A fiber optic cable assembly includes first and second fiber optic ribbons and a splice protector. The ribbons are spliced together such that the corresponding spliced fibers at the splice have a common lengthwise axis, widthwise axis orthogonal to the lengthwise axis, and thickness axis orthogonal to the lengthwise and widthwise axes. The splice protector supports the ribbons that are spliced to one another at the splice. The splice protector may include or even consist essentially of an adhesive that provides a flexible support for the splice. The splice protector may be at least half as flexible when cured over the splice as the first and second ribbons in bending about the widthwise axis. #1#

Patent
   RE48144
Priority
Mar 23 2012
Filed
May 27 2018
Issued
Aug 04 2020
Expiry
Jun 07 2032
Assg.orig
Entity
Large
6
42
currently ok
#1# 0. 38. A fiber optic assembly, comprising:
first and second fiber optic ribbons each comprising a plurality of optical fibers coupled in an arrangement where the optical fibers are aligned side-by-side with one another, wherein the optical fibers of the first ribbon are spliced with the optical fibers of the second ribbon by a fusion splice such that the spliced ribbons at a region of the fusion splice have a common lengthwise axis and have a common widthwise axis orthogonal to the lengthwise axis; and
a splice protector consisting essentially of a solid thermoplastic material encapsulating and providing a flexible support for the first and second fiber optic ribbons at the fusion splice;
wherein the splice protector and the fusion splice are bendable to conform to a surface of a 1.25 inch mandrel; and
wherein the splice protector is devoid of a substrate defining a cavity containing the solid thermoplastic material.
#1# 0. 28. A fiber optic assembly, comprising:
first and second fiber optic ribbons each comprising a plurality of optical fibers coupled in an arrangement where the optical fibers are aligned side-by-side with one another, wherein the optical fibers of the first ribbon are spliced with the optical fibers of the second ribbon by a fusion splice such that the spliced ribbons at a region of the fusion splice have a common lengthwise axis, have a common widthwise axis orthogonal to the lengthwise axis, and are substantially arranged in a common plane; and
a splice protector consisting essentially of a solid thermoplastic material encapsulating and providing a flexible support for the first and second fiber optic ribbons at the fusion splice;
wherein the splice protector and the fusion splice are bendable around curved surfaces about the widthwise axis, and
wherein the splice protector is devoid of a substrate defining a cavity containing the solid thermoplastic material.
#1# 13. A fiber optic assembly, comprising:
first and second fiber optic ribbons, each comprising a plurality of optical fibers coupled in an arrangement where the optical fibers are aligned side-by-side with one another, wherein the optical fibers of the first ribbon are spliced with the optical fibers of the second ribbon such that the spliced ribbons at the splice have a common lengthwise axis, widthwise axis orthogonal to the lengthwise axis, and thickness axis orthogonal to the lengthwise and widthwise axes; and
a splice protector supporting the optical fibers of the first and second fiber optic ribbons that are spliced to one another at the splice,
wherein the splice protector consists essentially of an adhesive that provides a flexible support for the splice, wherein the splice protector and the splice are bendable around curved surfaces about the widthwise axis, and
wherein the splice protector is at least 60% as flexible as the first and second ribbons in bending about the widthwise axis at the splice.
#1# 1. A fiber optic assembly, comprising:
first and second fiber optic ribbons, each comprising a plurality of optical fibers coupled in an arrangement where the optical fibers are aligned side-by-side with one another, wherein the optical fibers of the first ribbon are spliced with the optical fibers of the second ribbon such that the spliced ribbons at the splice have a common lengthwise axis, widthwise axis orthogonal to the lengthwise axis, and thickness axis orthogonal to the lengthwise and widthwise axes; and
a splice protector supporting the optical fibers of the first and second fiber optic ribbons that are spliced to one another at the splice, wherein the splice protector comprises an adhesive that provides a flexible support for the splice, wherein the splice protector and the splice are bendable around curved surfaces about the widthwise axis, and wherein the splice protector is at least half 60% as flexible when cured over the splice as the first and second ribbons in bending about the widthwise axis, and wherein the splice protector is at least 60% as flexible as the first and second ribbons in bending about the widthwise axis at the splice.
#1# 7. A fiber optic assembly, comprising:
first and second fiber optic ribbons, each comprising a plurality of optical fibers coupled in an arrangement where the optical fibers are aligned side-by-side with one another, wherein the optical fibers of the first ribbon are spliced with the optical fibers of the second ribbon such that the spliced ribbons at the splice have a common lengthwise axis, widthwise axis orthogonal to the lengthwise axis, and thickness axis orthogonal to the lengthwise and widthwise axes; and
a splice protector supporting the optical fibers of the first and second fiber optic ribbons that are spliced to one another at the splice, wherein the splice protector comprises an ultra-violet light (UV-) curable adhesive facilitating a controlled profile for the splice protector;
wherein the splice protector has a low-profile, having a thickness in the thickness axis that is less than 1 0.75 mm thicker than either the first or second fiber optic ribbons in the thickness axis; and
wherein the splice protector has a narrow-profile, having a width in the width widthwise axis that is less that than 1 mm wider than either the first or second fiber optic ribbons in the width widthwise axis, and wherein the thickness of the splice protector is less than 0.75 mm thicker than either the first or second fiber optic ribbons in the thickness axis; and
wherein the splice protector and the splice are bendable around curved surfaces about the widthwise axis.
#1# 0. 20. A fiber optic assembly, comprising:
first and second fiber optic ribbons, each comprising a plurality of optical fibers coupled in an arrangement where the optical fibers are aligned side-by-side with one another, wherein the plurality of optical fibers of the first fiber optic ribbon are joined to the plurality of optical fibers of the second fiber optic ribbon by a fusion splice such that the spliced first and second fiber optic ribbons have a common lengthwise axis in a region of the fusion splice, a common widthwise axis orthogonal to the lengthwise axis at the fusion splice, and a common thickness axis orthogonal to the lengthwise and widthwise axes at the fusion splice; and
a splice protector comprising a solid thermoplastic material encapsulating the fusion splice and providing a flexible support for the pluralities of optical fibers of the first and second fiber optic ribbons at the fusion splice, wherein the splice protector and the fusion splice are bendable around curved surfaces about the widthwise axis, and wherein the splice protector comprises at least one of the following features (i) to (iii):
(i) the splice protector has a low-profile, having a thickness along the thickness axis that is less than 0.75 mm thicker than either the first fiber optic ribbon or the second fiber optic ribbon along the thickness axis;
(ii) the splice protector has a narrow-profile, having a width along the widthwise axis that is less than 1 mm thicker than either the first fiber optic ribbon or the second fiber optic ribbon along the widthwise axis; or
(iii) the splice protector is bendable to conform to a surface of a 1.25 inch mandrel.
#1# 2. The fiber optic assembly of claim 1, wherein the splice protector has a low-profile, having a thickness in the thickness axis that is less than 1 mm thicker than either the first or second fiber optic ribbons in the thickness axis.
#1# 3. The fiber optic assembly of claim 2, wherein the splice protector has a narrow-profile, having a width in the width widthwise axis that is less that than 1 mm wider than either the first or second fiber optic ribbons in the width widthwise axis.
#1# 4. The fiber optic assembly of claim 1, wherein the splice protector is at least as flexible as the first and second ribbons in bending about the widthwise axis.
#1# 5. The fiber optic assembly of claim 1, wherein the splice protector does not include a substrate.
#1# 6. The fiber optic assembly of claim 1, wherein the splice protector consists of UV-curable adhesive.
#1# 8. The fiber optic assembly of claim 7, wherein the thickness of the splice protector is less than 0.5 mm thicker than either the first or second fiber optic ribbons in the thickness axis.
#1# 9. The fiber optic assembly of claim 7, wherein the width of the splice protector is less that than 0.75 mm wider than either the first or second fiber optic ribbons in the width widthwise axis.
#1# 10. The fiber optic assembly of claim 7, wherein the width of the splice protector is less that than 0.5 mm wider than either the first or second fiber optic ribbons in the width widthwise axis.
#1# 11. The fiber optic assembly of claim 7, wherein the splice protector does not include a substrate.
#1# 12. The fiber optic assembly of claim 11, wherein the splice protector consists of UV-curable adhesive.
#1# 14. The fiber optic assembly of claim 13, wherein the splice protector consists of the adhesive.
#1# 15. The fiber optic assembly of claim 14, wherein the adhesive is an ultra-violet light (UV-) curable adhesive.
#1# 16. The fiber optic assembly of claim 13, wherein the splice protector has a low-profile, having a thickness in the thickness axis that is less than 1 mm thicker than either the first or second optical fibers fiber optic ribbons in the thickness axis.
#1# 17. The fiber optic assembly of claim 13, wherein the splice protector has a narrow-profile, having a width in the width widthwise axis that is less that than 1 mm wider than either the first or second optical fibers fiber optic ribbons in the width widthwise axis.
#1# 0. 18. The fiber optic assembly of claim 1, further comprising:
a fiber optic cable comprising the first and second fiber optic ribbons, wherein the fiber optic cable includes a jacket surrounding the splice protector.
#1# 0. 19. The fiber optic assembly of claim 7, further comprising:
a fiber optic cable comprising the first and second fiber optic ribbons, wherein the fiber optic cable includes a jacket surrounding the splice protector.
#1# 0. 21. The fiber optic assembly of claim 20, wherein the splice protector has a low-profile, having a thickness along the thickness axis that is less than 0.75 mm thicker than either the first fiber optic ribbon or the second fiber optic ribbon along the thickness axis.
#1# 0. 22. The fiber optic assembly of claim 20, wherein the splice protector has a narrow-profile, having a width along the widthwise axis that is less than 1 mm thicker than either the first fiber optic ribbon or the second fiber optic ribbon along the widthwise axis.
#1# 0. 23. The fiber optic assembly of claim 20, wherein the splice protector is bendable to conform to a surface of a 1.25 inch mandrel.
#1# 0. 24. The fiber optic assembly of claim 20, wherein the splice protector is at least 60% as flexible as the first and second fiber optic ribbons in bending about the widthwise axis.
#1# 0. 25. The fiber optic assembly of claim 20, wherein the splice protector is devoid of a substrate configured to provide extra strength to the fusion splice.
#1# 0. 26. The fiber optic assembly of claim 20, comprising at least one of the following features (a) or (b): (a) the splice protector has a thickness along the thickness axis that is less than 0.5 mm thicker than either the first fiber optic ribbon or the second fiber optic ribbon along the thickness axis, or (b) the splice protector has a width along the widthwise axis that is less than 0.5 mm wider than either the first fiber optic ribbon or the second fiber optic ribbon along the widthwise axis.
#1# 0. 27. The fiber optic assembly of claim 20, wherein the splice protector is devoid of a heat shrinkable tube surrounding at least a portion of the fusion splice.
#1# 0. 29. The fiber optic assembly of claim 28, wherein the splice protector is further devoid of any substrate configured to provide extra strength to the fiber optic assembly at the fusion splice.
#1# 0. 30. The fiber optic assembly of claim 28, wherein the splice protector is devoid of a heat shrinkable tube surrounding at least a portion of the fusion splice.
#1# 0. 31. The fiber optic assembly of claim 28, wherein the splice protector has a width along the widthwise axis that is less than 1 mm wider than either the first fiber optic ribbon or the second fiber optic ribbon along the widthwise axis.
#1# 0. 32. The fiber optic assembly of claim 28, wherein the splice protector has a width along the widthwise axis that is at least 0.5 mm greater than either the first fiber optic ribbon or the second fiber optic ribbon along the widthwise axis.
#1# 0. 33. The fiber optic assembly of claim 28, further comprising:
a fiber optic cable comprising the first and second fiber optic ribbons, wherein the fiber optic cable includes a jacket surrounding the splice protector.
#1# 0. 34. The fiber optic assembly of claim 28, wherein:
the plurality of optical fibers of the first fiber optic ribbon includes fiber optic segments extending from a ribbonized portion of the first fiber optic ribbon;
the plurality of optical fibers of the second fiber optic ribbon includes fiber optic segments extending from a ribbonized portion of the second fiber optic ribbon; and
the thermoplastic material of the splice protector encapsulates an end of the ribbonized portion of the first fiber optic ribbon and an end of the ribbonized portion of the second fiber optic ribbon.
#1# 0. 35. The fiber optic assembly of claim 28, wherein:
the first and second fiber optic ribbons have a common thickness axis orthogonal to the lengthwise and widthwise axes at the fusion splice; and
the splice protector has a low-profile, having a thickness in the thickness axis that is less than 0.75 mm thicker than either the first or second fiber optic ribbons in the thickness axis.
#1# 0. 36. The fiber optic assembly of claim 28, wherein the splice protector has a narrow-profile, having a width in the widthwise axis that is less than 1 mm wider than either the first or second fiber optic ribbons in the widthwise axis.
#1# 0. 37. The fiber optic assembly of claim 36, wherein:
the first and second fiber optic ribbons have a common thickness axis orthogonal to the lengthwise and widthwise axes at the fusion splice; and
the splice protector has a low-profile, having a thickness in the thickness axis that is less than 0.75 mm thicker than either the first or second fiber optic ribbons in the thickness axis.
#1# 0. 39. The fiber optic assembly of claim 38, wherein the splice protector is further devoid of any substrate configured to provide extra strength to the fiber optic assembly at the fusion splice.
#1# 0. 40. The fiber optic assembly of claim 38, wherein the splice protector is devoid of a heat shrinkable tube surrounding at least a portion of the fusion splice.
#1# 0. 41. The fiber optic assembly of claim 38, wherein:
the plurality of optical fibers of the first fiber optic ribbon includes fiber optic segments extending from a ribbonized portion of the first fiber optic ribbon;
the plurality of optical fibers of the second fiber optic ribbon includes fiber optic segments extending from a ribbonized portion of the second fiber optic ribbon; and
the thermoplastic material of the splice protector encapsulates an end of the ribbonized portion of the first fiber optic ribbon and an end of the ribbonized portion of the second fiber optic ribbon.
#1# 0. 42. The fiber optic assembly of claim 38, further comprising:
a fiber optic cable comprising the first and second fiber optic ribbons, wherein the fiber optic cable includes a jacket surrounding the splice protector.
#1# 0. 43. The fiber optic assembly of claim 38, wherein the splice protector has a maximum dimension along the widthwise axis that is less than 1 mm greater than a maximum dimension of either the first fiber optic ribbon or the second fiber optic ribbon along the widthwise axis.
#1# 0. 44. The fiber optic assembly of claim 38, wherein the splice protector has a maximum dimension along the widthwise axis that is at least 0.5 mm greater than a maximum dimension of either the first fiber optic ribbon or the second fiber optic ribbon along the widthwise axis.

This is a continuation of International Application No. PCT/US2013/033477 filed Mar. 22, 2013, which claims the benefit of priority of U.S. application Ser. No. 13/491,086 filed Jun. 7, 2012 and U.S. application Ser. No. 61/614,839 filed on Mar. 23, 2012, the content of each of which is relied upon and incorporated herein by reference in its entirety.

Aspects of the present disclosure relate generally to splice protectors for optical fiber splicing such as splicing of fiber optic ribbons, where the splice protector surrounds and supports the splice to provide structural reinforcement to the area of the splice.

Splice protectors may be bulky and rigid, interfering with the ability to wind a spliced fiber optic ribbon on a reel or spool, or the ability to place the spliced ribbon in a narrow cavity, such as the cavity of a furcation tube or fiber optic distribution cable. A need exists for a splice protector that may be applied to a splice of spliced optical fibers optic in a time- and space-efficient manner, while allowing the spliced fibers at the splice to actively flex and bend, as may facilitate placement of the spliced fibers in an actively handled fiber optic assembly.

One embodiment relates to a fiber optic cable assembly, which includes first and second fiber optic ribbons and a splice protector. The ribbons are spliced together such that the ribbons at the splice have a common lengthwise axis, widthwise axis orthogonal to the lengthwise axis, and thickness axis orthogonal to the lengthwise and widthwise axes. The splice protector supports the ribbons that are spliced to one another at the splice. The splice protector may include or even consist essentially of an adhesive that provides a flexible support for the splice. The splice protector may be at least half as flexible when cured over the splice as the first and second ribbons in bending about the widthwise axis.

Additional features and advantages are set forth in the Detailed Description that follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the embodiments as described in the written description and claims hereof, as well as the appended drawings. It is to be understood that both the foregoing general description and the following Detailed Description are merely exemplary, and are intended to provide an overview or framework to understand the nature and character of the claims.

The accompanying Figures are included to provide a further understanding, and are incorporated in and constitute a part of this specification. The drawings illustrate one or more embodiments, and together with the Detailed Description serve to explain principles and operations of the various embodiments. As such, the disclosure will become more fully understood from the following Detailed Description, taken in conjunction with the accompanying Figures, in which:

FIG. 1 is a schematic view of a splice protector according to an exemplary embodiment.

FIG. 2 is a digital image of a splice between two fiber optic ribbons.

FIG. 3 is a digital image of liquid UV-curable adhesive being inserted over the spice of FIG. 2, surrounded by a translucent mold according to an exemplary embodiment.

FIG. 4 is a digital image of UV-curing of the adhesive of FIG. 3 according to an exemplary embodiment.

FIG. 5 is a digital image of the splice protector of FIGS. 4, following the curing, flexing about a mandrel according to an exemplary embodiment.

FIG. 6 is a digital image of the splice protector of FIGS. 4 flexing about the mandrel of FIG. 5 with the mold removed according to an exemplary embodiment.

FIG. 7 is another digital image of the splice protector of FIGS. 6 flexing according to an exemplary embodiment.

116 118 includes an ultra-violet light (UV-) curable adhesive 120 that provides a flexible support for the splice 116. The UV-curable adhesive 120 encapsulates the spliced optical fibers of the first and second ribbons 112, 114 and also provides tensile strength to the splice 116.

In some embodiments, the splice protector 118 is at least half as flexible as either of the first and second ribbons 112, 114 in bending about the widthwise axis W (e.g., at least 60%, at least 75%), where flexibility or stiffness corresponds to the stiffness coefficient (i.e., force applied over resulting displacement) of the respective element. For example, flexibility may be observed with the moment required to bend the splice protector 118 about the widthwise axis W and an equal length of one of the ribbons 112, 114 in a cantilever arrangement by a vertical deflection of the free end that is ten percent of the length. In some such embodiments, the splice protector 116 118 is at least as flexible as the first and second ribbons 112, 114 in bending about the widthwise axis W.

Flexibility allows the splice protector 118 and splice 116 to bend and move with the spliced ribbons 112, 114 around curved surfaces, such as a spool or reel for a corresponding fiber optic cable or assembly that includes the spliced ribbons 112, 114. Without sufficient flexibility, the splice protector 118 may pin or otherwise load the optical fibers of the ribbons 112, 114, particularly at the lengthwise ends of the spice protector 118, possibly leading to attenuation and/or damaging the optical fibers. Accordingly, sufficient flexibility of the splice protector 118 may reduce stress concentrations, facilitating improved performance of the optical fibers of the splice 116.

Various types of commercially-available UV-curable adhesives are contemplated for use with splice protectors, some of which have undergone testing by the Applicants. Examples of UV-curable adhesives for the splice protector 118 include commercially-available UV-curable adhesives manufactured by PENN COLOR and commercially-available UV-curable adhesives manufactured by LOCTITE. More specifically, the PENN COLOR UV-curable adhesives contemplated for use with splice protectors include material numbers are 706, RP54, 518, and RS81 and the LOCTITE UV-curable adhesives contemplated for use with splice protectors include LOCTITE® 3974™ LIGHT CURE and LOCTITE® 3106™ LIGHT CURE.

According to an exemplary embodiment, the cured UV-curable adhesive 120 of the splice protector 118 has a low-profile, such as having a thickness in the thickness axis T that is less than 2 mm (e.g., less than 1 mm, less than 0.75 mm, less than 0.5 mm) thicker than either the first or second fiber optic ribbons 112, 114 in the thickness axis T. Furthermore, in some embodiments the cured UV-curable adhesive 120 has a narrow-profile, having a width in the width axis W that is less that 2 mm (e.g., less than 1 mm, less than 0.75 mm, less than 0.5 mm) wider than either the first or second fiber optic ribbons 112, 114 in the width axis W.

According to one example, a twelve-fiber fiber optic ribbon 112, 114 has a width of about 3.1 mm and thickness of about 0.3 mm. A corresponding twelve-fiber UV-curable adhesive splice mold 122 (e.g., Teflon) has a length of 30 mm, a width of 3.9 mm, and a thickness of 1.25 mm, without including a substrate in addition to the mold 122. In such an example, the splice mold 122 defines the exterior of the splice protector 118. In another example, a functional UV-curable adhesive splice protector 118 for the twelve-fiber ribbons 112, 114 has a length of 27 mm, a width as small as 3.3 mm, and a thickness as thin as 0.6 mm, not including a substrate in addition to the mold 122.

A narrow and low-profile UV-curable adhesive splice protector 118 allows the splice 116 to be inserted into a correspondingly narrow structure, such as a furcation tube, back into the jacket of a distribution cable, an overmold, or another narrow supporting structure. The narrow structure surrounding the splice 116 then allows for translation of the associated fiber optic assembly within correspondingly narrow ducts or other confined spaces, which may improve installation of the associated fiber optic assembly in a data center or elsewhere.

In some embodiments, the splice protector 118 of the fiber optic assembly includes a substrate 124 to provide extra strength to the splice 116. The substrate 124 may be integrated or integral with the mold 122, or may be a separate body in addition to the mold 122. Put another way, the mold 122 may serve as the substrate in addition to being the mold 122. In some embodiments, the splice protector 118 includes a translucent, flexible substrate 124.

In other embodiments, the substrate 124 is a thin polymeric material, such as Teflon, placed interior to the mold 122, between the mold 122 and the optical fiber. In some embodiments, the splice protector is a thin, flexible glass sheet (e.g., sheet of WILLOW™ glass manufactured by CORNING INCORPORATED). In some such embodiments, the thin, flexible glass sheet is less than 0.25 mm thick, such as about 0.15 mm thick, and therefore does not greatly increase the profile of the splice protector 118. The sheet may or may not be flat.

In other embodiments, the splice protector 118 does not include a substrate 124. The cured UV-curable adhesive 120 provides sufficient tensile strength for the splice 116. As such, in some embodiments, the splice protector 118 is formed entirely from (e.g., consists of) UV-curable adhesive. Omission of the substrate 124 significantly reduces the materials required for protecting the splice 116, saving costs associated with the substrate 124 as well as manufacturing time to prepare the substrate 124. Furthermore, using only UV-curable adhesive 120 for the splice protector 118 provides increased reliability for the performance of the splice protector 118 by removing variability associated with interactions between different materials in the splice protector 118 and the specific fracture mechanics of the materials and corresponding interface.

In contemplated embodiments, the splice protector 118 includes a matrix or binding agent other than a UV-curable adhesive, such as an epoxy or other type of adhesive, thermoplastic, tape, or other material that may still provide the flexibility and profile characteristics disclosed herein. However, such materials may not be as quick to cure, as uniform, as efficient to apply, or as flexible as UV-curable adhesive. In at least some contemplated embodiments, a flexible substrate 124, such as a flexible glass substrate, is used to support a splice 116 and is bound to the splice 116 with a heat shrink, such that UV-curable adhesive is not included.

Applicants note that methods and structures disclosed herein may not perform in the same way for single-fibers as with fiber optic ribbons. The ribbon profile allows for a greater volume of adhesive to be used without greatly increasing the profile of the splice protector about the splice, as disclosed herein. Single fibers may require a greater ratio of adhesive to achieve sufficient support for protection of the splice, which may decrease the flexibility of the spliced area and/or increase the profile of the splice protector. However, in contemplated embodiments, a UV-curable adhesive or other adhesive, with molds and substrates as disclosed herein, may be used to support the splice of single-fibers.

Referring now to FIGS. 2-7, a method of manufacturing a fiber optic assembly 210 includes a step of splicing first and second fiber optic ribbons 212, 214, as shown in FIG. 2. As discussed above with regard to the embodiment of FIG. 1, the first and second fiber optic ribbons 212, 214 each include a plurality of optical fibers 216 coupled in a substantially flat arrangement where the optical fibers 216 are aligned side-by-side with one another. The step of splicing includes fusion splicing the optical fibers 216 of the first ribbon 212 with the optical fibers 216 of the second ribbon 214 such that the spliced ribbons 212, 214 at the splice 218 (e.g., multi-fiber fusion splice) have common lengthwise, widthwise, and thickness axes (see FIG. 1). During manufacturing, the ribbon fibers 212, 214 may be placed into a fixture that holds the fibers straight, as shown in FIG. 2.

Referring now to FIG. 3, the method of manufacturing a fiber optic assembly 210 includes a step of coupling (e.g., contacting) a substrate 220 (e.g., Teflon mold) with the first and second fiber optic ribbons 212, 214, where the substrate 220 is translucent and able to communicate ultra-violet light. In some embodiments, the substrate 220 includes a flattened sleeve that slides over one the first and second ribbons 212, 214 prior to the splicing step, and then slides over the splice 218 following the splicing step. In other contemplated embodiments, an substrate, such as a sheet is used with or in place of the substrate 220.

According to an exemplary embodiment, the method further includes applying a liquid, UV-curable adhesive around the splice 218 and supported by the substrate 220. In some embodiments, the method includes inserting a needle 222 coupled to a syringe 224 or other pump that supplies the liquid UV-curable adhesive to the splice 218. The liquid UV-curable adhesive then fills space around the splice 218. For example, a Teflon mold cavity is centered over the splice 218 and injected with UV adhesive material. In some embodiments, a heat shrinkable tube surrounds the splice 218.

Referring to FIG. 4, the method of manufacturing a fiber optic assembly 210 includes directing light from an ultra-violet light source 230 at the UV-curable adhesive 232 through the substrate 220 to cure the UV-curable adhesive 232. The ultra-violet light may reach the UV-curable adhesive prior to and/or following transmission through the substrate 220. A mirror or other reflector may be positioned below the splice 218 to reflect the ultra-violet light back toward the underside of the splice 218. The splice 218 may also be flipped during curing. For example, the UV material may be cured for approximately 30 sec on each side of the splice.

According to an exemplary embodiment, the UV-curable adhesive 232 encapsulates the splice 218 and, at least in part, forms a splice protector 226. As shown in FIG. 5, the splice protector formed with the mold 220 and UV-curable adhesive 232 is flexible and may readily bend over a 1.25-inch mandrel 228 without damaging the splice 218 or splice protector 226.

According to an exemplary embodiment, the method may further include a step of peeling the substrate 220 off of the cured UV-curable adhesive 232, such that the splice protector 226 then does not include the substrate 220. Instead, the splice protector 226, as shown in FIGS. 6-7, consists of UV-curable adhesive 232 encapsulating the spliced optical fibers 216. Removing the substrate may improve the flexibility of the splice protector 226. Referring to FIGS. 6-7, the splice protector 226 without the substrate or mold after UV adhesive curing, readily bends over the 1.25-inch mandrel 228. Furthermore, the bend radius is not limited to 1.25 inches, as shown in FIG. 7.

FIG. 8 shows a fiber optic assembly 310 including a splice protector 318 substantially identical to the splice protector 118 shown in FIG. 1, except the splice protector 318 is devoid of a substrate. The fiber optic assembly 310 includes first and second fiber optic ribbons 312, 314 each including a plurality of optical fibers. The optical fibers of the first ribbon 312 are fusion spliced with the optical fibers of the second ribbon 314 at a splice 316, such that the spliced ribbons 312, 314 at the splice 316 have a common lengthwise axis L, a widthwise axis W orthogonal to the lengthwise axis L, and a thickness axis T orthogonal to both the lengthwise axis L and the widthwise axis L. A splice protector 318 supports the optical fibers of the first and second fiber optic ribbons 312, 314. According the certain embodiments, the splice protector 318 includes an adhesive (e.g., UV-curable adhesive) 320 that encapsulates the spliced optical fibers of the first and second ribbons 312, 314 and also provides tensile strength to the splice 316.

According to an exemplary embodiment, the flexible splice protectors disclosed herein may be used with different fiber optic assemblies, including FlexNAP™ manufactured by CORNING CABLE SYSTEMS LLC, or more-generally in assemblies that operate in tight areas where bending is expected or uncontrolled. The low-profile and flexible design of the splice protectors allow an operator to insert a protected splice back inside a distribution cable, as if it were part of the internal structure of the cable. For example, embodiments disclosed herein allow for placement of the protected splice within the cavity of an RPX® distribution cable manufactured by CORNING CABLE SYSTEMS LLC.

According to an exemplary embodiment, the protected splice is also able to flex within the RPX distribution cable when operators install the cable around sheave wheels and the like. For example, sheave wheel testing at 600-lbs load with temperatures of −30° C. and 40° C., as per GR-3122 testing standards, have shown the protected splice to survive at these extremes. As such, embodiments disclosed herein enable a low-profile FlexNAP design using an RPX distribution cable, allowing FlexNAP to fit in smaller ducts, and thereby reducing costs to the customer. By way of example, dimensions and structural details of fiber optic cables and tether assemblies similar to FlexNAP and RPX ribbon cable are disclosed in International Application PCT/US06/29716 filed Jul. 27, 2006, which is incorporated by reference herein in its entirety.

The construction and arrangements of the splice protector, as shown in the various exemplary embodiments, are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes, and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter described herein. For example, UV adhesive could be substituted with other materials that are flexible, as well as the Teflon substrate/mold. Some elements shown as integrally formed may be constructed of multiple parts or elements, the position of elements may be reversed or otherwise varied, and the nature or number of discrete elements or positions may be altered or varied. The order or sequence of any process, logical algorithm, or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes and omissions may also be made in the design, operating conditions and arrangement of the various exemplary embodiments without departing from the scope of the present inventive and innovative technology.

Nielsen, Lars Kristian, Faulkner, Michael Todd

Patent Priority Assignee Title
11347014, Sep 07 2018 Corning Incorporated Optical fiber fan-out assembly with ribbonized interface for mass fusion splicing, and fabrication method
11561344, Mar 21 2017 Corning Research & Development Corporation Fiber optic cable assembly with thermoplastically overcoated fusion splice, and related method and apparatus
11681102, Sep 20 2018 CommScope Technologies LLC Laminate splice protector
11774677, Jul 31 2019 Corning Research & Development Corporation Fiber optic cable assembly with overlapping bundled strength members, and fabrication method and apparatus
11867947, Apr 30 2021 Corning Research & Development Corporation Cable assembly having routable splice protectors
11886009, Oct 01 2020 Corning Research & Development Corporation Coating fusion spliced optical fibers and subsequent processing methods thereof
Patent Priority Assignee Title
4475935, Jul 24 1981 Nippon Telegraph & Telephone Corporation Joining method to obtain elongated coated optical fiber
4784458, Dec 16 1985 Allied-Signal Inc. Optically aligned splice for optical fibers
5022735, Nov 07 1989 The Charles Stark Draper Laboratory, Inc. Fiber splice coating system
5157751, Jan 14 1992 Northrop Grumman Systems Corporation Fiber optic splice protector and method for making same
5257337, Mar 08 1991 BICC Public Limited Company Method of and apparatus for effecting an end-to-end fusion splice between optical fibres
5416873, May 05 1994 The Siemon Company Protector device for fused optical fiber joints and method of use
5731051, Sep 26 1995 Minnesota Mining and Manufacturing Company Fiber optic fusion splice protection sleeve
6265476, Apr 08 1997 DSM IP ASSETS B V Radiation-curable binder compositions having high elongation and toughness after cure
6915043, Aug 03 2000 Highwave Optical Technologies Method of re-cladding an optical fiber and product thus obtained
7251411, Mar 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Fiber optic cable breakout configuration with “Y” block
7289714, Sep 26 2006 CommScope EMEA Limited; CommScope Technologies LLC Tubing wrap procedure
7349605, Apr 19 2005 CommScope EMEA Limited; CommScope Technologies LLC Fiber breakout with radio frequency identification device
7424189, Mar 09 2006 CommScope EMEA Limited; CommScope Technologies LLC Mid-span breakout with potted closure
7454106, Aug 14 2006 CommScope EMEA Limited; CommScope Technologies LLC Factory spliced cable assembly
7480436, Oct 10 2006 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for securing a tether to a distribution cable
7489843, Feb 06 2007 CommScope EMEA Limited; CommScope Technologies LLC Polyurethane to polyethylene adhesion process
7556441, Nov 21 2006 Kabushiki Kaisha Toshiba Optical connector and process for connecting optical fibers
7840109, Aug 14 2006 CommScope EMEA Limited; CommScope Technologies LLC Factory spliced cable assembly
7941021, Dec 22 2008 Corning Optical Communications LLC Distribution cable assembly having mid-span access location
8333519, Aug 29 2008 CommScope EMEA Limited; CommScope Technologies LLC Splice of fiber optic cables
8702326, Mar 23 2012 Corning Optical Communications LLC Splice protector for fiber optic ribbons
9052459, Mar 23 2012 Corning Optical Communications LLC Cable assembly and method
9360624, Mar 22 2013 Corning Optical Communications LLC Splice protector for fiber optic ribbons
20020000192,
20020179683,
20020187432,
20030091293,
20050207712,
20090022457,
20090297099,
20100247044,
20120134629,
20120243838,
20130074303,
20130251317,
20130251319,
20140286615,
20180329156,
DE4343944,
GB2324622,
JP32304,
WO212934,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 07 2014FAULKNER, MICHAEL TODDCorning Optical Communications LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0465590063 pdf
Apr 07 2014NIELSEN, LARS KRISTIANCorning Optical Communications LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0465590063 pdf
May 27 2018Corning Optical Communications LLC(assignment on the face of the patent)
Date Maintenance Fee Events
May 27 2018BIG: Entity status set to Undiscounted (note the period is included in the code).
Nov 10 2023M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Aug 04 20234 years fee payment window open
Feb 04 20246 months grace period start (w surcharge)
Aug 04 2024patent expiry (for year 4)
Aug 04 20262 years to revive unintentionally abandoned end. (for year 4)
Aug 04 20278 years fee payment window open
Feb 04 20286 months grace period start (w surcharge)
Aug 04 2028patent expiry (for year 8)
Aug 04 20302 years to revive unintentionally abandoned end. (for year 8)
Aug 04 203112 years fee payment window open
Feb 04 20326 months grace period start (w surcharge)
Aug 04 2032patent expiry (for year 12)
Aug 04 20342 years to revive unintentionally abandoned end. (for year 12)