systems and methods for improved digital RF transport in a DAS are provided. In one embodiment, a transceiver comprises: a receive path circuit including an RF reception interface coupled to an ADC, the ADC receiving a down-converted analog RF spectrum from the RF reception interface and producing a digitized RF spectrum at an input sampling rate; a logic device receiving the digitized RF spectrum and producing a first set of baseband data samples at a first sampling rate, corresponding to a first spectral region of the analog RF spectrum and a second set of baseband data samples at a second sampling rate, corresponding to a second spectral region of the analog RF spectrum. The logic device maps the first set and second sets of baseband data samples to a respective first set and second set of timeslots of a serial data stream transport frame.

Patent
   RE48157
Priority
Jan 13 2009
Filed
Feb 03 2017
Issued
Aug 11 2020
Expiry
Jan 13 2030
Assg.orig
Entity
Large
0
30
currently ok
31. A method for providing digital transport of signals in a distributed antenna system, the method comprising:
receiving an input transport signal comprising a transport frame having a plurality of timeslots;
parsing the input transport signal into a plurality of sets of digitized baseband signals based on a timeslot configuration of the input transport signal;
converting the plurality of sets of digitized baseband signals from first sampling rates to an output sampling rate; and
summing at least two of the plurality of sets of digitized baseband signals to produce a set of output data samples.
14. A communication device for providing digital transport of signals in a distributed antenna system, the communication device comprising: a transmission path circuit configured to output signals based on received digitized radio frequency spectrum; a logic device coupled to the transmission path circuit and configured to receive an input transport frame having a plurality of sets of timeslots, wherein each set of timeslots includes a first plurality of sets of digitized baseband data samples at one of the plurality of sampling rates, the set of digitized baseband data samples for each set of timeslots corresponding to a distinct spectral region of analog radio frequency spectrum; wherein the logic device is configured to generate second plurality of sets of digitized data samples for each set of the timeslots at an output sampling rate; and wherein the logic device sums at least two of the second plurality of sets of digitized data samples to produce a set of output data samples at the output sampling rate.
0. 49. A communication device for providing digital transport of signals in a distributed antenna system, the communication device comprising:
a transmission path circuit configured to output signals based on received at least one digital signal indicative of radio frequency spectrum;
a logic device associated with the transmission path circuit and configured to receive an input transport frame having a plurality of sets of timeslots, wherein each respective portion includes a first plurality of sets of digital baseband data samples at one of a plurality of sample rates, the set of digital baseband data samples for each respective portion corresponding to a distinct spectral region of radio frequency spectrum;
wherein the logic device is configured to generate a second plurality of sets of digitized data samples for each set of the timeslots at an output sample rate; and
wherein the logic device sums at least two of the second plurality of sets of digitized data samples to produce a set of output data samples at the output sample rate.
25. A method for providing digital transport of signals in a distributed antenna system, the method comprising:
multiplexing a plurality of sets of digitized baseband signals into a serial data stream by assigning each set of digitized baseband signals to a corresponding timeslot of a transport frame, wherein each of the plurality of sets of digitized baseband signals corresponds to a distinct spectral region of radio frequency spectrum, wherein each of the plurality of sets of digitized baseband signals has a corresponding sampling rate; and
transmitting the transport frame;
receiving an input transport signal comprising a transport frame having a plurality of timeslots;
parsing the input transport signal into a plurality of sets of digitized baseband signals based on a timeslot configuration of the input transport signal;
converting the plurality of sets of digitized baseband signals from first sampling rates to an output sampling rate; and
summing at least two of the plurality of sets of digitized baseband signals to produce a set of output data samples.
1. A communication device for providing digital transport of signals in a distributed antenna system, the communication device comprising:
a reception path circuit configured to output digitized radio frequency spectrum at an input sampling rate based on input signals;
a transmission path circuit configured to output signals based on received digitized radio frequency spectrum;
a logic device coupled to the reception path circuit and configured to receive digitized radio frequency spectrum at the input sampling rate from the reception path circuit, the logic device further configured to produce a first plurality of sets of digitized baseband data samples at a plurality of sampling rates, each set of digitized baseband data samples corresponding to a distinct spectral region of the analog radio frequency spectrum; and
wherein the logic device is further configured to map each of the first plurality of sets of digitized baseband data samples to a set of timeslots of a serial data stream transport frame;
the logic device further coupled to the transmission path circuit, the logic device configured to receive an input transport frame having a plurality of sets of timeslots, wherein each of the set of timeslots includes a second set of digitized baseband data samples at one of the plurality of sampling rates, the set of digitized baseband data samples for each set of timeslots corresponding to one of the distinct spectral regions of the analog radio frequency spectrum;
wherein the logic device is configured to generate a second plurality of sets of digitized data samples for each set of the timeslots at an output sampling rate; and
wherein the logic device sums at least two of the second plurality of sets of digitized data samples to produce a set of output data samples at the output sampling rate.
0. 37. A communication device for providing digital transport of signals in a distributed antenna system, the communication device comprising:
a first circuit configured to output at least one digital signal indicative of radio frequency spectrum at a first sample rate based on first signals;
a transmission path circuit configured to output signals based on received at least one digital signal indicative of radio frequency spectrum;
a logic device associated with the first circuit and configured to use the at least one digital signal indicative of radio frequency spectrum at the first sample rate from the first circuit to produce a first plurality of sets of digital baseband data samples, each set of digitized baseband samples having a sample rate, each set of digital baseband data samples corresponding to a distinct spectral region of radio frequency spectrum;
wherein the communication device is configured to map each of the first plurality of sets of digital baseband data samples to a respective portion of a transport frame;
the logic device further associated with the transmission path circuit, the logic device configured to receive an input transport frame having a plurality of sets of timeslots, wherein each of the respective portion includes a second set of digital baseband data samples at one of the plurality of sample rates, the set of digital baseband data samples for each respective portion corresponding to one of the distinct spectral regions of the radio frequency spectrum;
wherein the logic device is configured to generate a second plurality of sets of digitized data samples for each set of the timeslots at an output sample rate; and
wherein the logic device sums at least two of the second plurality of sets of digitized data samples to produce a set of output data samples at the output sample rate.
2. The communication device of claim 1, wherein the reception path circuit is configured to receive baseband digital samples from another device; and
wherein the reception path circuit is configured to output the digitized radio frequency spectrum based on the baseband digital samples.
3. The communication device of claim 1, wherein the reception path circuit is configured to receive baseband digital samples directly from a base transceiver station; and
wherein the reception path circuit is configured to output the digitized radio frequency spectrum based on the baseband digital samples received directly from the base transceiver station.
4. The communication device of claim 1, wherein the reception path circuit includes a radio frequency reception interface coupled to an analog-to-digital converter, the analog-to-digital converter configured to receive down-converted analog radio frequency spectrum from the radio frequency reception interface, the analog-to-digital converter further configured to produce digitized radio frequency spectrum at an input sampling rate.
5. The communication device of claim 1, wherein each of the set of timeslots consists of a corresponding number of timeslots based on a bandwidth of the distinct spectral region corresponding with the set of timeslots.
6. The communication device of claim 1, wherein the analog radio frequency spectrum comprises non-relevant spectral regions that are not mapped onto any of the set of timeslots of the serial data stream transport frame.
7. The communication device of claim 1, the logic device including a plurality of down converters operating in parallel and receiving digitized radio frequency spectrum at the input sampling rate; and
wherein each digital down converter is configured to convert data corresponding to a corresponding distinct spectral region into the corresponding set of digitized baseband data samples at the corresponding sampling rate, wherein the corresponding sampling rate is a function of a size of a bandwidth of the corresponding distinct spectral region.
8. The communication device of claim 7, the logic device further comprising a serialized transmitter configured to transmit the first plurality of sets of digitized baseband data samples at the corresponding sampling rates; and
the serialized transmitter further configured to map the first plurality of sets of digitized baseband data samples to the corresponding sets of timeslots.
9. The communication device of claim 1, wherein the first plurality of sets of digitized baseband data samples includes at least three sets of digitized baseband data samples corresponding to at least three distinct spectral regions; and
wherein the set of timeslots includes at least three timeslots.
0. 10. The communication device of claim 1, further comprising:
a transmission path circuit configured to output signals based on received digitized radio frequency spectrum;
the logic device further coupled to the transmission path circuit, the logic device configured to receive an input transport frame having a plurality of sets of timeslots, wherein each of the set of timeslots includes a second set of digitized baseband data samples at one of the plurality of sampling rates, the set of digitized baseband data samples for each set of timeslots corresponding to one of the distinct spectral regions of the analog radio frequency spectrum;
wherein the logic device is configured to generate a second plurality of sets of digitized data samples for each set of the timeslots at an output sampling rate; and
wherein the logic device sums at least two of the second plurality of sets of digitized data samples to produce a set of output data samples at the output sampling rate.
11. The communication device of claim 1, wherein the logic circuit device comprises a field programmable device.
12. The communication device of claim 1, wherein the spectral regions are user selectable from a plurality of pre-built logic circuit configurations.
13. The communication device of claim 1, wherein a center frequency and bandwidth size that define the first spectral bandwidth are user reconfigurable.
15. The communication device of claim 14, wherein the logic device is configured to generate the second plurality of sets of digitized data samples by up-converting the first plurality of sets of digitized baseband data samples to distinct spectral regions at the output sampling rate.
16. The communication device of claim 14, wherein the transmission path circuit is configured to transmit baseband digital samples to another device; and
wherein the transmission path circuit is configured to transmit the output data samples.
17. The communication device of claim 14, wherein the transmission path circuit is configured to transmit baseband digital samples directly to a base transceiver station; and
wherein the transmission path circuit is configured to transmit the output data samples directly to the base transceiver station.
18. The communication device of claim 14, wherein the transmission path circuit includes a radio frequency transmission interface coupled to a digital-to-analog converter, the digital-to-analog converter configured to receive output data samples at the output sampling rate and configured to generate an output analog signal from the output data samples; and
wherein the radio frequency transmission interface receives the output analog signal and up-converts the output analog signal into an analog radio frequency signal within the analog radio frequency spectrum.
19. The communication device of claim 14, the logic device including a plurality of digital up converters operating in parallel and configured to receive the second plurality of sets of digitized data samples and convert the second plurality of sets of digitized data samples into the analog radio frequency signal in the analog radio frequency spectrum.
20. The communication device of claim 19, the logic device further comprising a serialized receiver receiving the input transport frame and parsing timeslots of the transport frame to the plurality of digital up converters based on a timeslot configuration of the input transport frame.
21. The communication device of claim 14, wherein the analog radio frequency spectrum comprises non-relevant spectral regions that are not mapped to any of the set of timeslots of the serial data stream transport frame.
22. The communication device of claim 14, the logic device including a plurality of down converters operating in parallel and receiving digitized radio frequency spectrum at the input sampling rate; and
wherein each digital down converter is configured to convert data corresponding to a corresponding spectral region into the corresponding set of digitized baseband data samples at the corresponding sampling rate, wherein the corresponding sampling rate is a function of a size of a bandwidth of the corresponding spectral region.
23. The communication device of claim 14, wherein the plurality of sets of digitized baseband data samples includes at least three sets of digitized baseband data samples corresponding to at least three spectral regions; and
wherein the set of timeslots includes at least three timeslots.
0. 24. The communication device of claim 14, further comprising:
a reception path circuit configured to output digitized radio frequency spectrum;
a logic device coupled to the reception path circuit and configured to receive digitized radio frequency spectrum at an input sampling rate from the reception path circuit, the logic device further configured to produce a second plurality of sets of digitized baseband data samples at a plurality of sampling rates, each set of digitized baseband data samples corresponding to a spectral region of the analog radio frequency spectrum; and
wherein the logic device is further configured to map each set of digitized baseband data samples to the set of timeslots of the serial data stream transport frame.
26. The method of claim 25, further comprising:
receiving digital samples of analog radio frequency spectrum sampled at an initial sampling rate; and
generating the plurality of sets of digitized baseband signals in parallel based on the received digital samples of analog radio frequency spectrum.
27. The method of claim 25, wherein generating each set of digitized baseband signals comprises filtering the received digital samples of the analog radio frequency spectrum to pass only digital samples corresponding to the distinct spectral region corresponding to the set of digitized baseband signals.
28. The method of claim 25, wherein the first plurality of sets of digitized baseband signals includes at least three sets of digitized baseband signals corresponding to at least three spectral regions.
29. The method of claim 25, further comprising:
receiving configuration information, the configuration information identifying a plurality of relevant spectral regions within the radio frequency spectrum;
selecting a build from a plurality of builds stored in a data storage device based on the configuration information; and
programming a field programmable device by transferring the build to the filed field programmable device.
30. The method of claim 29, wherein the configuration information identifies a center frequency and bandwidth size for defining the first spectral region.
32. The method of claim 31, further comprising:
converting the set of output data samples to an analog radio frequency signal through a digital-to-analog converter.
33. The method of claim 31, wherein converting the plurality of sets of baseband signals further comprising generating a plurality of sets of radio frequency samples corresponding to a first spectral region of analog radio frequency spectrum.
34. The method of claim 31, wherein the first plurality of sets of digitized baseband signals includes at least three sets of digitized baseband signals corresponding to at least three spectral regions.
35. The method of claim 31, further comprising:
receiving configuration information identifying a plurality of relevant spectral regions within the analog radio frequency spectrum;
selecting a build from a plurality of builds stored in a data storage device based on the configuration information; and
programming a field programmable device by transferring the build to the field programmable device.
36. The method of claim 35, wherein the configuration information identifies a center frequency and bandwidth size for defining the first spectral region.
0. 38. The communication device of claim 37, wherein the first circuit is configured to receive baseband digital samples from another device; and
wherein the first circuit is configured to output the at least one digital signal indicative of radio frequency spectrum based on the baseband digital samples.
0. 39. The communication device of claim 37, wherein the first circuit is configured to receive baseband digital samples directly from a base transceiver station; and
wherein the first circuit is configured to output the at least one digital signal indicative of radio frequency spectrum based on the baseband digital samples received directly from the base transceiver station.
0. 40. The communication device of claim 37, wherein the first circuit includes a radio frequency reception interface associated with an analog-to-digital converter, the analog-to-digital converter configured to receive down-converted radio frequency spectrum from the radio frequency reception interface, the analog-to-digital converter further configured to produce the at least one digital signal indicative of radio frequency spectrum at the first sample rate.
0. 41. The communication device of claim 37, wherein each of the respective portion consists of a corresponding number of timeslots based on a bandwidth of the distinct spectral region corresponding with the respective portion.
0. 42. The communication device of claim 37, wherein the radio frequency spectrum comprises non-relevant spectral regions that are not mapped onto any of the respective portion of the transport frame.
0. 43. The communication device of claim 37, the logic device including a plurality of down converters operating in parallel and receiving at least one digital signal indicative of radio frequency spectrum at the first sample rate; and
wherein each digital down converter is configured to convert data corresponding to a corresponding distinct spectral region into the corresponding set of digital baseband data samples at the corresponding sample rate, wherein the corresponding sample rate is a function of a size of a bandwidth of the corresponding distinct spectral region.
0. 44. The communication device of claim 43, the logic device further comprising a serialized transmitter configured to transmit the first plurality of sets of digital baseband data samples at the corresponding sample rates; and
the serialized transmitter further configured to map the first plurality of sets of digital baseband data samples to the corresponding sets of timeslots.
0. 45. The communication device of claim 37, wherein the first plurality of sets of digital baseband data samples includes at least three sets of digital baseband data samples corresponding to at least three distinct spectral regions; and
wherein the respective portion includes at least three timeslots.
0. 46. The communication device of claim 37, wherein the logic device comprises a field programmable device.
0. 47. The communication device of claim 37, wherein the spectral regions are user selectable from a plurality of pre-built logic circuit configurations.
0. 48. The communication device of claim 37, wherein a center frequency and bandwidth size that define the first spectral bandwidth are user reconfigurable.
0. 50. The communication device of claim 49, wherein the logic device is configured to generate the second plurality of sets of digitized data samples by up-converting the first plurality of sets of digital baseband data samples to distinct spectral regions at the output sample rate.
0. 51. The communication device of claim 49, wherein the transmission path circuit is configured to transmit baseband digital samples to another device; and
wherein the transmission path circuit is configured to transmit the output data samples.
0. 52. The communication device of claim 49, wherein the transmission path circuit is configured to transmit baseband digital samples directly to a base transceiver station; and
wherein the transmission path circuit is configured to transmit the output data samples directly to the base transceiver station.
0. 53. The communication device of claim 49, wherein the transmission path circuit includes a radio frequency transmission interface associated with a digital-to-analog converter, the digital-to-analog converter configured to receive output data samples at the output sample rate and configured to generate an output analog signal from the output data samples; and
wherein the radio frequency transmission interface receives the output analog signal and up-converts the output analog signal into a radio frequency signal within the radio frequency spectrum.
0. 54. The communication device of claim 49, the logic device including a plurality of digital up converters operating in parallel and configured to receive the second plurality of sets of digitized data samples and convert the second plurality of sets of digitized data samples into the radio frequency signal in the radio frequency spectrum.
0. 55. The communication device of claim 54, the logic device further comprising a serialized receiver receiving the input transport frame and parsing timeslots of the transport frame to the plurality of digital up converters based on a timeslot configuration of the input transport frame.
0. 56. The communication device of claim 49, wherein the radio frequency spectrum comprises non-relevant spectral regions that are not mapped to any of the respective portion of the transport frame.
0. 57. The communication device of claim 49, the logic device including a plurality of down converters operating in parallel and receiving at least one digital signal indicative of radio frequency spectrum at the first sample rate; and
wherein each digital down converter is configured to convert data corresponding to a corresponding spectral region into the corresponding set of digital baseband data samples at the corresponding sample rate, wherein the corresponding sample rate is a function of a size of a bandwidth of the corresponding spectral region.
0. 58. The communication device of claim 49, wherein the plurality of sets of digital baseband data samples includes at least three sets of digital baseband data samples corresponding to at least three spectral regions; and
wherein the respective portion includes at least three timeslots.
0. 59. The communication device of claim 49, further comprising:
a first circuit configured to output at least one digital signal indicative of radio frequency spectrum;
the logic device associated with the first circuit and configured to use the at least one digital signal indicative of radio frequency spectrum at a first sample rate from the first circuit, the logic device further configured to produce a second plurality of sets of digital baseband data samples at a plurality of sample rates, each set of digital baseband data samples corresponding to a spectral region of the radio frequency spectrum; and
wherein the logic device is further configured to map each set of digital baseband data samples to the respective portion of the transport frame.

2B 4B illustrates spectral regions 451 and 452 mapped to adjacent timeslots of digital transport frame 460, embodiments of the present invention do not require adjacent mapping. For example, if TS4 (464) was allocated for use by a different DART module, or allocated for other purposes within the DAS 100, then TS5 or any other timeslot within digital transport frame 460 may be used to transport spectral region 352.

As would be apparent to one of ordinary skill in the art upon reading this specification, the number of distinct regions within a digitized RF spectrum is not limited to only two spectral regions. In other alternate embodiments, three or more spectral regions within a digitized RF spectrum may be defined as carrying relevant signals. The number of spectral regions that can be handled as discrete signal with a DART will be limited only by the limits of the implementing hardware.

For example, FIG. 4C illustrates a digitized RF spectrum 470 having four spectral regions 471, 472, 473 and 474, each containing signals defined as relevant. Regions 475, 476 and 477 are non-relevant regions. In one embodiment, each of the spectral regions 471, 472, 473 and 474 is individually re-sampled and mapped to timeslots based on their respective bandwidth sizes, as described above for FIG. 4A. In the case where the implementing hardware is not configured to re-sample and process four spectral regions separately, two or more of the spectral regions may be grouped together to define a single spectral region. For example, in FIG. 4C, where regions 471 and 472 contain relevant signals separated by a non-relevant region 475, the entire bandwidth including regions 471, 475 and 472 (shown generally as BW3) may be grouped together, re-sampled as a distinct slice of spectrum 470 and assigned to timeslots of frame 460 based on the size of BW3. Using the re-sampling and mapping scheme described in FIGS. 4A-C, a host unit 102 and the remote units 130 communicate RF transport signals that occupy less bandwidth of the communication links 130 as compared to presently existing schemes because time slots are not assigned for one or more non-relevant spectral regions.

FIG. 5 is a block diagram illustrating a DART Module 500 of one embodiment of the present invention. In alternate embodiments, DART Module 500 may operate as either a Host DART or a Remote DART module such as respective DART Modules 308 and 208. DART module 500 has two main signal paths; a transmission path 504 and a reception path 506. For signals received from a SeRF module, DART module 500 forms parallel digital RF data from the incoming data stream, if needed, at FPGA 503. In this embodiment, FPGA 503 is a logic device that is programmed to convert serial digital data into RF sampled data and programmed to convert RF sampled data into serial digital data. DART module 500 then converts the digital RF data to an analog signal with digital to analog converter (DAC) 508. Transmission path 504 continues with RF transmission interface 510 which filters, amplifies, and up-converts the analog signal for RF transmission. As would be readily appreciated by one of ordinary skill in the art upon reading this specification, RF transmission interface 510 will typically include an assortment of filters, amplifiers, oscillators and attenuators. In one embodiment, the transmission path exits DART module 500 at a subminiature version A RF coaxial connector (SMA) connector 520.

In the reception path 506, RF signals are converted from analog to digital and sent to the SeRF module. In one embodiment, analog RF signals are received at DART module 500 at an SMA connector 525. Reception path 506 includes an RF reception interface 530 that amplifies, down-converts, and filters the incoming RF signal. As would be readily appreciated by one of ordinary skill in the art upon reading this specification, RF reception interface 530 will typically include an assortment of filters, amplifiers, oscillators, and attenuators. After the RF reception interface 530, DART module 500 then digitizes the signal with analog to digital converter 522. FPGA 503 then provides the data stream as parallel digital RF sampled data to a SeRF module.

FIG. 6 is a block diagram providing further details for FPGA 503 for one embodiment of the present invention. FPGA 503, for both the upstream and downstream directions, provides separate signal processing paths for each discrete spectral region of a digitized RF spectrum (such as 400 or 460) that is to be mapped onto timeslots of the transport frame 460. Although the FPGA 503 described in FIG. 6 illustrates an FPGA configured to process two discrete spectral regions in each direction (illustrated by first and second paths 630,631 in the receive direction and first and second paths 632,633 in the transmit direction), one of ordinary skill in the art after reading this specification would appreciate that the FPGA described in FIG. 6 may be scaled upward to include additional processing paths for three or more discrete spectral regions. This scaling is limited only by the particular constraints of the underlying hardware used (for example, the number of available gates provided by the FPGA hardware selected by the DART equipment designer).

In each direction, FPGA 503 provides a first path for processing digital signals associated with the radio frequency signals in a first spectral region (such as region 451 for example) and a second path for processing digital signals associated with the radio frequency signals in a second spectral region (such as region 452, for example). For processing the reception path 506, FPGA 503 includes first conditioning logic 617, a first digital down converter 625, a second digital down converter 626 and a transmitter (TX) 621. For processing the transmission path 504, FPGA 503 includes a receiver (RX) 623, a first digital up converter 628, a second digital up converter 629, summer 650, and second conditioning logic 619. FPGA 503 further includes a low-voltage differential signaling circuit 615 that facilitates communication between the transmission and receive paths (404, 406) and a SeRF module coupled to DART Module 500. In an alternate embodiment, the first conditioning logic 617 and the second conditioning logic 619 are realized using shared conditioning logic.

In the embodiment shown in FIG. 6, FPGA 503 is communicatively coupled to its associated SeRF Module by a bidirectional low-voltage differential signaling (LVDS) link 640. A first LVDS lane represented generally at 645 and a second LVDS lane represented generally at 646 are supported. In one implementation of this embodiment, first LVDS lane 645 and second LVDS lane 646 each transport digital baseband data at a 737.28 Mbps data rate. In this case, the first LVDS lane 645 and second LVDS lane 646 together transport digital baseband data at a 1474.56 Mbps data rate in up to six timeslots of a transport frame 460. In one embodiment, the link 640 runs at a fixed rate regardless of the payload (i.e., regardless of the number of time slots sent). One of ordinary skill in the art upon reading this specification would appreciate that in alternate embodiments of the present invention, the number of supported time slots is a design choice based on the number of timeslots supported by the particular hardware used.

In one embodiment of receive path 506, in operation, ADC 522 receives an analog RF spectrum from RF reception interface 530 and digitizes the complete analog RF spectrum using an initial sampling rate corresponding to the size of the bandwidth of the analog spectrum. The first conditioning logic 617 receives the digitized data samples from the analog-to-digital converter 522, and directs the digitized data samples to digital-down-converters (DDC) 625 and 626. The first digital down converter 625 and the second digital down converter 626 each receive digitized data samples of the full RF spectrum.

The first and second digital down converters 625 and 626 are each configured to independently process distinct spectral regions of the sampled RF spectrum. Returning to the example of FIG. 4A, in one embodiment, first digital down converter 625 is programmed to filter out all signals except those in spectral region 451. For example, in one embodiment, first digital down converter 625 is programmed with both the center frequency of the first spectral region 451 (shown as fa ) and the bandwidth BW1 of spectral region 451. Digital down converter 625 thus applies a band-pass filter to the sampled RF spectrum, allowing only the data corresponding to the spectral region fc1−½(BW1) to fc1+½(BW1) to pass. Digital down converter 625 then converts the data corresponding to the first spectral region 451 into digital baseband signals by re-sampling the data from the initial sampling rate used to digitize the analog RF spectrum to a first sampling rate selected based on the size of BW1. The first sampling rate will determine the number of timeslots used to transport the digital baseband signals corresponding to spectral region 451.

In the same way, second digital down converter 626 is programmed with both the center frequency of the second spectral region 454 (shown as fc2) and the bandwidth BW2 of spectral region 452. Digital down converter 626 then applies a band-pass filter to the sampled RF spectrum, allowing only the data corresponding to the spectral region fc2−½(BW2) to fc2+½(BW2) to pass. Digital down converter 626 then converts the data corresponding to the second spectral region 452 into digital baseband signals by re-sampling the data from the initial sampling rate used to digitize the analog RF spectrum to a second sampling rate selected based on the size of BW2. The second sampling rate will determine the number of timeslots used to transport the digital baseband signals corresponding to spectral region 452.

Serialized transmitter (TX) 621 is positioned to receive the first set of digital baseband data samples from the first digital down converter 625 at the first sampling rate and the second set of baseband data sample from the second digital down converter 626 at the second sampling rate. Transmitter 621 multiplexes and serializes these two sets of baseband data into timeslots and provides the serialized data to the SeRF Module via the low-voltage differential signaling circuit 615.

In one embodiment of transmit path 506, in operation, DART Module 500 receives digital baseband data from the SeRF module via the low-voltage differential signaling circuit 615. Serialized receiver 623 is positioned to receive serialized input from the low-voltage differential signaling circuit 615 and to direct data from timeslots associated with the first spectral region 451 to the first digital up converter 628, and data from timeslots associated with the first spectral region 451 to the second digital up converter 629. The first digital up converter 628 receives the data from timeslots associated with the first spectral region 451 at the first sampling rate and up-converts the baseband data by re-sampling the data from the first sampling rate to an output sampling rate. The second digital up converter 629 receives the data from timeslots associated with the second spectral region 452 at the second sampling rate and up-converts the baseband data by re-sampling the data from the second sampling rate to the same output sampling rate used by first digital up converter 628. By upconverting both sets of baseband data to the same output sample rate, the up-converted data sample output from both digital upconverters 628, 629 can be readily summed together for further processing by DART Module 500 as a single data signal. Accordingly, summer 650 sums the upconverted data sample outputs from digital upconverters 628, 629 and provides the summed signal to DAC 508 via 2nd conditioning Logic 619.

Because FPGA 503 is a field programmable device, it can be adjusted to meet changing needs of the end user. For example, the center frequencies fc1 and fc2 can be reprogrammed into FPGA 503 in order to shift the locations of spectral regions 451 and 452 within spectrum 400. Similarly BW1 and BW2 may be adjusted to accommodate larger or narrower bandwidths. The number and/or position of timeslots within frame 460 provisioned for each discrete spectral region can also be reconfigured. As mentioned previously, the number of individual signal paths for handling additional spectral regions may be increased by configuring the FPGA with additional digital up converters and digital down converters. In one embodiment, a plurality of predefined configuration builds are stored in a memory, for example within a SeRF Module. In such an embodiment, a DART Module's FPGA can be reconfigured by pushing a new build image onto the FPGA.

FIG. 7 is a flow diagram a method 700 of one embodiment of the present invention. The method begins at 702 with receiving configuration information, the configuration information identifying a plurality of relevant spectral regions within an RF spectrum. In one embodiment, each relevant spectral region is identified by a center frequency and bandwidth. The relevant spectral regions are indicative of separate radio frequency bands of interest that are to be transported via a digital DAS. Configuration information can also information regarding the number and position of timeslots available for allocation to each spectral region. In one embodiment, the configuration information may be received via a user interface either directly or indirectly coupled to the DART module. The method proceeds to 704 with selecting a build from a plurality of builds stored in a data storage device, such as but not limited to a flash memory. Selection of the build is based on the received configuration information. The method proceeds to 706 with programming a field programmable device, such as an FPGA, by transferring the build to the field programmable device. Although the example of an FPGA has been used in this specification, other field programmable devices are contemplated as within the scope of embodiments of the present invention.

FIG. 8 is a flow chart illustrating a method 800 of one embodiment of the present invention. The method begins at 802 with receiving digital samples of an RF spectrum sampled at an initial sampling rate. The RF spectrum comprises a first spectral region that includes signals of interest and a second spectral region that includes signals of interest. In one embodiment, the first and second spectral regions are separated by a non-relevant spectral region. The method proceeds to 804 and 806, which occur in parallel. At 804 the method proceeds with generating a first set of digital baseband data of the first spectral region at a first sampling rate using a first signal path. At 806 the method proceeds with generating a second set of digital baseband data of the second spectral region at a second sampling rate using a second signal path. As described above, the first sampling rate and the second sampling rate are determined from the bandwidths of the first spectral region and second spectral regions, respectively. The first signal path comprises a first digital down converter that filters the RF spectrum to pass only data signals corresponding to the first spectral region. Those data signals are then re-sampled to the first sampling rate, which will determine the number of timeslots the first set of digital baseband data will occupy on the transport frame. The second signal path comprises a second digital down converter that filters the RF spectrum to pass only data signals corresponding to the second spectral region. Those data signals are then re-sampled to the second sampling rate, which will determine the number of timeslots the second set of digital baseband data will occupy on the transport frame.

The method then proceeds to 808 where the first and second sets of digital baseband data are multiplexed into a serial data stream by assigning the first set of digital baseband signals to a first set of timeslots of a transport frame and the second set of digital baseband signals to a second set of timeslots of the transport frame. The method proceeds to 810 with transmitting the transport frame. As would be appreciated by one of ordinary skill in the art, by processing the first and second spectral regions separately and at sample times corresponding to their respective bandwidths, the total number of timeslots necessary to transport the signals is less than if the entire received RF spectrum was converted to baseband and assigned to timeslots. In one embodiment, transmitting the transport frame comprises a SeRF Module transmitting the transport frame via an optical fiber. In the case where this method is implemented at a host unit, the transport frame is transmitted via the Host SeRF Module to a remote unit. In the case where this method is implemented at a remote unit, the transport frame is transmitted via the Remote SeRF Module to the host unit.

FIG. 9 is a flow diagram of a method 900 of one embodiment of the present. The method begins at 902 with receiving an input transport signal comprising a transport frame having a plurality of timeslots. The method proceeds to 904 with parsing the input transport signal into at least a first set of baseband signal and a second set of baseband signals based on a timeslot configuration of the input transport signal. In one embodiment, demultiplexing logic in the low-voltage differential signaling circuit parses the input stream and sends the baseband data to either a first digital up converter or second digital up converter based on the timeslot configuration. The method then proceeds to blocks 906 and 908, which run in parallel.

At block 906, the method proceeds with upconverting the first set of baseband signals from a first sampling rate to an output sampling rate. At block 908 the method proceeds with upconverting the second set of baseband signals from a second sampling rate to an output sampling rate. By upconverting both sets of baseband data to the same output sample rate, the up-converted data sample output from both digital upconverters can be readily summed together into a single signal of data samples. Accordingly, the method proceeds to 910 with summing the upconverted first set of baseband signals with the upconverted second set of baseband signals to produce a set of output data samples. The method then proceeds to 912 with converting the set of output data samples to an analog RF signal through a digital-to-analog converter.

Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that any arrangement, which is calculated to achieve the same purpose, may be substituted for the specific embodiment shown. This disclosure is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.

Wala, Philip M., Zavadsky, Dean, Cannon, Jeffrey J.

Patent Priority Assignee Title
Patent Priority Assignee Title
4183054, Sep 30 1977 Harris Corporation Digital, frequency-translated, plural-channel, vestigial sideband television communication system
4611323, May 24 1983 ANT Nachrichtentechnik GmbH; Philips Kommunikations Industrie AG; Siemens Aktiengesellschaft Method for transmitting digitally coded analog signals
4628501, Dec 29 1983 The United States of America as represented by the Secretary of the Army Optical communications systems
4654843, Sep 17 1982 U S PHILIPS CORPORATION Signal distribution system
4691292, Apr 13 1983 RCA Corporation System for digital multiband filtering
4999831, Oct 19 1989 United Telecommunications, Inc. Synchronous quantized subcarrier multiplexer for digital transport of video, voice and data
5193109, Feb 06 1989 CELLCO PARTNERSHIP, INC ; Cellco Partnership Zoned microcell with sector scanning for cellular telephone system
5243598, Apr 02 1991 CELLCO PARTNERSHIP, INC ; Cellco Partnership Microcell system in digital cellular
5321849, May 22 1991 SBC Technology Resources, INC System for controlling signal level at both ends of a transmission link based on a detected valve
5339184, Jun 15 1992 Verizon Patent and Licensing Inc Fiber optic antenna remoting for multi-sector cell sites
5818883, Dec 29 1994 Google Technology Holdings LLC Multi-channel digital transceiver and method
5898693, Mar 08 1995 Time Warner Cable Enterprises LLC Spectrum manager for communication network
6016311, Nov 19 1997 Cisco Technology, Inc Adaptive time division duplexing method and apparatus for dynamic bandwidth allocation within a wireless communication system
8135102, Jan 27 2009 PROCOMM INTERNATIONAL PTE LTD Method and apparatus for digitally equalizing a signal in a distributed antenna system
8270387, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for improved digital RF transport in distributed antenna systems
8948155, Jan 13 2009 CommScope EMEA Limited; CommScope Technologies LLC Systems and methods for improved digital RF transport in distributed antenna systems
8958410, Jan 13 2009 OUTDOOR WIRELESS NETWORKS LLC Systems and methods for IP communication over a distributed antenna system transport
20070238457,
20080013639,
20080013654,
20080019706,
20080181171,
20080240225,
20110135013,
CN101019452,
CN101227242,
EP391597,
WO2006005220,
WO2008119025,
WO9115927,
///////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 12 2010ZAVADSKY, DEANADC Telecommunications, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0411650628 pdf
Jan 12 2010CANNON, JEFFREY J ADC Telecommunications, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0411650628 pdf
Jan 12 2010WALA, PHILIP M ADC Telecommunications, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0411650628 pdf
Aug 25 2015ADC Telecommunications, IncTYCO ELECTRONICS SERVICES GmbHASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0411650728 pdf
Aug 25 2015TE Connectivity Solutions GmbHTYCO ELECTRONICS SERVICES GmbHASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0411650728 pdf
Aug 25 2015TYCO ELECTRONICS SERVICES GmbHCommScope EMEA LimitedASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0416160067 pdf
Aug 28 2015CommScope EMEA LimitedCommScope Technologies LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0416200001 pdf
Feb 03 2017CommScope Technologies LLC(assignment on the face of the patent)
Apr 04 2019CommScope Technologies LLCJPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019COMMSCOPE, INC OF NORTH CAROLINAJPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019CommScope Technologies LLCJPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019ARRIS ENTERPRISES LLCJPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019ARRIS TECHNOLOGY, INC JPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019RUCKUS WIRELESS, INC JPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019ARRIS SOLUTIONS, INC JPMORGAN CHASE BANK, N A TERM LOAN SECURITY AGREEMENT0499050504 pdf
Apr 04 2019CommScope Technologies LLCWILMINGTON TRUST, NATIONAL ASSOCIATION, AS COLLATERAL AGENTPATENT SECURITY AGREEMENT0498920051 pdf
Apr 04 2019ARRIS SOLUTIONS, INC JPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019RUCKUS WIRELESS, INC JPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019COMMSCOPE, INC OF NORTH CAROLINAJPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019ARRIS ENTERPRISES LLCJPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Apr 04 2019ARRIS TECHNOLOGY, INC JPMORGAN CHASE BANK, N A ABL SECURITY AGREEMENT0498920396 pdf
Nov 15 2021RUCKUS WIRELESS, INC WILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Nov 15 2021COMMSCOPE, INC OF NORTH CAROLINAWILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Nov 15 2021CommScope Technologies LLCWILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Nov 15 2021ARRIS ENTERPRISES LLCWILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Nov 15 2021ARRIS SOLUTIONS, INC WILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Dec 17 2024OUTDOOR WIRELESS NETWORKS LLCAPOLLO ADMINISTRATIVE AGENCY LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0698890114 pdf
Dec 17 2024COMMSCOPE INC , OF NORTH CAROLINAAPOLLO ADMINISTRATIVE AGENCY LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0698890114 pdf
Dec 17 2024CommScope Technologies LLCAPOLLO ADMINISTRATIVE AGENCY LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0698890114 pdf
Dec 17 2024ARRIS ENTERPRISES LLCAPOLLO ADMINISTRATIVE AGENCY LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0698890114 pdf
Dec 17 2024RUCKUS IP HOLDINGS LLCAPOLLO ADMINISTRATIVE AGENCY LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0698890114 pdf
Date Maintenance Fee Events
Aug 03 2022M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Aug 11 20234 years fee payment window open
Feb 11 20246 months grace period start (w surcharge)
Aug 11 2024patent expiry (for year 4)
Aug 11 20262 years to revive unintentionally abandoned end. (for year 4)
Aug 11 20278 years fee payment window open
Feb 11 20286 months grace period start (w surcharge)
Aug 11 2028patent expiry (for year 8)
Aug 11 20302 years to revive unintentionally abandoned end. (for year 8)
Aug 11 203112 years fee payment window open
Feb 11 20326 months grace period start (w surcharge)
Aug 11 2032patent expiry (for year 12)
Aug 11 20342 years to revive unintentionally abandoned end. (for year 12)