Provided is a method of transmitting channel rank information (RI) when the number of bits for transmitting the channel RI to be transmitted through a physical uplink shared channel (PUSCH) is three or more. The method includes mapping channel RI to be transmitted to a channel RI bit string of 3 bits or more, Reed-Muller coding and rate-matching the channel RI bit string using a basis sequence having a 32-bit code length, and generating modulation symbols by applying the bit sequence that has been Reed-Muller coded and rate-matched to a modulation mapper. Accordingly, the method of transmitting downlink channel RI can be employed when five or more antennas are used for downlink transmission or several carrier bands are used by carrier aggregation as specified in Third Generation Partnership Project (3GPP) long term evolution (LTE)-advanced following 3GPP LTE release 10.
|
1. A communication method of transmitting channel rank information (RI) when a number of bits for transmitting the channel RI to be transmitted through a physical uplink shared channel (PUSCH) is three or more, the method comprising:
mapping the channel RI to be transmitted rank indication (RI) to a channel RI bit string of 3 bits or more set of bits, the set of bits comprising NRI bits {O0RI O1RI . . . ORIN
Reed-Muller coding encoding the channel RI bit string using a basis sequence having a 32-bit code length set of bits to generate a set of encoded bits; and
generating modulation symbols by applying the Reed-Muller coded bit sequence to a modulation mapper based on the set of encoded bits; and
transmitting the symbols,
wherein, when the channel RI to be transmitted is mapped to a 3-bit channel RI bit string, mapping the channel RI includes mapping the channel RI (one value of {1, 2, 3, 4, 5, 6, 7, 8}) to a bit 3-bit channel RI bit string [O0RIO1RIO2RI] according to the table of
wherein the Reed-Muller coding encoding is performed by the following expression:
where qiRI denotes a bit sequence obtained after encoding, QRI denotes a number of bits after encoding, and Mi,n and denotes a basis sequence having a value of 0 or 1 defined by table 1:
table 1 |
| i |
Mi,0 |
Mi,1 |
Mi,2 |
Mi,3 |
Mi,4 |
Mi,5 |
Mi,6 |
Mi,7 |
Mi,8 |
Mi,9 |
Mi,10 |
| 0 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
2 |
1 |
0 |
0 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
3 |
1 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
1 |
0 |
1 |
4 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
5 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
6 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
7 |
1 |
0 |
0 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
8 |
1 |
1 |
0 |
1 |
1 |
0 |
0 |
1 |
0 |
1 |
1 |
9 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
10 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
1 |
1 |
11 |
1 |
1 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
1 |
12 |
1 |
0 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
1 |
13 |
1 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
0 |
1 |
1 |
14 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
15 |
1 |
1 |
0 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
16 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
17 |
1 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
0 |
0 |
18 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
0 |
19 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
0 |
0 |
0 |
20 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
0 |
1 |
21 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
22 |
1 |
0 |
0 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
23 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
24 |
1 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
25 |
1 |
1 |
0 |
0 |
0 |
1 |
1 |
1 |
0 |
0 |
1 |
26 |
1 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
27 |
1 |
1 |
1 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
28 |
1 |
0 |
1 |
0 |
1 |
1 |
1 |
0 |
1 |
0 |
0 |
29 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
0 |
0 |
30 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
1 |
31 |
1 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0. |
| |
This application
In other words, in the case of a QPSK symbol, two pieces of bit information can be transmitted per modulation symbol, and the three channel RI bits may be repeatedly coded two times per three symbols as shown in Expression 1.
Second, when the 3-bit channel RI bit string is mapped to a 16-quadrature amplitude modulation (QAM) symbol, the channel RI bits may be mapped as shown in Expression 2 below.
[O0RIO1RIxxO2RIO0RIxxO1RIO2RIxx] [Expression 2]
In other words, in the case of a 16-QAM symbol, four pieces of bit information can be transmitted per modulation symbol, and the three channel RI bits may be repeatedly coded two times per three symbols as shown in Expression 2. Here, “x” denotes a placeholder, which is a value selected to maximize a Euclidean distance between 16-QAM modulation symbols including channel RI.
Third, when the 3-bit channel RI bit string is mapped to a 64-QAM symbol, the channel RI bits may be mapped as shown in Expression 3 below.
[O0RIO1RIxxxxO2RIO0RIxxxxO1RIO2RIxxxx][Expression 3]
In other words, in the case of a 64-QAM symbol, six pieces of bit information can be transmitted per modulation symbol, and the three channel RI bits may be repeatedly coded two times per three symbols as shown in Expression 3. Here, “x” denotes a placeholder, which is a value selected to maximize a Euclidean distance between 64-QAM modulation symbols including channel RI.
The second example embodiment corresponds to a method of transmitting channel RI when the number of bits for transmitting the channel RI through a PUSCH is three or more. When the number of bits for transmitting the channel RI is three or more, the number of downlink transmitter antennas may be five or more, or the number of carrier bands in which the channel RI needs to be transmitted by carrier aggregation is two or more.
Referring to
First, in the mapping step (S310), channel RI to be transmitted is mapped to a channel RI bit string [O0RI, O1RI, . . . , ON
Here, NRI denotes the number of bits required to transmit channel RI (NRI≥3 in the second example embodiment), O0RI denotes the MSB of NRI-bit input information, and ON
For example, when the number of bits for transmitting channel RI is three (i.e., NRI=3), a 3-bit channel RI bit string [O0RIO1RIO2RI] may be determined according to the mapping relation illustrated in
Next, the Reed-Muller coding step (S320) may be performed as will be described below.
The above-mentioned Reed-Muller coding may be expressed by Expression 4 below and a basis sequence illustrated in
Here, qiRI denotes a bit sequence obtained after encoding, QRI denotes the number of bits after encoding. Mi,n denotes a basis sequence having a value of 0 or 1.
In the transmission method according to an example embodiment of the present invention, channel RI is Reed-Muller coded using a basis sequence having a 32-bit code length. Expression 4 above expresses Reed-Muller coding together with a process of generating a bit sequence to be transmitted by circular repetition.
In other words, QRI denotes the number of bits to be transmitted through a wireless link and is determined according to the number of modulation symbols and a modulation order to be used to transmit a channel RI bit string through a PUSCH. When NRI channel rank bits are Reed-Muller coded into a bit sequence having a length of 32 bits, the coded bit sequences having a length of 32 bits are concatenated in a length of QRI and rate-matched. For example, when QRI is 100, a Reed-Muller coded 32-bit bit sequence is repeated three times, and last four (=100−32×3) bits may be the foremost four bits of the Reed-Muller coded bit sequence.
In other words, in a method of encoding channel RI according to an example embodiment of the present invention, linear combination is applied to three or more channel RI bits to perform encoding.
Finally, in the modulation symbol generating step (S330), the bit sequence that has been Reed-Muller coded and rate-matched is applied to a modulation mapper to generate modulation symbols, and the generated modulation symbols are mapped to resource locations designated in a PUSCH and transmitted.
Using a method of transmitting downlink channel RI through a PUSCH according to example embodiments of the present invention, the channel RI can be efficiently encoded and transmitted even if three or more channel RI bits are required to transmit the downlink channel RI.
In particular, a method of transmitting downlink channel RI according to example embodiments of the present invention can be employed when five or more antennas are required for downlink transmission or several carrier bands are used by carrier aggregation as specified in 3GPP LTE-advanced following 3GPP LTE release 10.
While the example embodiments of the present invention and their advantages have been described in detail, it should be understood that various changes, substitutions and alterations may be made herein without departing from the scope of the invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10123343, | Jan 08 2010 | Interdigital Patent Holdings, Inc. | Channel state information transmission for multiple carriers |
8477868, | Aug 11 2008 | LG Electronics Inc | Method and apparatus of transmitting information in wireless communication system |
8588162, | Aug 20 2010 | LG Electronics Inc. | Method for transmitting control information in wireless communication system and apparatus therefor |
8599781, | May 11 2011 | Electronics and Telecommunications Research Institute | Method of transmitting downlink channel rank information through physical uplink shared channel |
8724564, | Aug 05 2008 | LG Electronics Inc | Method for transmitting control information about downlink multiple carriers in a wireless communication system |
8848557, | Aug 25 2010 | Samsung Electronics Co., Ltd. | Multiplexing of control and data in UL MIMO system based on SC-FDM |
9113458, | Nov 02 2010 | LG Electronics Inc | Method and device for transmitting/receiving uplink control information in wireless communication system |
9113459, | Aug 20 2010 | LG Electronics Inc. | Method for transmitting control information in wireless communication system and apparatus therefor |
9160486, | May 13 2010 | LG Electronics Inc | Method and apparatus for multiplexing control information and data, and for transmitting the multiplexed control information and data in a MIMO wireless communication system |
9391736, | Jan 08 2010 | InterDigital Patent Holdings, Inc | Channel state information transmission for multiple carriers |
9722755, | Feb 15 2011 | LG Electronics Inc. | Method and apparatus for transmitting channel quality control information in wireless access system |
20090238298, | |||
20090245170, | |||
20090296850, | |||
20110249578, | |||
20120044884, | |||
20120044885, | |||
20120044886, | |||
20120320880, | |||
20130039398, | |||
20130163521, | |||
20140016546, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 11 2011 | SEO, BANGWON | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037232 | /0835 | |
Jul 11 2011 | KO, YOUNG JO | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 037232 | /0835 | |
Dec 03 2015 | Electronics and Telecommunications Research Institute | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 28 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 24 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 14 2023 | 4 years fee payment window open |
Jan 14 2024 | 6 months grace period start (w surcharge) |
Jul 14 2024 | patent expiry (for year 4) |
Jul 14 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 14 2027 | 8 years fee payment window open |
Jan 14 2028 | 6 months grace period start (w surcharge) |
Jul 14 2028 | patent expiry (for year 8) |
Jul 14 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 14 2031 | 12 years fee payment window open |
Jan 14 2032 | 6 months grace period start (w surcharge) |
Jul 14 2032 | patent expiry (for year 12) |
Jul 14 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |