and apparatus for enlarging a charged particle beam |
4769623, | Jan 28 1987 | Siemens Aktiengesellschaft | Magnetic device with curved superconducting coil windings |
4771208, | May 10 1985 | UNIVERSITE CATHOLIQUE DE LOUVAIN, HALLES UNIVERSITAIRES, PLACE DE 1 UNIVERSITE 1, B-1348 LOUVAIN-LA-NEUVE, BELGIUM | Cyclotron |
4783634, | Feb 27 1986 | Mitsubishi Denki Kabushiki Kaisha | Superconducting synchrotron orbital radiation apparatus |
4808941, | Oct 29 1986 | Siemens Aktiengesellschaft | Synchrotron with radiation absorber |
4812658, | Jul 23 1987 | President and Fellows of Harvard College | Beam Redirecting |
4843333, | Jan 28 1987 | Siemens Aktiengesellschaft | Synchrotron radiation source having adjustable fixed curved coil windings |
4845371, | Mar 29 1988 | Siemens Medical Laboratories, Inc. | Apparatus for generating and transporting a charged particle beam |
4865284, | Mar 13 1984 | Siemens Gammasonics, Inc. | Collimator storage device in particular a collimator cart |
4868843, | Sep 10 1986 | VARIAN MEDICAL SYSTEMS TECHNOLOGIES, INC | Multileaf collimator and compensator for radiotherapy machines |
4868844, | Sep 10 1986 | VARIAN MEDICAL SYSTEMS TECHNOLOGIES, INC | Mutileaf collimator for radiotherapy machines |
4870287, | Mar 03 1988 | Loma Linda University Medical Center | Multi-station proton beam therapy system |
4880985, | Oct 05 1988 | Detached collimator apparatus for radiation therapy | |
4894541, | Jul 31 1987 | Jeol Ltd | Apparatus utilizing charged-particle beam |
4896206, | Dec 14 1987 | Electro Science Industries, Inc. | Video detection system |
4902993, | Feb 19 1987 | Kernforschungszentrum Karlsruhe GmbH | Magnetic deflection system for charged particles |
4904949, | Aug 28 1984 | OXFORD INSTRUMENTS LIMITED, OSNEY MEAD, OXFORD OX2 ODX UNITED KINGDOM | Synchrotron with superconducting coils and arrangement thereof |
4905267, | Apr 29 1988 | Loma Linda University Medical Center | Method of assembly and whole body, patient positioning and repositioning support for use in radiation beam therapy systems |
4917344, | Apr 07 1988 | Loma Linda University Medical Center | Roller-supported, modular, isocentric gantry and method of assembly |
4943781, | May 21 1985 | Oxford Instruments, Ltd.; Amersham International plc | Cyclotron with yokeless superconducting magnet |
4945478, | Nov 06 1987 | VIRGINIA, UNIVERSITY OF, THE | Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like |
4968915, | Jan 22 1987 | Oxford Instruments Limited | Magnetic field generating assembly |
4987309, | Nov 29 1988 | VARIAN INTERNATIONAL AG | Radiation therapy unit |
4992744, | May 30 1988 | Shimadzu Corporation | Radio frequency linear accelerator control system |
4996496, | Sep 11 1987 | Hitachi, LTD; Nippon Telegraph and Telephone Corporation | Bending magnet |
5006759, | May 09 1988 | Siemens Medical Laboratories, Inc. | Two piece apparatus for accelerating and transporting a charged particle beam |
5010562, | Aug 31 1989 | Siemens Medical Laboratories, Inc. | Apparatus and method for inhibiting the generation of excessive radiation |
5012111, | Jun 21 1988 | Mitsubishi Denki Kabushiki Kaisha | Ion beam irradiation apparatus |
5017789, | Mar 31 1989 | Loma Linda University Medical Center | Raster scan control system for a charged-particle beam |
5017882, | Sep 01 1988 | AMERSHAM INTERNATIONAL PLC, AMERSHAM PLACE, LITTLE CHALFONT, BUCKINGHAMSHIRE HP7 9NA, ENGLAND; OXFORD INSTRUMENTS LIMITED, OSNEY MEAD, OXFORD, OX2 ODX, ENGLAND | Proton source |
5036290, | Mar 15 1989 | Hitachi, Ltd.; Nippon Telegraph and Telephone Corp. | Synchrotron radiation generation apparatus |
5039057, | Apr 07 1988 | Loma Linda University Medical Center | Roller-supported, modular, isocentric gentry and method of assembly |
5039867, | Aug 24 1987 | Mitsubishi Denki Kabushiki Kaisha | Therapeutic apparatus |
5046078, | Aug 31 1989 | SIEMENS MEDICAL LABORATORIES, INC | Apparatus and method for inhibiting the generation of excessive radiation |
5072123, | May 03 1990 | VARIAN ASSOCIATES, INC , A CORP OF DE | Method of measuring total ionization current in a segmented ionization chamber |
5111042, | Oct 30 1987 | British Technology Group Limited | Method and apparatus for generating particle beams |
5111173, | Mar 27 1990 | Mitsubishi Denki Kabushiki Kaisha | Deflection electromagnet for a charged particle device |
5117194, | Aug 26 1988 | Mitsubishi Denki Kabushiki Kaisha | Device for accelerating and storing charged particles |
5117212, | Jan 12 1989 | Mitsubishi Denki Kabushiki Kaisha | Electromagnet for charged-particle apparatus |
5117829, | Mar 31 1989 | Loma Linda University Medical Center; LOMA LINDA UNIVERSITY MEDICAL CENTER, LOMA LINDA, CA 92350 | Patient alignment system and procedure for radiation treatment |
5148032, | Jun 28 1991 | Siemens Medical Solutions USA, Inc | Radiation emitting device with moveable aperture plate |
5166531, | Aug 05 1991 | Varian Medical Systems, Inc | Leaf-end configuration for multileaf collimator |
5189687, | Dec 02 1988 | University of Florida Research Foundation, Incorporated | Apparatus for stereotactic radiosurgery |
5191706, | Jul 15 1991 | Delmarva Sash & Door Company of Maryland, Inc. | Machine and method for attaching casing to a structural frame assembly |
5240218, | Oct 23 1991 | Loma Linda University Medical Center | Retractable support assembly |
5260579, | Mar 13 1991 | Fujitsu Semiconductor Limited | Charged particle beam exposure system and charged particle beam exposure method |
5260581, | Mar 04 1992 | Loma Linda University Medical Center | Method of treatment room selection verification in a radiation beam therapy system |
5278533, | Aug 31 1990 | Mitsubishi Denki Kabushiki Kaisha | Coil for use in charged particle deflecting electromagnet and method of manufacturing the same |
5285166, | Oct 16 1991 | Hitachi, Ltd.; Director General of National Institute of Radiological Sciences | Method of extracting charged particles from accelerator, and accelerator capable of carrying out the method, by shifting particle orbit |
5297037, | Jul 31 1990 | Kabushiki Kaisha Toshiba | X-ray simulating method and system for radiotherapy plan |
5317164, | Jun 12 1991 | Mitsubishi Denki Kabushiki Kaisha | Radiotherapy device |
5336891, | Jun 16 1992 | Arch Development Corporation | Aberration free lens system for electron microscope |
5341104, | Feb 05 1993 | Siemens Aktiengesellschaft | Synchrotron radiation source |
5349198, | Jul 15 1992 | Mitsubishi Denki Kabushiki Kaisha | Beam supply device |
5365742, | Jan 25 1991 | Saes Getters S.p.A. | Device and process for the removal of hydrogen from a vacuum enclosure at cryogenic temperatures and especially high energy particle accelerators |
5374913, | Dec 13 1991 | Houston Advanced Research Center | Twin-bore flux pipe dipole magnet |
5382914, | May 05 1992 | ACCSYS TECHNOLOGY, INC | Proton-beam therapy linac |
5401973, | Dec 04 1992 | IOTRON INDUSTRIES CANADA INC | Industrial material processing electron linear accelerator |
5405235, | Jul 26 1991 | Barrel grasping device for automatically clamping onto the pole of a barrel trolley | |
5434420, | Dec 04 1992 | IOTRON INDUSTRIES CANADA INC | Industrial material processing electron linear accelerator |
5440133, | Jul 02 1993 | Loma Linda University Medical Center | Charged particle beam scattering system |
5451794, | Dec 04 1992 | IOTRON INDUSTRIES CANADA INC | Electron beam current measuring device |
5461773, | Aug 31 1990 | Mitsubishi Denki Kabushiki Kaisha | Method of manufacturing coils for use in charged particle deflecting electromagnet |
5463291, | Dec 23 1993 | SIEMENS MEDICAL SOLUTIONS, USA, INC | Cyclotron and associated magnet coil and coil fabricating process |
5464411, | Nov 02 1993 | Loma Linda Medical Center | Vacuum-assisted fixation apparatus |
5492922, | Feb 28 1995 | Eli Lilly and Company | Benzothiophene compounds intermediate compositions and methods for inhibiting aortal smooth muscle proliferation |
5511549, | Feb 13 1995 | Loma Linda University Medical Center | Normalizing and calibrating therapeutic radiation delivery systems |
5521469, | Nov 22 1991 | ION BEAM APPLICATIONS S A | Compact isochronal cyclotron |
5538942, | Nov 30 1990 | Hitachi, Ltd. | Method for producing a superconducting magnet coil |
5549616, | Nov 02 1993 | Loma Linda University Medical Center | Vacuum-assisted stereotactic fixation system with patient-activated switch |
5561697, | Dec 15 1992 | Hitachi Medical | Microtron electron accelerator |
5585642, | Feb 15 1995 | Loma Linda University Medical Center | Beamline control and security system for a radiation treatment facility |
5633747, | Dec 21 1994 | TENCOR INSTRUMENTS, A CORP OF CA | Variable spot-size scanning apparatus |
5635721, | Sep 19 1994 | HITESYS S P A | Apparatus for the liner acceleration of electrons, particularly for intraoperative radiation therapy |
5668371, | Jun 06 1995 | Wisconsin Alumni Research Foundation | Method and apparatus for proton therapy |
5672878, | Oct 24 1996 | Siemens Medical Solutions USA, Inc | Ionization chamber having off-passageway measuring electrodes |
5691679, | Oct 27 1994 | General Electric Company | Ceramic superconducting lead resistant to moisture and breakage |
5726448, | Aug 09 1996 | ZIMMER, INC | Rotating field mass and velocity analyzer |
5727554, | Sep 19 1996 | UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF EDUCATION | Apparatus responsive to movement of a patient during treatment/diagnosis |
5730745, | Nov 02 1993 | Loma Linda University Medical Center | Vacuum-assisted fixation apparatus |
5744919, | Dec 12 1996 | CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGENT | CW particle accelerator with low particle injection velocity |
5751781, | Oct 07 1995 | ELE KKTA AB | Apparatus for treating a patient |
5778047, | Oct 24 1996 | Varian Medical Systems, Inc | Radiotherapy couch top |
5783914, | Mar 17 1994 | Hitachi, Ltd. | Particle beam accelerator, and a method of operation |
5784431, | Oct 29 1996 | UNIVERSITY OF PITTSBURGH - OF THE COMMONWEALTH SYSTEM OF EDUCATION | Apparatus for matching X-ray images with reference images |
5797924, | Nov 02 1993 | Loma Linda University Medical Center | Stereotactic fixation system and calibration phantom |
5811944, | Jun 25 1996 | Lawrence Livermore National Security LLC | Enhanced dielectric-wall linear accelerator |
5818058, | Jan 18 1996 | Mitsubishi Denki Kabushiki Kaisha | Particle beam irradiation apparatus |
5821705, | Jun 25 1996 | Lawrence Livermore National Security LLC | Dielectric-wall linear accelerator with a high voltage fast rise time switch that includes a pair of electrodes between which are laminated alternating layers of isolated conductors and insulators |
5825845, | Oct 28 1996 | Loma Linda University Medical Center | Proton beam digital imaging system |
5841237, | Jul 14 1997 | Lockheed Martin Energy Research Corporation | Production of large resonant plasma volumes in microwave electron cyclotron resonance ion sources |
5846043, | Aug 05 1997 | Cart and caddie system for storing and delivering water bottles | |
5851182, | Sep 11 1996 | Megavoltage radiation therapy machine combined to diagnostic imaging devices for cost efficient conventional and 3D conformal radiation therapy with on-line Isodose port and diagnostic radiology | |
5866912, | Apr 18 1995 | Loma Linda University Medical Center | System and method for multiple particle therapy |
5874811, | Aug 19 1994 | GE Healthcare Limited | Superconducting cyclotron for use in the production of heavy isotopes |
5895926, | Feb 15 1995 | Loma Linda University Medical Center | Beamline control and security system for a radiation treatment facility |
5917293, | Dec 14 1995 | Hitachi, Ltd. | Radio-frequency accelerating system and ring type accelerator provided with the same |
5920601, | Oct 25 1996 | Battelle Energy Alliance, LLC | System and method for delivery of neutron beams for medical therapy |
5929458, | May 07 1996 | Hitachi, Ltd.; Hitachi Engineering Services Co., Ltd. | Radiation shield |
5963615, | Aug 08 1997 | Siemens Medical Solutions USA, Inc | Rotational flatness improvement |
5993373, | Aug 08 1997 | Sumitomo Heavy Industries, Ltd. | Rotating radiation chamber for radiation therapy |
6008499, | Dec 03 1996 | Hitachi, LTD | Synchrotron type accelerator and medical treatment system employing the same |
6034377, | Nov 12 1997 | Mitsubishi Denki Kabushiki Kaisha | Charged particle beam irradiation apparatus and method of irradiation with charged particle beam |
6057655, | Oct 06 1995 | Ion Beam Applications, S.A. | Method for sweeping charged particles out of an isochronous cyclotron, and device therefor |
6061426, | Oct 06 1997 | U S PHILIPS CORPORATION | X-ray examination apparatus including an x-ray filter |
6064807, | Dec 27 1993 | Fujitsu Limited | Charged-particle beam exposure system and method |
6066851, | Nov 21 1996 | Mitsubishi Denki Kabushiki Kaisha | Radiation deep dose measuring apparatus and corpuscular beam detector |
6080992, | Aug 07 1997 | Sumitomo Heavy Industries, LTD | Apparatus for fixing radiation beam irradiation field forming member |
6087670, | Dec 03 1997 | Hitachi, Ltd. | Synchrotron type accelerator and medical treatment system employing the same |
6094760, | Aug 04 1997 | Sumitomo Heavy Industries, LTD; OBAYASHI MANUFACTURING CO , LTD | Bed system for radiation therapy |
6118848, | Jan 14 1998 | REIFFEL TECHNOLOGIES, LLC | System to stabilize an irradiated internal target |
6140021, | May 08 1998 | Mamoru, Nakasuji | Charged particle beam transfer method |
6144875, | Mar 16 1999 | MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT | Apparatus and method for compensating for respiratory and patient motion during treatment |
6158708, | Aug 08 1997 | Siemens Medical Solutions USA, Inc | Rotational flatness improvement |
6207952, | Aug 11 1997 | Sumitomo Heavy Industries, Ltd. | Water phantom type dose distribution determining apparatus |
6219403, | Feb 17 1999 | Mitsubishi Denki Kabushiki Kaisha | Radiation therapy method and system |
6222905, | Aug 27 1998 | Mitsubishi Denki Kabushiki Kaisha | Irradiation dose calculation unit, irradiation dose calculation method and recording medium |
6241671, | Nov 03 1998 | STEREOTAXIS, INC | Open field system for magnetic surgery |
6246066, | Dec 25 1997 | Mitsubishi Denki Kabushiki Kaisha | Magnetic field generator and charged particle beam irradiator |
6256591, | Nov 26 1996 | Mitsubishi Denki Kabushiki Kaisha | Method of forming energy distribution |
6265837, | Mar 10 1998 | Hitachi, Ltd. | Charged-particle beam irradiation method and system |
6268610, | Oct 20 1997 | Mitsubishi Denki Kabushiki Kaisha | Charged-particle beam irradiation apparatus, charged-particle beam rotary irradiation system, and charged-particle beam irradiation method |
6278239, | Jun 25 1996 | Lawrence Livermore National Security LLC | Vacuum-surface flashover switch with cantilever conductors |
6279579, | Oct 23 1998 | Varian Medical Systems, Inc | Method and system for positioning patients for medical treatment procedures |
6307914, | Mar 12 1998 | Hokkaido University | Moving body pursuit irradiating device and positioning method using this device |
6316776, | Aug 30 1996 | Hitachi, LTD | Charged particle beam apparatus and method for operating the same |
6366021, | Jan 06 2000 | Varian Medical Systems, Inc | Standing wave particle beam accelerator with switchable beam energy |
6369585, | Oct 02 1998 | Siemens Medical Solutions USA, Inc. | System and method for tuning a resonant structure |
6380545, | Aug 30 1999 | Jefferson Science Associates, LLC | Uniform raster pattern generating system |
6407505, | Feb 01 2001 | Siemens Medical Solutions USA, Inc | Variable energy linear accelerator |
6414614, | Feb 23 1999 | CIRRUS LOGIC, INC , A DELAWARE CORPORATION | Power output stage compensation for digital output amplifiers |
6417634, | Sep 29 1998 | Gems Pet Systems AB | Device for RF control |
6433336, | Dec 21 1998 | Ion Beam Applications S.A. | Device for varying the energy of a particle beam extracted from an accelerator |
6433349, | Mar 10 1998 | Hitachi, Ltd. | Charged-particle beam irradiation method and system |
6433494, | Apr 22 1999 | Inductional undulative EH-accelerator | |
6441569, | Dec 09 1998 | Particle accelerator for inducing contained particle collisions | |
6443349, | Jul 22 1999 | Device and method for inserting an information carrier | |
6465957, | May 25 2001 | Siemens Medical Solutions USA, Inc | Standing wave linear accelerator with integral prebunching section |
6472834, | Jul 27 2000 | Hitachi, LTD | Accelerator and medical system and operating method of the same |
6476403, | Apr 01 1999 | Gesellschaft fuer Schwerionenforschung mbH | Gantry with an ion-optical system |
6492922, | Dec 14 2000 | Xilinx Inc. | Anti-aliasing filter with automatic cutoff frequency adaptation |
6493424, | Mar 05 2001 | Siemens Medical Solutions USA, Inc | Multi-mode operation of a standing wave linear accelerator |
6498444, | Apr 10 2000 | Siemens Medical Solutions USA, Inc | Computer-aided tuning of charged particle accelerators |
6501981, | Mar 16 1999 | MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT | Apparatus and method for compensating for respiratory and patient motions during treatment |
6519316, | Nov 02 2001 | Siemens Medical Solutions USA, Inc.. | Integrated control of portal imaging device |
6576916, | Mar 23 1998 | NANOLIFE HOLDINGS, LLC; NANO-LIFE HOLDINGS, LLC | Container for transporting antiprotons and reaction trap |
6593696, | Aug 06 2001 | Siemens Medical Solutions USA, Inc. | Low dark current linear accelerator |
6594336, | Mar 14 2001 | Mitsubishi Denki Kabushiki Kaisha | Absorption dose measuring apparatus for intensity modulated radio therapy |
6600164, | Feb 19 1999 | Gesellschaft fuer Schwerionenforschung mbH | Method of operating an ion beam therapy system with monitoring of beam position |
6617598, | Feb 28 2002 | Hitachi, Ltd. | Charged particle beam irradiation apparatus |
6621889, | Oct 23 1998 | Varian Medical Systems, Inc | Method and system for predictive physiological gating of radiation therapy |
6627875, | Apr 23 2001 | BEYOND GENOMICS, INC | Tailored waveform/charge reduction mass spectrometry |
6639234, | Feb 19 1999 | Gesellschaft fuer Schwerionenforschung mbH | Method for checking beam steering in an ion beam therapy system |
6646383, | Mar 15 2001 | Siemens Medical Solutions USA, Inc. | Monolithic structure with asymmetric coupling |
6670618, | Feb 19 1999 | Gesellschaft fuer Schwerionenforschung mbH | Method of checking an isocentre and a patient-positioning device of an ion beam therapy system |
6683318, | Sep 11 1998 | Gesellschaft fuer Schwerionenforschung mbH | Ion beam therapy system and a method for operating the system |
6683426, | Jul 13 1999 | Ion Beam Applications S.A. | Isochronous cyclotron and method of extraction of charged particles from such cyclotron |
6693283, | Feb 06 2001 | Gesellschaft fuer Schwerionenforschung mbH | Beam scanning system for a heavy ion gantry |
6703613, | Nov 21 2000 | HITACHI HIGH-TECH CORPORATION | Energy spectrum measuring apparatus, electron energy loss spectrometer, electron microscope provided therewith, and electron energy loss spectrum measuring method |
6710362, | Jul 02 2001 | Gesellschaft fuer Schwerionenforschung mbH | Device for irradiating a tumor tissue |
6713773, | Oct 07 1999 | MITEC, INC | Irradiation system and method |
6713976, | Oct 17 2002 | Mitsubishi Denki Kabushiki Kaisha | Beam accelerator |
6717162, | Dec 24 1998 | Ion Beam Applications S.A. | Method for treating a target volume with a particle beam and device implementing same |
6736831, | Feb 19 1999 | Gesellschaft fuer Schwerionenforschung mbH | Method for operating an ion beam therapy system by monitoring the distribution of the radiation dose |
6745072, | Feb 19 1999 | Gesellschaft fuer Schwerionenforschung mbH | Method for checking beam generation and beam acceleration means of an ion beam therapy system |
6769806, | Oct 30 2001 | Loma Linda University Medical Center | Method and device for delivering radiotherapy |
6774383, | Mar 26 2002 | Hitachi, Ltd. | Particle therapy system |
6777689, | Nov 16 2001 | Ion Beam Application, S.A. | Article irradiation system shielding |
6777700, | Jun 12 2002 | Hitachi, Ltd. | Particle beam irradiation system and method of adjusting irradiation apparatus |
6780149, | Apr 07 2000 | Loma Linda University Medical Center | Patient motion monitoring system for proton therapy |
6799068, | Feb 19 1999 | Gesellschaft fuer Schwerionenforschung mbH | Method for verifying the calculated radiation dose of an ion beam therapy system |
6800866, | Sep 11 2001 | Hitachi, Ltd. | Accelerator system and medical accelerator facility |
6803591, | Sep 30 2002 | Hitachi, Ltd.; Hitachi Setsubi Engineering Co., Ltd. | Medical particle irradiation apparatus |
6814694, | Jun 25 1999 | PAUL SCHERRER INSTITUT | Device for carrying out proton therapy |
6819117, | Jan 30 2002 | DCG Systems, Inc | PICA system timing measurement & calibration |
6822244, | Jan 02 2003 | Loma Linda University Medical Center | Configuration management and retrieval system for proton beam therapy system |
6853142, | Nov 04 2002 | Zond, Inc.; ZOND, INC | Methods and apparatus for generating high-density plasma |
6853703, | Jul 20 2001 | Siemens Medical Solutions USA, Inc | Automated delivery of treatment fields |
6864770, | Jan 30 2003 | Hitachi, Ltd. | Super conductive magnet apparatus |
6865254, | Jul 02 2002 | C-Rad Innovation AB | Radiation system with inner and outer gantry parts |
6873123, | Jun 08 2001 | ION BEAM APPLICATIONS S A | Device and method for regulating intensity of beam extracted from a particle accelerator |
6891177, | Feb 19 1999 | Gesellschaft fuer Schwerionenforschung mbH | Ion beam scanner system and operating method |
6891924, | May 13 1999 | Mitsubishi Denki Kabushiki Kaisha | Control apparatus for controlling radiotherapy irradiation system |
6894300, | Dec 20 2002 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Ion beam facility |
6897451, | Sep 05 2002 | MAN Technologie AG; Gesellschaft fuer Schwerionenforschung mit beschraenkter Haftung | Isokinetic gantry arrangement for the isocentric guidance of a particle beam and a method for constructing same |
6902646, | Aug 14 2003 | KLA-Tencor Corporation | Sensor array for measuring plasma characteristics in plasma processing environments |
6914396, | Jul 31 2000 | L-3 Communications Corporation | Multi-stage cavity cyclotron resonance accelerator |
6936832, | Mar 26 2002 | Hitachi, Ltd. | Particle therapy system |
6953943, | Feb 28 2002 | Hitachi, Ltd. | Medical charged particle irradiation apparatus |
6965116, | Jul 23 2004 | Applied Materials, Inc | Method of determining dose uniformity of a scanning ion implanter |
6969194, | Jun 09 1999 | C-Rad Innovation AB | Stable rotatable radiation gantry |
6979832, | Feb 28 2002 | Hitachi, Ltd. | Medical charged particle irradiation apparatus |
6984835, | Apr 23 2003 | Mitsubishi Denki Kabushiki Kaisha | Irradiation apparatus and irradiation method |
6992312, | Feb 28 2002 | Hitachi, Ltd. | Medical charged particle irradiation apparatus |
6993112, | Mar 12 2002 | Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts | Device for performing and verifying a therapeutic treatment and corresponding computer program and control method |
7008105, | May 13 2002 | Siemens Healthcare GmbH | Patient support device for radiation therapy |
7011447, | Oct 30 2001 | Loma Linda University Medical Center | Method and device for delivering radiotherapy |
7012267, | Mar 07 2003 | Hitachi, Ltd. | Particle beam therapy system |
7014361, | May 11 2005 | Adaptive rotator for gantry | |
7026636, | Jun 12 2002 | Hitachi, Ltd. | Particle beam irradiation system and method of adjusting irradiation apparatus |
7038403, | Jul 31 2003 | GE MEDICAL TECHNOLOGY SERVICES, INC | Method and apparatus for maintaining alignment of a cyclotron dee |
7041479, | Sep 06 2000 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE; The Board of Trustees of the Leland Stanford Junior University | Enhanced in vitro synthesis of active proteins containing disulfide bonds |
7045781, | Jan 17 2003 | ICT, Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik mbH | Charged particle beam apparatus and method for operating the same |
7049613, | Dec 10 2003 | Hitachi, Ltd. | Particle beam irradiation system and method of adjusting irradiation field forming apparatus |
7053389, | Sep 10 2003 | Hitachi, Ltd. | Charged particle therapy system, range modulation wheel device, and method of installing range modulation wheel device |
7054801, | Jan 23 2001 | Mitsubishi Denki Kabushiki Kaisha | Radiation treatment plan making system and method |
7060997, | Mar 26 2002 | Hitachi, Ltd. | Particle therapy system |
7071479, | Jun 12 2002 | Hitachi, Ltd. | Particle beam irradiation system and method of adjusting irradiation apparatus |
7073508, | Jun 25 2004 | Loma Linda University Medical Center | Method and device for registration and immobilization |
7081619, | Apr 27 2000 | Loma Linda University; Yeda, Ltd. | Nanodosimeter based on single ion detection |
7084410, | Jan 02 2003 | Loma Linda University Medical Center | Configuration management and retrieval system for proton beam therapy system |
7091478, | Feb 12 2002 | Gesellschaft fuer Schwerionenforschung mbH | Method and device for controlling a beam extraction raster scan irradiation device for heavy ions or protons |
7102144, | May 13 2003 | Hitachi, Ltd. | Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method |
7122811, | May 11 2004 | Hitachi, Ltd. | Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method |
7122966, | Dec 16 2004 | General Electric Company | Ion source apparatus and method |
7122978, | Apr 19 2004 | Mitsubishi Denki Kabushiki Kaisha | Charged-particle beam accelerator, particle beam radiation therapy system using the charged-particle beam accelerator, and method of operating the particle beam radiation therapy system |
7135678, | Jul 09 2004 | DCG Systems, Inc | Charged particle guide |
7138771, | Feb 05 2001 | Gesellschaft fuer Schwerionenforschung mbH | Apparatus for pre-acceleration of ion beams used in a heavy ion beam application system |
7154107, | Dec 10 2003 | Hitachi, Ltd. | Particle beam irradiation system and method of adjusting irradiation field forming apparatus |
7154108, | Oct 24 2003 | Hitachi, Ltd. | Particle therapy system |
7154991, | Oct 17 2003 | MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT | Patient positioning assembly for therapeutic radiation system |
7162005, | Jul 19 2002 | VAREX IMAGING CORPORATION | Radiation sources and compact radiation scanning systems |
7173264, | Mar 07 2003 | Hitachi, Ltd. | Particle beam therapy system |
7173265, | Aug 12 2003 | Loma Linda University Medical Center | Modular patient support system |
7173385, | Jan 15 2004 | Lawrence Livermore National Security LLC | Compact accelerator |
7186991, | Feb 04 2002 | Hitachi, LTD | Mixed irradiation evaluation support system |
7193227, | Jan 24 2005 | Board of Regents, The University of Texas System | Ion beam therapy system and its couch positioning method |
7199382, | Aug 12 2003 | Loma Linda University Medical Centre | Patient alignment system with external measurement and object coordination for radiation therapy system |
7208748, | Jul 21 2004 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Programmable particle scatterer for radiation therapy beam formation |
7212608, | Mar 05 2003 | Hitachi, LTD | Patient positioning device and patient positioning method |
7212609, | Mar 05 2003 | Hitachi, Ltd. | Patient positioning device and patient positioning method |
7221733, | Jan 02 2002 | Varian Medical Systems, Inc | Method and apparatus for irradiating a target |
7227161, | May 11 2004 | Hitachi, Ltd. | Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method |
7247869, | Oct 24 2003 | Hitachi, Ltd. | Particle therapy system |
7257191, | Nov 30 2004 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Medical examination and treatment system |
7259529, | Feb 17 2003 | Mitsubishi Denki Kabushiki Kaisha | Charged particle accelerator |
7262424, | Mar 07 2003 | Hitachi, Ltd. | Particle beam therapy system |
7262565, | Jul 21 2004 | National Institute of Radiological Sciences | Spiral orbit charged particle accelerator and its acceleration method |
7274018, | Jan 17 2003 | ICT, Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik mbH | Charged particle beam apparatus and method for operating the same |
7280633, | Aug 12 2003 | Loma Linda University Medical Center | Path planning and collision avoidance for movement of instruments in a radiation therapy environment |
7295649, | Oct 13 2005 | Varian Medical Systems, Inc | Radiation therapy system and method of using the same |
7297967, | Jun 12 2002 | Hitachi, Ltd. | Particle beam irradiation system and method of adjusting irradiation apparatus |
7301162, | Nov 16 2004 | Hitachi, Ltd. | Particle beam irradiation system |
7307264, | May 31 2002 | ION BEAM APPLICATIONS S A | Apparatus for irradiating a target volume |
7317192, | Jun 02 2003 | The Institute for Cancer Research | High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers |
7318805, | Mar 16 1999 | MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT | Apparatus and method for compensating for respiratory and patient motion during treatment |
7319231, | Mar 07 2003 | Hitachi, Ltd. | Particle beam therapy system |
7319336, | Feb 23 2004 | DCG Systems, Inc | Charged particle beam device probe operation |
7323682, | Jul 02 2004 | Thermo Finnigan LLC | Pulsed ion source for quadrupole mass spectrometer and method |
7331713, | Oct 30 2001 | Loma Linda University Medical Center | Method and device for delivering radiotherapy |
7332880, | Mar 15 2005 | Mitsubishi Denki Kabushiki Kaisha | Particle beam accelerator |
7345291, | May 03 2002 | ION BEAM APPLICATIONS S A | Device for irradiation therapy with charged particles |
7345292, | Mar 07 2003 | Hitachi, Ltd. | Particle beam therapy system |
7348557, | Sep 03 2004 | Carl Zeiss SMT Limited | Scanning particle beam instrument |
7348579, | Sep 18 2002 | PAUL SCHERRER INSTITUT | Arrangement for performing proton therapy |
7351988, | May 19 2004 | Gesellschaft fuer Schwerionenforschung mbH | Beam allocation apparatus and beam allocation method for medical particle accelerators |
7355189, | Sep 10 2003 | Hitachi, Ltd. | Charged particle therapy system, range modulation wheel device, and method of installing range modulation wheel device |
7368740, | Jan 02 2003 | Loma Linda University Medical Center | Configuration management and retrieval system for proton beam therapy system |
7372053, | Feb 25 2005 | Hitachi, Ltd.; Hitachi Setsubi Engineering Co., Ltd. | Rotating gantry of particle beam therapy system |
7378672, | Apr 13 2005 | Mitsubishi Denki Kabushiki Kaisha | Particle beam therapeutic apparatus |
7381979, | Jun 30 2005 | Hitachi, LTD | Rotating irradiation apparatus |
7397054, | Jul 28 2004 | Hitachi, Ltd. | Particle beam therapy system and control system for particle beam therapy |
7397901, | Feb 28 2007 | Varian Medical Systems, Inc | Multi-leaf collimator with leaves formed of different materials |
7398309, | Dec 08 2000 | Loma Linda University Medical Center | Proton beam therapy control system |
7402822, | Jun 05 2006 | Varian Medical Systems, Inc | Particle beam nozzle transport system |
7402823, | Jun 05 2006 | Varian Medical Systems, Inc | Particle beam system including exchangeable particle beam nozzle |
7402824, | Jun 05 2006 | Varian Medical Systems, Inc | Particle beam nozzle |
7402963, | Jul 21 2004 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Programmable radio frequency waveform generator for a synchrocyclotron |
7405407, | Jan 24 2005 | Hitachi, Ltd.; Board of Regents, The University of Texas System | Ion beam therapy system and its couch positioning method |
7425717, | May 13 2003 | Hitachi, Ltd. | Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method |
7432516, | Jan 24 2006 | Brookhaven Science Associates, LLC | Rapid cycling medical synchrotron and beam delivery system |
7439528, | Nov 07 2003 | Hitachi, Ltd. | Particle therapy system and method |
7446328, | Aug 12 2003 | Loma Linda University Medical Centre | Patient alignment system with external measurement and object coordination for radiation therapy system |
7446490, | Nov 25 2002 | ION BEAM APPLICATIONS S A | Cyclotron |
7449701, | Apr 14 2003 | Hitachi, Ltd. | Particle beam irradiation equipment and particle beam irradiation method |
7453076, | Mar 23 2007 | NANOLIFE SCIENCES, INC | Bi-polar treatment facility for treating target cells with both positive and negative ions |
7456415, | Mar 31 2005 | Hitachi, LTD | Charged particle beam extraction system and method |
7465944, | Jul 07 2003 | Hitachi, Ltd. | Charged particle therapy apparatus and charged particle therapy system |
7466085, | Apr 17 2007 | BEST ABT, INC | Cyclotron having permanent magnets |
7468506, | Jan 26 2005 | Carl Zeiss AG; Applied Materials Israel, Ltd | Spot grid array scanning system |
7473913, | Aug 05 2005 | Siemens Aktiengesellschaft, Munich | Gantry system for a particle therapy facility |
7476867, | May 27 2005 | ION BEAM APPLICATIONS, S A ; Istituto Nazionale di Fisica Nucleare; DIPARTIMENTO DI FISICA SPERIMENTALE OF THE UNIVERSITA DEGLI STUDI DI TORNI | Device and method for quality assurance and online verification of radiation therapy |
7476883, | May 26 2006 | BEST ABT, INC | Biomarker generator system |
7482606, | Jun 09 2004 | Gesellschaft fuer Schwerionenforschung mbH | Apparatus and method for compensation of movements of a target volume during ion beam irradiation |
7491161, | May 22 2003 | MITSUBISHI RAYON CO , LTD ; Mitsubishi Chemical Corporation | Photoreceptor drums, methods and apparatus for assembling the same, and image-forming apparatus employing the same |
7492556, | Feb 04 2005 | Siemens PLC | Quench protection circuit for a superconducting magnet |
7507975, | Apr 21 2006 | Varian Medical Systems, Inc | System and method for high resolution radiation field shaping |
7518108, | Nov 10 2005 | Wisconsin Alumni Research Foundation | Electrospray ionization ion source with tunable charge reduction |
7525104, | Feb 04 2005 | Mitsubishi Denki Kabushiki Kaisha | Particle beam irradiation method and particle beam irradiation apparatus used for the same |
7541905, | Jan 19 2006 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | High-field superconducting synchrocyclotron |
7547901, | Jun 05 2006 | Varian Medical Systems, Inc | Multiple beam path particle source |
7554096, | Oct 16 2003 | ALIS Corporation | Ion sources, systems and methods |
7554097, | Oct 16 2003 | ALIS Corporation | Ion sources, systems and methods |
7555103, | Feb 28 2007 | Varian Medical Systems, Inc | Multi-leaf collimator with leaves formed of different materials |
7557358, | Oct 16 2003 | ALIS Corporation | Ion sources, systems and methods |
7557359, | Oct 16 2003 | ALIS Corporation | Ion sources, systems and methods |
7557360, | Oct 16 2003 | ALIS Corporation | Ion sources, systems and methods |
7557361, | Oct 16 2003 | ALIS Corporation | Ion sources, systems and methods |
7560715, | Apr 27 2004 | PAUL SCHERRER INSTITUT | System for the delivery of proton therapy |
7560717, | May 13 2003 | Hitachi, Ltd. | Particle beam irradiation apparatus, treatment planning unit, and particle beam irradiation method |
7567694, | Jul 22 2005 | Accuray Incorporated | Method of placing constraints on a deformation map and system for implementing same |
7574251, | Jul 22 2005 | Accuray Incorporated | Method and system for adapting a radiation therapy treatment plan based on a biological model |
7576499, | Jan 15 2004 | Lawrence Livermore National Security, LLC | Sequentially pulsed traveling wave accelerator |
7579603, | Sep 16 2005 | Siemens Healthcare GmbH | Particle therapy device and method of designing a radiation path |
7579610, | Aug 12 2005 | Siemens Aktiengesellschaft | Expanding, monitoring, or adapting a particle energy distribution of a therapeutic particle beam installation |
7582866, | Oct 03 2007 | Shimadzu Corporation | Ion trap mass spectrometry |
7582885, | Apr 13 2005 | Hitachi High-Technologies Corp. | Charged particle beam apparatus |
7582886, | May 12 2006 | Brookhaven Science Associates, LLC | Gantry for medical particle therapy facility |
7586112, | Dec 26 2003 | Hitachi, Ltd. | Particle therapy system |
7598497, | Aug 31 2006 | HITACHI HIGH-TECH CORPORATION | Charged particle beam scanning method and charged particle beam apparatus |
7609009, | Jan 10 2007 | Mitsubishi Electric Corporation | Linear ion accelerator |
7609809, | Jul 22 2005 | Accuray Incorporated | System and method of generating contour structures using a dose volume histogram |
7609811, | Nov 07 2008 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Method for minimizing the tongue and groove effect in intensity modulated radiation delivery |
7615942, | Nov 14 2005 | Lawrence Livermore National Security, LLC | Cast dielectric composite linear accelerator |
7626347, | Jul 21 2004 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Programmable radio frequency waveform generator for a synchrocyclotron |
7627267, | Jun 01 2006 | Fuji Xerox Co., Ltd. | Image formation apparatus, image formation unit, methods of assembling and disassembling image formation apparatus, and temporarily tacking member used for image formation apparatus |
7629598, | Feb 04 2005 | Mitsubishi Denki Kabushiki Kaisha | Particle beam irradiation method using depth and lateral direction irradiation field spread and particle beam irradiation apparatus used for the same |
7639853, | Jul 22 2005 | Accuray Incorporated | Method of and system for predicting dose delivery |
7639854, | Jul 22 2005 | Accuray Incorporated | Method and system for processing data relating to a radiation therapy treatment plan |
7643661, | Jul 22 2005 | Accuray Incorporated | Method and system for evaluating delivered dose |
7656258, | Jan 19 2006 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Magnet structure for particle acceleration |
7659521, | Mar 09 2005 | Paul Scherrer Institute | System for taking wide-field beam-eye-view (BEV) x-ray-images simultaneously to the proton therapy delivery |
7659528, | Feb 20 2007 | Minoru, Uematsu; Masayuki, Atsuchi; James Robert, Wong | Particle beam irradiation system |
7668291, | May 18 2007 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Leaf sequencing |
7672429, | Mar 10 2006 | HITACHI HIGH-TECH CORPORATION | Radiotherapy device control apparatus and radiation irradiation method |
7679073, | Feb 16 2007 | HITACHI HIGH-TECH CORPORATION | Medical device |
7682078, | Oct 12 2006 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Method for determining a range of radiation |
7692166, | Jun 20 2006 | HITACHI HIGH-TECH CORPORATION | Charged particle beam exposure apparatus |
7692168, | Jul 07 2006 | Hitachi, Ltd.; Hitachi Information & Control Solutions, Ltd. | Device and method for outputting charged particle beam |
7696499, | Aug 12 2003 | Loma Linda University Medical Center | Modular patient support system |
7696847, | Jan 19 2006 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | High-field synchrocyclotron |
7701677, | Sep 07 2006 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Inductive quench for magnet protection |
7709818, | Sep 30 2004 | Hitachi, Ltd. | Particle beam irradiation apparatus and particle beam irradiation method |
7710051, | Jan 15 2004 | Lawrence Livermore National Security, LLC | Compact accelerator for medical therapy |
7718982, | Jul 21 2004 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Programmable particle scatterer for radiation therapy beam formation |
7728311, | Nov 18 2005 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Charged particle radiation therapy |
7746978, | Aug 12 2003 | Loma Linda University Medical Center | Path planning and collision avoidance for movement of instruments in a radiation therapy environment |
7755305, | May 14 2008 | Hitachi, LTD | Charged particle beam extraction system and method |
7759642, | Apr 30 2008 | Applied Materials Israel, Ltd. | Pattern invariant focusing of a charged particle beam |
7763867, | Sep 16 2005 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Particle therapy system, method and device for requesting a particle beam |
7767988, | Sep 06 2007 | SIEMENS HEALTHINEERS AG | Particle therapy system |
7770231, | Aug 02 2007 | BRUKER NANO, INC | Fast-scanning SPM and method of operating same |
7772577, | Aug 17 2007 | HITACHI HIGH-TECH CORPORATION | Particle beam therapy system |
7773723, | Aug 28 2008 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Radiation treatment trajectory and planning methods |
7773788, | Jul 22 2005 | Accuray Incorporated | Method and system for evaluating quality assurance criteria in delivery of a treatment plan |
7778488, | Mar 23 2007 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Image deformation using multiple image regions |
7783010, | Jun 24 2005 | VAREX IMAGING CORPORATION | X-ray radiation sources with low neutron emissions for radiation scanning |
7784127, | Sep 04 2007 | Accuray Incorporated | Patient support device and method of operation |
7786451, | Oct 16 2003 | ALIS Corporation | Ion sources, systems and methods |
7786452, | Oct 16 2003 | ALIS Corporation | Ion sources, systems and methods |
7789560, | Oct 30 2001 | Loma Linda University Medical Center | Method and device for delivering radiotherapy |
7791051, | Jan 02 2003 | Loma Linda University Medical Center | Configuration management and retrieval system for proton beam therapy system |
7796731, | Aug 22 2008 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Leaf sequencing algorithm for moving targets |
7801269, | Jul 28 2006 | Accuray Incorporated | Method and apparatus for calibrating a radiation therapy treatment system |
7801270, | Jun 19 2008 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Treatment plan optimization method for radiation therapy |
7801988, | Dec 08 2000 | Loma Linda University Medical Center | Proton beam therapy control system |
7807982, | Mar 29 2006 | Hitachi, LTD | Particle beam irradiation system |
7809107, | Jun 30 2008 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Method for controlling modulation strength in radiation therapy |
7812319, | May 04 2007 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Beam guiding magnet for deflecting a particle beam |
7812326, | Aug 12 2005 | Siemens Healthcare GmbH | Treatment station for particle therapy |
7816657, | May 02 2007 | Siemens Healthcare GmbH | Particle therapy system |
7817778, | Aug 29 2008 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Interactive treatment plan optimization for radiation therapy |
7817836, | Jun 05 2006 | Varian Medical Systems, Inc | Methods for volumetric contouring with expert guidance |
7834334, | Nov 10 2005 | Siemens Aktiengesellschaft | Particle therapy system |
7834336, | May 28 2008 | Varian Medical Systems, Inc | Treatment of patient tumors by charged particle therapy |
7835494, | Aug 28 2008 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Trajectory optimization method |
7835502, | Feb 11 2009 | Accuray Incorporated | Target pedestal assembly and method of preserving the target |
7839972, | Jul 22 2005 | Accuray Incorporated | System and method of evaluating dose delivered by a radiation therapy system |
7839973, | Jan 14 2009 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Treatment planning using modulability and visibility factors |
7848488, | Sep 10 2007 | Varian Medical Systems, Inc | Radiation systems having tiltable gantry |
7857756, | Aug 23 2001 | NSCRYPT, INC | Architecture tool and methods of use |
7860216, | Dec 12 2005 | ION BEAM APPLICATIONS S A | Device and method for positioning a target volume in radiation therapy apparatus |
7860550, | Apr 06 2004 | MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT | Patient positioning assembly |
7868301, | Oct 17 2007 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Deflecting a beam of electrically charged particles onto a curved particle path |
7875861, | Jan 18 2008 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Positioning device for positioning a patient and method for operating a positioning device |
7875868, | Dec 21 2007 | Hitachi, LTD | Charged particle beam irradiation system |
7881431, | Aug 06 2008 | HITACHI HIGH-TECH CORPORATION | Radiotherapy apparatus and radiation irradiating method |
7894574, | Sep 22 2009 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Apparatus and method pertaining to dynamic use of a radiation therapy collimator |
7906769, | Jun 16 2004 | Gesellschaft fuer Schwerionenforschung mbH | Particle accelerator for radiotherapy by means of ion beams |
7914734, | Dec 19 2007 | FISK VENTURES, LLC | Scanning analyzer for single molecule detection and methods of use |
7919765, | Mar 20 2008 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Non-continuous particle beam irradiation method and apparatus |
7920040, | Jan 19 2006 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Niobium-tin superconducting coil |
7920675, | Apr 10 2008 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Producing a radiation treatment plan |
7928415, | Dec 22 2005 | Gesellschaft fur Schwerionenforschung GmbH | Device for irradiating tumour tissue in a patient with a particle beam |
7934869, | Jun 30 2009 | Mitsubishi Electric Research Laboratories, Inc | Positioning an object based on aligned images of the object |
7940881, | Dec 10 2002 | ION BEAM APPLICATIONS S A | Device and method for producing radioisotopes |
7943913, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Negative ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
7947969, | Jun 27 2007 | Mitsubishi Electric Corporation | Stacked conformation radiotherapy system and particle beam therapy apparatus employing the same |
7949096, | Aug 12 2003 | Loma Linda University Medical Center | Path planning and collision avoidance for movement of instruments in a radiation therapy environment |
7950587, | Sep 22 2006 | The Board of Regents of the Nevada System of Higher Education on behalf of the University of Reno, Nevada | Devices and methods for storing data |
7960710, | Jun 22 2005 | Siemens Healthcare Limited | Particle radiation therapy equipment |
7961844, | Aug 31 2006 | Hitachi, LTD | Rotating irradiation therapy apparatus |
7977648, | Feb 27 2007 | Wisconsin Alumni Research Foundation | Scanning aperture ion beam modulator |
7977656, | Sep 07 2005 | Hitachi, LTD | Charged particle beam irradiation system and method of extracting charged particle beam |
7977657, | Feb 27 2007 | Wisconsin Alumni Research Foundation | Ion radiation therapy system with distal gradient tracking |
7982198, | Mar 29 2006 | Hitachi, Ltd. | Particle beam irradiation system |
7982416, | Apr 15 2008 | Mitsubishi Electric Corporation | Circular accelerator |
7984715, | Jun 25 2004 | Loma Linda University Medical Center | Method and device for registration and immobilization |
7986768, | Feb 19 2009 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Apparatus and method to facilitate generating a treatment plan for irradiating a patient's treatment volume |
7987053, | May 30 2008 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Monitor units calculation method for proton fields |
7989785, | Oct 19 2007 | Siemens Healthcare GmbH | Gantry, particle therapy system, and method for operating a gantry |
7990524, | Jun 30 2006 | The University of Chicago | Stochastic scanning apparatus using multiphoton multifocal source |
7997553, | Jan 14 2005 | Indiana University Research & Technology Corporati | Automatic retractable floor system for a rotating gantry |
8002466, | Mar 13 2006 | Gesellschaft fuer Schwerionenforschung mbH | Irradiation verification device for radiotherapy installations, and method for handling thereof |
8003964, | Oct 11 2007 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Applying a particle beam to a patient |
8009803, | Sep 28 2009 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Treatment plan optimization method for radiosurgery |
8009804, | Oct 20 2009 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Dose calculation method for multiple fields |
8039822, | Mar 14 2008 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Particle therapy apparatus and method for modulating a particle beam generated in an accelerator |
8041006, | Apr 11 2007 | ENTERPRISE SCIENCE FUND, LLC | Aspects of compton scattered X-ray visualization, imaging, or information providing |
8044364, | Sep 08 2006 | Mitsubishi Electric Corporation | Dosimetry device for charged particle radiation |
8049187, | Mar 28 2008 | Sumitomo Heavy Industries, LTD | Charged particle beam irradiating apparatus |
8053508, | Oct 14 2005 | The Trustees of Princeton University | Electrospray painted article containing thermally exfoliated graphite oxide and method for their manufacture |
8053739, | Jun 23 2008 | Siemens Healthcare GmbH | Particle beam generating system and method with measurement of the beam spot of the particle beam |
8053745, | Feb 24 2009 | MOORE FAMILY PROPERTIES, LLC | Device and method for administering particle beam therapy |
8053746, | Dec 21 2006 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Irradiation device |
8063381, | Mar 13 2009 | Brookhaven Science Associates, LLC | Achromatic and uncoupled medical gantry |
8067748, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
8069675, | Oct 10 2006 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Cryogenic vacuum break thermal coupler |
8071966, | Aug 01 2007 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Control device for controlling an irradiation procedure, particle therapy unit, and method for irradiating a target volume |
8080801, | Dec 04 2003 | PAUL SCHERRER INSTITUT | Inorganic scintillating mixture and a sensor assembly for charged particle dosimetry |
8085899, | Dec 12 2007 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Treatment planning system and method for radiotherapy |
8089054, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
8093564, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
8093568, | Feb 27 2007 | Wisconsin Alumni Research Foundation | Ion radiation therapy system with rocking gantry motion |
8111125, | Jan 19 2006 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Niobium-tin superconducting coil |
8129699, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
8144832, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
8153989, | Mar 28 2008 | Sumitomo Heavy Industries, LTD | Charged particle beam irradiating apparatus |
8173981, | May 12 2006 | Brookhaven Science Associates, LLC | Gantry for medical particle therapy facility |
8188688, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
8198607, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
8222613, | Oct 15 2008 | Shizuoka Prefecture | Scanning irradiation device of charged particle beam |
8227768, | Jun 25 2008 | Axcelis Technologies, Inc. | Low-inertia multi-axis multi-directional mechanically scanned ion implantation system |
8232536, | May 27 2010 | Hitachi, LTD | Particle beam irradiation system and method for controlling the particle beam irradiation system |
8288742, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle cancer therapy patient positioning method and apparatus |
8291717, | May 02 2008 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Cryogenic vacuum break thermal coupler with cross-axial actuation |
8294127, | Aug 26 2010 | Sumitomo Heavy Industries, Ltd. | Charged-particle beam irradiation device, charged-particle beam irradiation method, and computer readable medium |
8304725, | Mar 23 2006 | HITACHI HIGH-TECH CORPORATION | Charged particle beam system |
8304750, | Dec 17 2007 | Carl Zeiss NTS GmbH | Scanning charged particle beams |
8309941, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle cancer therapy and patient breath monitoring method and apparatus |
8330132, | Aug 27 2008 | Varian Medical Systems, Inc | Energy modulator for modulating an energy of a particle beam |
8334520, | Oct 24 2008 | HITACHI HIGH-TECH CORPORATION | Charged particle beam apparatus |
8335397, | May 22 2007 | HITACHI HIGH-TECH CORPORATION | Charged particle beam apparatus |
8344340, | Nov 18 2005 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Inner gantry |
8350214, | Jan 15 2009 | HITACHI HIGH-TECH CORPORATION | Charged particle beam applied apparatus |
8368038, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
8368043, | Dec 31 2008 | ION BEAM APPLICATIONS S A | Gantry rolling floor |
8373143, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
8373145, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle cancer therapy system magnet control method and apparatus |
8373146, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
8378299, | Mar 10 2010 | ICT Integrated Circuit Testing Gesellschaft fur Halbleiterpruftechnik mbH | Twin beam charged particle column and method of operating thereof |
8378321, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle cancer therapy and patient positioning method and apparatus |
8382943, | Oct 23 2009 | Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source of electromagnetic radiation | |
8389949, | Jun 09 2009 | Mitsubishi Electric Corporation | Particle beam therapy system and adjustment method for particle beam therapy system |
8399866, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle extraction apparatus and method of use thereof |
8405042, | Jan 28 2010 | Hitachi, LTD | Particle beam therapy system |
8405056, | Dec 28 2006 | ADVANCED ONCOTHERAPY PLC | Ion acceleration system for medical and/or other applications |
8415643, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
8416918, | Aug 20 2010 | SIEMENS HEALTHINEERS INTERNATIONAL AG | Apparatus and method pertaining to radiation-treatment planning optimization |
8421041, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Intensity control of a charged particle beam extracted from a synchrotron |
8426833, | May 12 2006 | Brookhaven Science Associates, LLC | Gantry for medical particle therapy facility |
8436323, | Sep 12 2007 | Kabushiki Kaisha Toshiba | Particle beam irradiation apparatus and particle beam irradiation method |
8440987, | Sep 03 2010 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | System and method for automated cyclotron procedures |
8445872, | Sep 03 2010 | VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | System and method for layer-wise proton beam current variation |
8466441, | Feb 17 2011 | Mitsubishi Electric Corporation | Particle beam therapy system |
8472583, | Sep 29 2010 | VAREX IMAGING CORPORATION | Radiation scanning of objects for contraband |
8483357, | Oct 20 2009 | Varian Medical Systems International AG | Dose calculation method for multiple fields |
8487278, | May 22 2008 | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system | |
8552406, | Nov 07 2005 | Fibics Incorporated | Apparatus and method for surface modification using charged particle beams |
8552408, | Feb 10 2010 | TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION | Particle beam irradiation apparatus and control method of the particle beam irradiation apparatus |
8569717, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Intensity modulated three-dimensional radiation scanning method and apparatus |
8575563, | Nov 02 2009 | ProNova Solutions, LLC | Compact isocentric gantry |
8581215, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle cancer therapy patient positioning method and apparatus |
8581523, | Nov 30 2007 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Interrupted particle source |
8581525, | Mar 23 2012 | Massachusetts Institute of Technology | Compensated precessional beam extraction for cyclotrons |
8637833, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Synchrotron power supply apparatus and method of use thereof |
8653314, | May 22 2011 | FINA TECHNOLOGY, INC, | Method for providing a co-feed in the coupling of toluene with a carbon source |
8653473, | Jul 28 2010 | Sumitomo Heavy Industries, Ltd. | Charged particle beam irradiation device |
8766218, | Sep 28 2009 | Ion Beam Applications, SA | Compact gantry for particle therapy |
8791435, | Mar 04 2009 | Multi-field charged particle cancer therapy method and apparatus | |
8901509, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Multi-axis charged particle cancer therapy method and apparatus |
8905908, | Mar 31 2010 | Canon Kabushiki Kaisha | Lubricant supplying method, supporting member and rotatable member unit |
8907311, | Nov 18 2005 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Charged particle radiation therapy |
8952634, | Jul 21 2004 | LIFE SCIENCES ALTERNATIVE FUNDING LLC | Programmable radio frequency waveform generator for a synchrocyclotron |
8963112, | Oct 07 2013 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle cancer therapy patient positioning method and apparatus |
8970137, | Nov 30 2007 | Mevion Medical Systems, Inc. | Interrupted particle source |
8975816, | May 05 2009 | VAREX IMAGING CORPORATION | Multiple output cavities in sheet beam klystron |
9012866, | Mar 15 2013 | Varian Medical Systems, Inc; VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GMBH & CO KG | Compact proton therapy system with energy selection onboard a rotatable gantry |
9028384, | Mar 30 2012 | FUJIFILM Business Innovation Corp | Rotating body and bearing |
9044600, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Proton tomography apparatus and method of operation therefor |
9056199, | May 22 2008 | BALAKIN, ANDREY VLADIMIROVICH; BALAKIN, PAVEL VLADIMIROVICH | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
9176468, | Dec 22 2006 | Canon Kabushiki Kaisha | Rotational force transmitting part |
9451688, | Jun 24 2009 | ION BEAM APPLICATIONS S A | Device and method for particle beam production |
9452301, | Nov 18 2005 | Mevion Medical Systems, Inc. | Inner gantry |
9723705, | Sep 28 2012 | MEVION MEDICAL SYSTEMS, INC | Controlling intensity of a particle beam |
20020172317, | |||
20030048080, | |||
20030125622, | |||
20030136924, | |||
20030146759, | |||
20030152197, | |||
20030163015, | |||
20030183779, | |||
20030234369, | |||
20040000650, | |||
20040017888, | |||
20040056212, | |||
20040061077, | |||
20040061078, | |||
20040085023, | |||
20040098445, | |||
20040111134, | |||
20040118081, | |||
20040149934, | |||
20040159795, | |||
20040173763, | |||
20040174958, | |||
20040183033, | |||
20040183035, | |||
20040200982, | |||
20040200983, | |||
20040213381, | |||
20040227104, | |||
20040232356, | |||
20040240626, | |||
20050058245, | |||
20050089141, | |||
20050161618, | |||
20050184686, | |||
20050228255, | |||
20050234327, | |||
20050238134, | |||
20050247890, | |||
20060017015, | |||
20060067468, | |||
20060126792, | |||
20060145088, | |||
20060170381, | |||
20060173294, | |||
20060175991, | |||
20060273264, | |||
20060284562, | |||
20070001128, | |||
20070013273, | |||
20070014654, | |||
20070023699, | |||
20070029510, | |||
20070051904, | |||
20070061937, | |||
20070092812, | |||
20070114945, | |||
20070133752, | |||
20070145916, | |||
20070170994, | |||
20070171015, | |||
20070181519, | |||
20070252093, | |||
20070284548, | |||
20080067452, | |||
20080078937, | |||
20080093567, | |||
20080218102, | |||
20080234531, | |||
20080270517, | |||
20090096179, | |||
20090101832, | |||
20090140671, | |||
20090140672, | |||
20090200483, | |||
20090230299, | |||
20090236545, | |||
20090296885, | |||
20090309046, | |||
20090314960, | |||
20090321665, | |||
20100006770, | |||
20100027745, | |||
20100038552, | |||
20100045213, | |||
20100046697, | |||
20100051833, | |||
20100192303, | |||
20100209335, | |||
20100230617, | |||
20100308235, | |||
20110006212, | |||
20110220809, | |||
20110233423, | |||
20110240874, | |||
20110284760, | |||
20110299919, | |||
20120014501, | |||
20120081041, | |||
20120126140, | |||
20120217903, | |||
20120313003, | |||
20130053616, | |||
20130127375, | |||
20130131424, | |||
20130193352, | |||
20130237425, | |||
20130249443, | |||
20140028220, | |||
20140042934, | |||
20140062344, | |||
20140094643, | |||
20140097920, | |||
20150009917, | |||
20150009918, | |||
20150161793, | |||
20170028224, | |||
AU2005267078, | |||
CA2629333, | |||
CN101061759, | |||
CN101361156, | |||
CN101932361, | |||
CN101933405, | |||
CN101933406, | |||
CN102036461, | |||
CN102172106, | |||
CN104244562, | |||
CN104812443, | |||
CN104812444, | |||
CN104822417, | |||
CN1377521, | |||
CN1537657, | |||
CN1631061, | |||
CN1816243, | |||
CN2005800245224, | |||
CN2010105813842, | |||
DE2753397, | |||
DE3148100, | |||
DE3530446, | |||
DE4101094, | |||
DE4411171, | |||
EP44153, | |||
EP194728, | |||
EP208163, | |||
EP221987, | |||
EP222786, | |||
EP276123, | |||
EP277521, | |||
EP306966, | |||
EP388123, | |||
EP465597, | |||
EP499253, | |||
EP776595, | |||
EP864337, | |||
EP911064, | |||
EP1069809, | |||
EP1153398, | |||
EP1265462, | |||
EP1294445, | |||
EP1348465, | |||
EP1358908, | |||
EP1371390, | |||
EP1402923, | |||
EP1430932, | |||
EP1454653, | |||
EP1454654, | |||
EP1454655, | |||
EP1454656, | |||
EP1454657, | |||
EP1477206, | |||
EP1605742, | |||
EP1738798, | |||
EP1790203, | |||
EP1826778, | |||
EP1949404, | |||
EP2026640, | |||
EP2183753, | |||
EP2227295, | |||
EP2232961, | |||
EP2232962, | |||
EP2259664, | |||
EP2363170, | |||
EP2363171, | |||
EP2394498, | |||
EP2814304, | |||
EP2900324, | |||
EP2900325, | |||
EP2900326, | |||
FR2560421, | |||
FR2911843, | |||
GB957342, | |||
GB1360085, | |||
GB1485329, | |||
GB1583400, | |||
GB2015821, | |||
GB2361523, | |||
JP10071213, | |||
JP10247600, | |||
JP10270200, | |||
JP11047287, | |||
JP11102800, | |||
JP11243295, | |||
JP1147287, | |||
JP1276797, | |||
JP1302700, | |||
JP2000243309, | |||
JP2000294399, | |||
JP2001009050, | |||
JP2001129103, | |||
JP2001346893, | |||
JP20016900, | |||
JP2002164686, | |||
JP2003504628, | |||
JP2003517755, | |||
JP2004139944, | |||
JP2005526578, | |||
JP2006032282, | |||
JP2006233831, | |||
JP2007260939, | |||
JP2007319439, | |||
JP2008012121, | |||
JP2008089341, | |||
JP2008270039, | |||
JP2008507826, | |||
JP2009515671, | |||
JP2009516905, | |||
JP2010204020, | |||
JP2010536130, | |||
JP2011210494, | |||
JP2011224342, | |||
JP2011505191, | |||
JP2011505670, | |||
JP2011507151, | |||
JP2011521425, | |||
JP4128717, | |||
JP4129768, | |||
JP4273409, | |||
JP4323267, | |||
JP4337300, | |||
JP48108098, | |||
JP494198, | |||
JP5046928, | |||
JP5341352, | |||
JP57162527, | |||
JP58141000, | |||
JP6036893, | |||
JP61225798, | |||
JP6180800, | |||
JP62150804, | |||
JP62186500, | |||
JP6233831, | |||
JP63149344, | |||
JP63218200, | |||
JP63226899, | |||
JP6489621, | |||
JP7260939, | |||
JP7263196, | |||
JP8173890, | |||
JP8264298, | |||
JP9162585, | |||
RU300137, | |||
RU569635, | |||
SU300137, | |||
SU569635, | |||
TW200930160, | |||
TW200934682, | |||
TW200939908, | |||
TW200940120, | |||
TW201422278, | |||
TW201422279, | |||
TW201424466, | |||
TW201429514, | |||
TW201433331, | |||
TW201434508, | |||
TW201438787, | |||
TW6489621, | |||
WO40064, | |||
WO49624, | |||
WO1026230, | |||
WO1126569, | |||
WO126230, | |||
WO207817, | |||
WO3039212, | |||
WO3092812, | |||
WO2001126569, | |||
WO2003092340, | |||
WO2004026401, | |||
WO2004101070, | |||
WO2005102453, | |||
WO2006012452, | |||
WO2006012467, | |||
WO2007061937, | |||
WO2007084701, | |||
WO2007130164, | |||
WO2007145906, | |||
WO2008030911, | |||
WO2008081480, | |||
WO2009048745, | |||
WO2009056165, | |||
WO2009070173, | |||
WO2009070588, | |||
WO2009073480, | |||
WO2009080080, | |||
WO2010089574, | |||
WO2010149740, | |||
WO2012044957, | |||
WO2012071142, | |||
WO2013079311, | |||
WO2013098089, | |||
WO2013142409, | |||
WO2014018876, | |||
WO2014052708, | |||
WO2014052709, | |||
WO2014052716, | |||
WO2014052718, | |||
WO2014052719, | |||
WO2014052721, | |||
WO2014052722, | |||
WO8607229, | |||
WO9012413, | |||
WO9203028, | |||
WO9302536, | |||
WO9817342, | |||
WO9939385, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 12 2006 | SLISKI, ALAN | STILL RIVER SYSTEMS INCOPORATED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042236 | /0395 | |
Jul 25 2006 | GALL, KENNETH | STILL RIVER SYSTEMS INCOPORATED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042236 | /0395 | |
Sep 30 2011 | STILL RIVER SYSTEMS INCOPORATED | MEVION MEDICAL SYSTEMS, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 042398 | /0316 | |
Feb 09 2017 | Mevion Medical Systems, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 10 2022 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 09 2023 | 4 years fee payment window open |
Dec 09 2023 | 6 months grace period start (w surcharge) |
Jun 09 2024 | patent expiry (for year 4) |
Jun 09 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 09 2027 | 8 years fee payment window open |
Dec 09 2027 | 6 months grace period start (w surcharge) |
Jun 09 2028 | patent expiry (for year 8) |
Jun 09 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 09 2031 | 12 years fee payment window open |
Dec 09 2031 | 6 months grace period start (w surcharge) |
Jun 09 2032 | patent expiry (for year 12) |
Jun 09 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |