A leadless pacing device (LPD) includes a motion sensor configured to generate a motion signal as a function of heart movement. The LPD is configured to analyze the motion signal within an atrial contraction detection window that begins an atrial contraction detection delay period after activation of the ventricle, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., with an atrio-ventricular (av) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse.
|
12. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:
identifying an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of based on movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;, the method further comprising:
determining a contraction of the atrium was not detected during a predetermined number of one or more cardiac cycles; and
delivering pacing pulses to the ventricle according to an asynchronous ventricular pacing mode in response to based on the determination.
13. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:
identifying an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of based on movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;, the method further comprising:
determining that a heart rate of the heart exceeds a threshold; and
delivering the one or more additional pacing pulses to the ventricle according to an asynchronous ventricular pacing mode in response to based on the determination that the heart rate exceeds the threshold.
11. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:
identifying an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of based on movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;, wherein the motion signal is further generated by the motion sensor based on motion of the patient, the method further comprising:
determining an amount of motion of the patient based on the motion signal; and
delivering the pacing pulses to the ventricle according to an asynchronous ventricular pacing mode in response to based on the amount of motion of the patient exceeding a threshold.
7. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:
identifying an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of based on movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;
determining that a depolarization of the ventricle resulting from the depolarization of the atrium that caused the contraction of the atrium was not detected within an atrioventricular (av) interval beginning when the contraction of the atrium was detected;
delivering the pacing pulse to the ventricle in response to the determination;
determining that a depolarization of the ventricle resulting from the depolarization of the atrium that caused the contraction of the atrium was not detected within an atrioventricular (av) interval beginning timed from when the contraction of the atrium was detected; and
delivering the a pacing pulse to the ventricle in response to the determination;
detecting a contraction of the ventricle based on the motion signal after delivery of the pacing pulse to the ventricle; and
determining whether the delivery of the pacing pulse to the ventricle was effective based on the detection of the contraction of the ventricle; and
adjusting the av interval based on the determination of whether the delivery of the pacing pulse to the ventricle was effective.
10. A method for delivering atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient, the method comprising:
identifying an activation of the ventricle;
upon identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the leadless pacing device as a function of movement of the heart;
detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window; and
delivering a pacing pulse to the ventricle in response to the detection of the atrial contraction;
determining that a depolarization of the ventricle resulting from the depolarization of the atrium that caused the contraction of the atrium was not detected within an atrioventricular (av) interval beginning when the contraction of the atrium was detected;
delivering the pacing pulse to the ventricle in response to the determination;
determining that a depolarization of the ventricle resulting from the depolarization of the atrium that caused the contraction of the atrium was not detected within an atrioventricular (av) interval beginning when the contraction of the atrium was detected; and
delivering the pacing pulse to the ventricle in response to the determination;
wherein the leadless pacing device is configured to detect depolarizations of the atrium, and the av interval comprises a mechanical av interval, the method further comprising:
in response to detecting a depolarization of the an atrium of the heart:
determining that a depolarization of the ventricle was not detected within an electrical atrioventricular (av) interval beginning when the electrical sensing module detected timed from the detection of the depolarization of the atrium; and
delivering a pacing pulse to the ventricle in response to the determination that a depolarization of the ventricle was not detected, and
in response to determining that a depolarization of the atrium was not detected during a predetermined number of one or more cardiac cycles:
detecting a contraction of the atrium based on the a motion signal;
determining that a depolarization of the ventricle was not detected within the a mechanical av interval beginning timed from when the contraction of the atrium was detected; and
delivering a pacing pulse to the ventricle in response to the determination that a depolarization of the ventricle was not detected, and
wherein the electrical av interval is greater than the mechanical av interval, and
wherein detecting the contraction of the atrium based on the motion signal comprises:
identifying an activation of the ventricle;
in response to identification of the activation of the ventricle, initiating an atrial contraction detection delay period;
analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, wherein the motion signal is generated by a motion sensor of the pacing device based on movement of the heart; and
detecting the contraction of the based on the analysis of the motion signal within the atrial contraction detection window.
0. 21. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:
a plurality of electrodes;
a motion sensor configured to generate a motion signal based on movement of a heart of a patient;
stimulation circuitry coupled to the plurality of electrodes, wherein the stimulation circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
electrical sensing circuitry coupled to the plurality of electrodes, wherein the electrical sensing circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
mechanical sensing circuitry coupled to the motion sensor and configured to:
receive the motion signal from the motion sensor;
identify an activation of the ventricle;
in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period;
analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and
detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
processing circuitry configured to:
determine that the electrical sensing circuitry did not detect a depolarization of the ventricle within an atrioventricular (av) interval timed from when the mechanical sensing circuitry detected the contraction of the atrium; and
control the stimulation circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation circuitry, the electrical sensing circuitry, the mechanical sensing circuitry, and the processing circuitry;
wherein the processing circuitry is further configured to:
determine a heart rate of the heart; and
adjust the atrial contraction detection delay period based on the determined heart rate.
0. 22. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:
a plurality of electrodes;
a motion sensor configured to generate a motion signal based on movement of a heart of a patient;
stimulation circuitry coupled to the plurality of electrodes, wherein the stimulation circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
electrical sensing circuitry coupled to the plurality of electrodes, wherein the electrical sensing circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
mechanical sensing circuitry coupled to the motion sensor and configured to:
receive the motion signal from the motion sensor;
identify an activation of the ventricle;
in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period;
analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and
detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
processing circuitry configured to:
determine that the electrical sensing circuitry did not detect a depolarization of the ventricle within an atrioventricular (av) interval timed from when the mechanical sensing circuitry detected the contraction of the atrium; and
control the stimulation circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation circuitry, the electrical sensing circuitry, the mechanical sensing circuitry, and the processing circuitry;
wherein the processing circuitry is further configured to:
identify a condition inconsistent with atrio-synchronous ventricular pacing; and
control the stimulation circuitry to deliver one or more additional pacing pulses to the ventricle according to an asynchronous ventricular pacing mode based on the identification of the condition.
5. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:
a plurality of electrodes;
a motion sensor configured to generate a motion signal as a function of based on movement of a heart of a patient;
a stimulation module circuitry coupled to the plurality of electrodes, wherein the stimulation module circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
an electrical sensing module circuitry coupled to the plurality of electrodes, wherein the electrical sensing module circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
a mechanical sensing module circuitry coupled to the motion sensor and configured to:
receive the motion signal from the motion sensor;
identify an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period;
analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and
detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
a processing module circuitry configured to control the stimulation module circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module circuitry; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module circuitry, the electrical sensing module circuitry, the mechanical sensing module circuitry, and the processing module circuitry;
wherein the processing module circuitry is configured to:
determine a heart rate of the patient based on depolarizations detected by the electrical sensing module circuitry;
determine that the heart rate exceeds a threshold; and
control the stimulation module circuitry to generate pacing pulses and deliver the pacing pulses to the ventricle according to an asynchronous ventricular pacing mode in response to based on the determination that the heart rate exceeds the threshold.
6. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:
a plurality of electrodes;
a motion sensor configured to generate a motion signal as a function of based on movement of a heart of a patient;
a stimulation module circuitry coupled to the plurality of electrodes, wherein the stimulation module circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
an electrical sensing module circuitry coupled to the plurality of electrodes, wherein the electrical sensing module circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
a mechanical sensing module circuitry coupled to the motion sensor and configured to:
receive the motion signal from the motion sensor;
identify an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period;
analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and
detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
a processing module circuitry configured to control the stimulation module circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module circuitry; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module circuitry, the electrical sensing module circuitry, the mechanical sensing module circuitry, and the processing module circuitry;
wherein the motion sensor comprises a plurality of accelerometers, each of the plurality of accelerometers oriented along a respective axis and configured to generate a respective accelerometer signal,
wherein mechanical sensing module circuitry derives the motion signal based on a first one or more of the accelerometer signals according to a first sensing vector, and
wherein the processing module circuitry is configured to:
determine that the mechanical sensing module circuitry did not detect a contraction of the atrium during a predetermined number of one or more cardiac cycles; and
control the mechanical sensing module circuitry to derive the motion signal based on a second one or more of the accelerometer signals according to a second sensing vector in response to based on the determination.
1. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:
a plurality of electrodes;
a motion sensor configured to generate a motion signal as a function of based on movement of a heart of a patient;
a stimulation module circuitry coupled to the plurality of electrodes, wherein the stimulation module circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
an electrical sensing module circuitry coupled to the plurality of electrodes, wherein the electrical sensing module circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes;
a mechanical sensing module circuitry coupled to the motion sensor and configured to:
receive the motion signal from the motion sensor;
identify an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period;
analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and
detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
a processing module circuitry configured to control the stimulation module circuitry to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module circuitry; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module circuitry, the electrical sensing module circuitry, the mechanical sensing module circuitry, and the processing module circuitry;
wherein the processing module circuitry is configured to:
determine that the electrical sensing module circuitry did not detect a depolarization of the ventricle within an atrioventricular (av) interval beginning timed from when the mechanical sensing module circuitry detected the contraction of the atrium; and
control the stimulation module circuitry to generate the pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination; and,
wherein the mechanical sensing module circuitry is configured to detect a contraction of the ventricle based on the motion signal after delivery of the pacing pulse to the ventricle, and the processing module circuitry is configured to: determine whether the delivery of the pacing pulse to the ventricle was effective based on the detection of the contraction of the ventricle; and adjust the av interval based on the determination of whether the delivery of the pacing pulse to the ventricle was effective.
4. A leadless pacing device configured to deliver atrio-synchronous ventricular pacing, the leadless pacing device comprising:
a plurality of electrodes;
a motion sensor configured to generate a motion signal as a function of based on movement of a heart of a patient;
a stimulation module circuitry coupled to the plurality of electrodes, wherein the stimulation module circuitry is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes;
an electrical sensing module circuitry coupled to the plurality of electrodes, wherein the electrical sensing module circuitry is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes, wherein the electrical sensing circuitry is further configured to detect depolarizations of at least one atrium of the heart;
a mechanical sensing module circuitry coupled to the motion sensor and configured to:
receive the motion signal from the motion sensor;
identify an activation of the ventricle;
upon in response to identification of the activation of the ventricle, initiate an atrial contraction detection delay period;
analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period; and
detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window;
a processing module circuitry configured to control the stimulation module circuitry to generate a one or more pacing pulse pulses and deliver the pacing pulse pulses to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module; and
a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module circuitry, the electrical sensing module circuitry, the mechanical sensing module circuitry, and the processing module circuitry;
wherein the processing module is configured to:
determine that the electrical sensing module did not detect a depolarization of the ventricle within an atrioventricular (av) interval beginning when the mechanical sensing module detected the contraction of the atrium; and
control the stimulation module to generate the pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination; and,
wherein the av interval comprises a mechanical av interval,
wherein the electrical sensing module is configured to detect depolarizations of the atrium within the cardiac electrogram sensed via the plurality of electrodes,
wherein, in response to the electrical sensing module circuitry detecting a depolarization of the atrium, the processing module circuitry is configured to:
determine that the electrical sensing module circuitry did not detect a depolarization of the ventricle within an electrical atrioventricular (av) interval beginning timed from when the electrical sensing module circuitry detected the depolarization of the atrium; and
control the stimulation module circuitry to generate a one of the pacing pulse pulses and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination that the electrical sensing module circuitry did not detect a depolarization of the ventricle,
wherein the processing module circuitry is further configured to determine that the electrical sensing module circuitry did not detect a depolarization of the atrium during a predetermined number of one or more cardiac cycles and, in response to the determination:
control the mechanical sensing module circuitry to detect a the contraction of the atrium based on the motion signal;
determine that the electrical sensing module circuitry did not detect a depolarization of the ventricle within the a mechanical av interval beginning timed from when the mechanical sensing module circuitry detected the contraction of the atrium; and
control the stimulation module circuitry to generate a one of the pacing pulse pulses and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the determination that the mechanical sensing module circuitry did not detect a depolarization of the ventricle, and
wherein the electrical av interval is greater than the mechanical av interval.
2. The leadless pacing device of
determine that an interval from the delivery of the pacing pulse to the detection of the contraction of the ventricle is less than a threshold; and
decrease the av interval in response to the determination that the interval from the delivery of the pacing pulse to the detection of the contraction of the ventricle is less than the threshold.
3. The leadless pacing device of
wherein the mechanical sensing module circuitry is configured to:
detect a peak of the ventricular contraction of the ventricle based on the motion signal; and
determine an amplitude of the motion signal at the peak, and
wherein the processing module circuitry is configured to:
determine that the amplitude is greater than the threshold; and
increase the av interval in response to the determination that the amplitude is greater than the threshold.
8. The method of
determining that an interval from the delivery of the pacing pulse to the detection of the contraction of the ventricle is less than a threshold; and
decreasing the av interval in response to the determination that the interval from the delivery of the pacing pulse to the detection of the contraction of the ventricle is less than the threshold.
9. The method of
detecting a peak of the ventricular contraction of the ventricle based on the motion signal;
determining an amplitude of the motion signal at the peak;
determining that the amplitude is greater than the threshold; and
increasing the av interval in response to the determination that the amplitude is greater than the threshold.
0. 14. The leadless pacing device of claim 1, wherein the av interval begins when the mechanical sensing circuitry detected the contraction of the atrium.
0. 15. The leadless pacing device of claim 1, wherein the processing circuitry is configured to adjust the av interval based on the determination of whether the delivery of the pacing pulse to the ventricle was effective.
0. 16. The leadless pacing device of claim 4, wherein the electrical sensing circuitry is configured to detect the depolarizations of the at least one atrium via the plurality of electrodes.
0. 17. The leadless pacing device of claim 4, wherein the processing circuitry is configured to control the mechanical sensing circuitry to detect the contraction of the atrium based on the motion signal in response to determining that the electrical sensing circuitry did not detect a depolarization of the atrium during a predetermined number of one or more cardiac cycles.
0. 18. The method of claim 7, further comprising adjusting the av interval based on the determination of whether the delivery of the pacing pulse to the ventricle was effective.
0. 19. The method claim 10, wherein detecting the contraction of the atrium based on the motion signal comprises detecting the contraction of the atrium in response to determining that the depolarization of the atrium was not detected during a predetermined number of one or more cardiac cycles.
0. 20. The method of claim 12, wherein determining the contraction of the atrium was not detected during one or more cardiac cycles comprises determining the contraction of the atrium was not detected during a predetermined number of one or more cardiac cycles.
0. 23. The leadless pacing device of claim 22, wherein the motion sensor is configured to generate the motion signal based on motion of the patient and, to identify the condition inconsistent with atrio-synchronous ventricular pacing, the processing circuitry is configured to determine, based on the motion signal, that an amount of motion of the patient satisfies a threshold.
0. 24. The leadless pacing device of claim 22, wherein, to identify the condition inconsistent with atrio-synchronous ventricular pacing, the processing circuitry is configured to determine that a contraction of the atrium was not detected during one or more cardiac cycles.
0. 25. The leadless pacing device of claim 22, wherein, to identify the condition inconsistent with atrio-synchronous ventricular pacing, the processing circuitry is configured to determine that a heart rate of the heart satisfies a threshold.
0. 26. The leadless pacing device of claim 22, wherein, to identify the condition inconsistent with atrio-synchronous ventricular pacing, the processing circuitry is configured to determine that a heart rate irregularity of the heart satisfies a threshold.
|
This application claims the benefit of U.S. Provisional Application No. 62/028,957, filed Jul. 25, 2014, the entire contents of which are incorporated herein by reference.
The disclosure relates to cardiac pacing, and more particularly, to cardiac pacing using a leadless pacing device.
An implantable pacemaker may deliver pacing pulses to a patient's heart and monitor conditions of the patient's heart. In some examples, the implantable pacemaker comprises a pulse generator and one or more electrical leads. The pulse generator may, for example, be implanted in a small pocket in the patient's chest. The electrical leads may be coupled to the pulse generator, which may contain circuitry that generates pacing pulses and/or senses cardiac electrical activity. The electrical leads may extend from the pulse generator to a target site (e.g., an atrium and/or a ventricle) such that electrodes at the distal ends of the electrical leads are positioned at a target site. The pulse generator may provide electrical stimulation to the target site and/or monitor cardiac electrical activity at the target site via the electrodes.
A leadless pacing device has also been proposed for sensing electrical activity and/or delivering therapeutic electrical signals to the heart. The leadless pacing device may include one or more electrodes on its outer housing to deliver therapeutic electrical signals and/or sense intrinsic depolarizations of the heart. The leadless pacing device may be positioned within or outside of the heart and, in some examples, may be anchored to a wall of the heart via a fixation mechanism.
The disclosure describes a leadless pacing device (hereinafter, “LPD”) that is configured for implantation in a ventricle of a heart of a patient, and is configured to deliver atrio-synchronous ventricular pacing based on detection of atrial contraction. More particularly, the LPD includes a motion sensor configured to generate a motion signal as a function of heart movement. The motion sensor may include one or more accelerometers, which may have a single axis, or multiple axes. The LPD is configured to analyze the motion signal within an atrial contraction detection window. The atrial contraction detection window begins upon completion of an atrial contraction detection delay period, which begins upon detection of activation of the ventricle. The LPD is configured to detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. If the LPD does not detect a ventricular depolarization subsequent to the atrial contraction, e.g., within an atrioventricular (AV) interval beginning when the atrial contraction was detected, the LPD delivers a ventricular pacing pulse. In some examples, the LPD is configured to deliver atrio-synchronous ventricular pacing using an electrical AV interval based on detection of atrial depolarizations via a plurality of electrodes of the LPD and, if the LPD is unable to detect atrial depolarizations, switch to delivering atrio-synchronous ventricular pacing using a mechanical AV interval, which may be shorter than the electrical AV interval, based on detection of atrial contractions.
In one example, a leadless pacing device is configured to provide atrio-synchronous ventricular pacing. The leadless pacing device comprises a plurality of electrodes, a motion sensor configured to generate a motion signal as a function of movement of a heart of a patient, a stimulation module coupled to the plurality of electrodes, wherein the stimulation module is configured to generate pacing pulses and deliver the pacing pulses to a ventricle of the heart via the plurality of electrodes, and an electrical sensing module coupled to the plurality of electrodes, wherein the electrical sensing module is configured to detect depolarizations of the ventricle within a cardiac electrogram sensed via the plurality of electrodes. The leadless pacing device further comprises a mechanical sensing module coupled to the motion sensor. The mechanical sensing module is configured to receive the motion signal from the motion sensor, identify an activation of the ventricle and, upon identification of the activation of the ventricle, initiate an atrial contraction detection delay period. The mechanical sensing module is further configured to analyze the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period, and detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window. The leadless pacing device further comprises a processing module configured to control the stimulation module to generate a pacing pulse and deliver the pacing pulse to the ventricle via the plurality of electrodes in response to the detection of the contraction of the atrium by the mechanical sensing module. The leadless pacing device further comprises a housing configured to be implanted within the ventricle, wherein the housing encloses the motion sensor, the stimulation module, the electrical sensing module, the mechanical sensing module, and the processing module.
In another example, a method for providing atrio-synchronous ventricular pacing by a leadless pacing device implanted within a ventricle of a heart of a patient comprises identifying an activation of the ventricle, upon identification of the activation of the ventricle, initiating an atrial contraction detection delay period, and analyzing a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period. The motion signal is generated by a motion sensor of the leadless pacing device as a function of movement of the heart. The method further comprises detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window, and delivering a pacing pulse to the ventricle in response to the detection of the contraction of the atrium.
In another example, a leadless pacing device is configured to provide atrio-synchronous ventricular pacing. The leadless pacing device comprises means for generating a motion signal as a function of movement of a heart of a patient, means for identifying an activation of a ventricle of the heart, means for initiating an atrial contraction detection delay period upon identification of the activation of the ventricle, and means for analyzing the motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period. The leadless pacing device further comprises means for detecting a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window, and means for delivering a pacing pulse to the ventricle in response to the detection of the contraction of the atrium.
In another example, a computer-readable storage medium comprises instructions stored thereon that, when executed by one or more programmable processors of a leadless pacing device configured to provide atrio-synchronous ventricular pacing, cause the one or more processors to identify an activation of the ventricle, upon identification of the activation of the ventricle, initiate an atrial contraction detection delay period, and analyze a motion signal within an atrial contraction detection window that begins upon completion of the atrial contraction detection delay period. The motion signal is generated by a motion sensor of the leadless pacing device as a function of movement of the heart. The instructions further cause the one or more processors to detect a contraction of an atrium of the heart based on the analysis of the motion signal within the atrial contraction detection window, and control delivery of a pacing pulse to the ventricle in response to the detection of the contraction of the atrium.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
Typically, dual-chamber implantable pacemakers are implanted within a pocket within the patient's chest, and coupled to a right-atrial lead and a right-ventricular lead. The right-atrial lead extends from the implantable pacemaker in the pocket to the right atrium of the patient's heart, and positions one or more electrodes within the right atrium. The right-ventricular lead extends from the implantable pacemaker in the pocket to the right ventricle of the patient's heart, and positions one or more electrodes within the right ventricle.
Such dual-chamber implantable pacemakers sense respective cardiac electrical activity, e.g., respective cardiac electrograms, via the one or more electrodes implanted within the right atrium and the one or more electrodes implanted within the right ventricle. In particular, such dual-chamber implantable pacemakers detect intrinsic atrial depolarizations via the one or more electrodes implanted within the right atrium, and intrinsic ventricular depolarizations via the one or more electrodes implanted within the right ventricle. The implantable pacemakers may also deliver pacing pulses to the right atrium and the right ventricle via the one or more electrodes in the right atrium and the right ventricle, respectively. Due to the ability to sense both atrial and ventricular electrical activity, such dual-chamber implantable pacemakers may be able to provide atrio-synchronous ventricular pacing. For patients with intermittent AV node conduction, it may be preferable to inhibit ventricular pacing and allow an intrinsic ventricular depolarization to occur for a time, referred to as the AV interval, after an intrinsic atrial depolarization or atrial pace. Such atrio-synchronous pacing in dual-chamber implantable pacemakers may be according to the VDD or DDD programming modes, which have been used to treat patients with various degrees of AV block.
Implantable cardiac leads and the pocket in which pacemakers are implanted may be associated with complications. To avoid such complications leadless pacing devices sized to be implanted entirely within one chamber, e.g., the right ventricle, of the heart have been proposed. Some proposed leadless pacemakers include a plurality of electrodes that are affixed to, or are a portion of, the housing of the leadless pacing device.
Some proposed leadless pacing devices are capable of sensing intrinsic depolarizations of, and delivering pacing pulses to, the chamber of the heart in which they are implanted via the plurality of electrodes. However, because they are not coupled to electrodes in any other chamber, some proposed leadless pacing devices are incapable of sensing intrinsic depolarizations of, and delivering pacing pulses to, another chamber of the heart. Consequently, when implanted in the right ventricle, for example, such proposed leadless pacing devices may be unable to sense intrinsic atrial depolarizations of the atria, and may be limited to delivery of ventricular pacing according to an asynchronous ventricular pacing, e.g., according to a VVI or VVIR mode.
LPD 12A includes a plurality of electrodes that are affixed to, or are a portion of, the housing of LPD 12A. LPD 12A senses electrical signals associated with depolarization and repolarization of heart 16, i.e., a cardiac electrogram signal, via the electrodes. LPD 12A also delivers cardiac pacing pulses to right ventricle 18 via the electrodes.
LPD 12A detects depolarizations of right ventricle 18 within the cardiac electrogram. In some examples, LPD 12A is not configured to detect intrinsic depolarizations of an atrium, e.g., right atrium 20, or the atria of heart 16 generally, within the cardiac electrogram signal. In other examples, LPD 12A is configured to detect atrial depolarizations within the cardiac electrogram signal. In some examples, LDP 12A is configured to detect atrial depolarizations with the cardiac electrogram signal, but may, at times, be unable to reliably detect atrial depolarizations, e.g., due to the quality of the cardiac electrogram signal, or the relatively small magnitude of the atrial depolarizations within a cardiac electrogram signal sensed via electrodes disposed within right ventricle 18. LPD 12A is configured to detect mechanical contractions of an atrium, e.g., right atrium 20, or the atria of heart 16 generally, e.g., as an alternative to sensing electrical depolarizations of right atrium 20. In this manner, LPD 12A may be configured to deliver atrio-synchronous ventricular pacing to right ventricle 18 even when not configured, or unable, to detect atrial depolarizations.
As described in greater detail below, LPD 12A includes a motion sensor configured to generate a motion signal as a function of movement of a heart of a patient. LPD 12A is configured to identify an activation event of right ventricle 18, and analyze the motion signal within an atrial contraction detection window that begins upon completion of an atrial contraction detection delay period that is initiated upon detection of the activation of the ventricle. The activation of the ventricle may be an intrinsic depolarization of the ventricle or delivery of a pacing pulse to the ventricle. In some examples, LPD 12A may be configured to detect contraction of right ventricle 18 based on the motion signal, and identify activation of the ventricle based on the detected ventricular contraction.
LPD 12A is configured to detect an atrial contraction based on the analysis of the motion signal within the atrial contraction detection window. If a subsequent intrinsic depolarization of right ventricle 18 is not detected, e.g., within an AV interval beginning when the atrial contraction was detected, LPD 12A is further configured to deliver the pacing pulse to right ventricle 18. In this manner, LPD 12A is configured to deliver atrio-synchronous pacing to right ventricle 18 based on detection of atrial contractions.
In some examples, LPD 12A is configured to assess the efficacy of the delivery of atrio-synchronous pacing to right ventricle 18. For example, LPD 12A may detect a resulting contraction of right ventricle 18 based on the motion signal after delivery of a pacing pulse to the right ventricle, and determine whether the delivery of the pacing pulse to the right ventricle was effective based on the detection of the contraction of the right ventricle. In some examples, LPD 12A may determine one or more metrics of the ventricular contraction, such as a timing or amplitude of the ventricular contraction, and adjust the delivery of the ventricular pacing based on the one or more metrics. LPD 12A may adjust the AV interval, which begins upon detection of atrial contraction, based on the one or more metrics, as one example.
In addition to the motion of the heart, a motion signal generated by the motion sensor of LPD 12A may include more general motion of patient 14 due to patient activity or experienced by patient, e.g., driving in a car. Such motion of patient 14 may interfere with the ability of LPD 12A to detect atrial contractions. In some examples, LPD 12A is configured to determine an amount of motion of patient 14 based on the motion signal, and change from delivery of ventricular pacing according to an atrio-synchronous pacing mode to delivery of ventricular pacing according to an asynchronous pacing mode in response to determining that the amount of patient motion exceeds a threshold. In some examples, LPD 12A is additionally or alternatively configured to change from delivery of ventricular pacing according to an atrio-synchronous pacing mode to delivery of ventricular pacing according to an asynchronous pacing mode in response to determining that the heart rate is relatively high and/or irregular, e.g., based on intervals between successive intrinsic ventricular depolarizations and a stored threshold value, such as approximately 100 beats-per-minute (bpm). In some examples, LPD 12A is additionally or alternatively configured to change from delivery of ventricular pacing according to an atrio-synchronous pacing mode to delivery of ventricular pacing according to an asynchronous pacing mode in response to determining that an atrial contraction was not detected during a predetermined number of cardiac cycles. According to an asynchronous ventricular pacing mode, e.g., VVI or VVIR, LPD 12A delivers a ventricular pacing pulse if an intrinsic ventricular depolarization is not detected within a VV interval that begins when a previous intrinsic ventricular depolarization was detected, or a previous ventricular pacing pulse was delivered.
As illustrated in
Data retrieved from LPD 12A using programmer 22 may include cardiac electrograms and motion signals stored by LPD 12A that indicate the electrical and mechanical activity of heart 16, and marker channel data that indicates the occurrence and timing of sensing, diagnosis, and therapy events associated with LPD 12A, e.g., detection of atrial and ventricular depolarizations, atrial and ventricular contractions, and delivery of pacing pulses. Data transferred to LPD 12A using programmer 22 may include, for example, operational programs for LPD 12A that causes LPD 12A to operate as described herein. As examples, data transferred to LPD 12A using programmer 22 may include lengths of any AV intervals, atrial contraction detection delay periods, and atrial contraction detection windows described herein, any threshold values, such as for detecting atrial and/or ventricular contractions, or programming used by LPD 12A to determine such values based on determined parameters of heart 16, patient 14, or LPD 12A.
Fixation tines 32 extend from outer housing 30, and are configured to engage with cardiac tissue to substantially fix a position of housing 30 within a chamber of heart 16, e.g., at or near an apex of right ventricle 18. Fixation tines 32 are configured to anchor housing 30 to the cardiac tissue such that LPD 12A moves along with the cardiac tissue during cardiac contractions. Fixation tines 32 may be fabricated from any suitable material, such as a shape memory material (e.g., Nitinol). The number and configuration of fixation tines 32 illustrated in
LPD 12A is configured to sense electrical activity of heart 16, i.e., a cardiac electrogram, and deliver pacing pulses to right ventricle 18, via electrodes 34 and 36. Electrodes 34 and 36 may be mechanically connected to housing 30, or may be defined by a portion of housing 30 that is electrically conductive. In either case, electrodes are electrically isolated from each other. Electrode 34 may be referred to as a tip electrode, and fixation tines 32 may be configured to anchor LPD 12A to cardiac tissue such that electrode 34 maintains contact with the cardiac tissue. Electrode 36 may be defined by a conductive portion of housing 30 and, in some examples, may define at least part of a power source case that houses a power source (e.g., a battery) of LPD 12A. In some examples, a portion of housing 30 may be covered by, or formed from, an insulative material to isolate electrodes 34 and 36 from each other and/or to provide a desired size and shape for one or both of electrodes 34 and 36.
Outer housing 30 houses electronic components of LPD 12A, e.g., an electrical sensing module for sensing cardiac electrical activity via electrodes 34 and 36, a motion sensor, a mechanical sensing module for detecting cardiac contractions, and an electrical stimulation module for delivering pacing pulses via electrodes 34 and 36. Electronic components may include any discrete and/or integrated electronic circuit components that implement analog and/or digital circuits capable of producing the functions attributed to an LPD described herein. Additionally, housing 30 may house a memory that includes instructions that, when executed by one or more processors housed within housing 30, cause LPD 12A to perform various functions attributed to LPD 12A herein. In some examples, housing 30 may house a communication module that enables LPD 12A to communicate with other electronic devices, such as medical device programmer 22. In some examples, housing 30 may house an antenna for wireless communication. Housing 30 may also house a power source, such as a battery.
Electrode 42 is electrically connected to electronics within a housing of LPD 12B (e.g., an electrical sensing module and a stimulation module) via an electrical conductor of sensing extension 40. In some examples, the electrical conductor of sensing extension 40 is connected to the electronics via an electrically conductive portion of the housing of LPD 12B, which may correspond to electrode 36 of LPD 12A (
Additionally, as shown in
LPD 12B is configured to detect atrial depolarizations within a cardiac electrogram signal. Accordingly, LPD 12B may be configured to deliver atrio-synchronous ventricular pacing based on detection of atrial depolarizations. For example, LPD 12B may be configured to deliver a pacing pulse to right ventricle 18 if an intrinsic depolarization of right ventricle 18 is not detected within an AV interval after detection of a depolarization of right atrium 20.
However, despite sensing extension 40, LPD 12B may, at times, be unable to detect depolarizations of right atrium 20, e.g., due to reduced cardiac electrogram signal quality. Reduced cardiac electrogram signal quality may include reduced amplitude of the atrial component of the cardiac electrogram signal and/or increased noise. Reduced cardiac electrogram signal quality may be caused by, for example, movement of sensing extension 40 relative to right atrium 20, which may be caused by posture or activity of patient 14, or other conditions of patient 14, heart 16, and/or LPD 12B. Consequently, LPD 12B is also configured to detect atrial contractions, and deliver atrio-synchronous ventricular pacing based on the atrial contractions, as described with respect to LPD 12A.
In some examples, LPD 12B is configured to determine that an atrial depolarization was not detected during a cardiac cycle. For example, LPD 12B may be configured to determine that an atrial depolarization was not detected between consecutive ventricular depolarizations. In some examples, in response to determining that a depolarization of the atrium was not detected during a predetermined number of cardiac cycles, LPD 12B is configured to switch from delivering atrio-synchronous ventricular pacing based on detection of atrial depolarization and using an electrical AV interval, to delivering atrio-synchronous ventricular pacing based on detection of atrial contractions and using a mechanical AV interval. Because mechanical contraction of the atrium occurs after electrical depolarization of the atrium, the mechanical AV interval may be shorter than the electrical AV interval.
LPD 12A includes a processing module 50, memory 52, stimulation module 54, electrical sensing module 56, motion sensor 58, mechanical sensing module 60, communication module 62, and power source 64. Power source 64 may include a battery, e.g., a rechargeable or non-rechargeable battery.
Modules included in LPD 12A represent functionality that may be included in LPD 12A of the present disclosure. Modules of the present disclosure may include any discrete and/or integrated electronic circuit components that implement analog and/or digital circuits capable of producing the functions attributed to the modules herein. For example, the modules may include analog circuits, e.g., amplification circuits, filtering circuits, and/or other signal conditioning circuits. The modules may also include digital circuits, e.g., combinational or sequential logic circuits, memory devices, and the like. The functions attributed to the modules herein may be embodied as one or more processors, hardware, firmware, software, or any combination thereof. Depiction of different features as modules is intended to highlight different functional aspects, and does not necessarily imply that such modules must be realized by separate hardware or software components. Rather, functionality associated with one or more modules may be performed by separate hardware or software components, or integrated within common or separate hardware or software components.
Processing module 50 may include any one or more of a microprocessor, a controller, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or equivalent discrete or integrated logic circuitry. In some examples, processing module 50 includes multiple components, such as any combination of one or more microprocessors, one or more controllers, one or more DSPs, one or more ASICs, or one or more FPGAs, as well as other discrete or integrated logic circuitry. Additionally, although illustrated as separate functional components in
Processing module 50 may communicate with memory 52. Memory 52 may include computer-readable instructions that, when executed by processing module 50, cause processing module 50 and any other modules of LPD 12A to perform the various functions attributed to them herein. Memory 52 may include any volatile, non-volatile, magnetic, or electrical media, such as a random access memory (RAM), read-only memory (ROM), non-volatile RAM (NVRAM), electrically-erasable programmable ROM (EEPROM), Flash memory, or any other memory device.
Stimulation module 54 and electrical sensing module 56 are electrically coupled to electrodes 34, 36. Processing module 50 is configured to control stimulation module 54 to generate and deliver pacing pulses to heart 16 (e.g., right ventricle 18 in the example shown in
LPD 12A also includes motion sensor 58. In some examples, motion sensor 58 comprises one or more accelerometers. In some examples, motion sensor 58 comprises a plurality of accelerometers, e.g., three accelerometers, each of which is oriented to detect motion in the direction of a respective axis or vector. The axes or vectors may be orthogonal. In other examples, motion sensor 58 may comprises one or more different sensors that generate a signal as a function of motion, instead of or in addition to the one or more accelerometers, such as gyros, mercury switches, or bonded piezoelectric crystals.
Mechanical sensing module 60 includes circuitry to receive the motion signal from motion sensor 58, as well as circuits to filter, amplify, and otherwise process the motion signal. Because LPD 12A is affixed to heart 16, motion sensor 60 generates a motion signal that varies as a function of motion of the heart, including motion associated with the contraction of the atria, and motion associated with the subsequent contraction of the ventricles. Because LPD 12A is implanted within patient 14, the motion signal generated by motion sensor 58 also varies as a function of any motion of (or experienced by) the patient, e.g., due to patient activity.
As described in greater detail below, mechanical sensing module 60 analyzes the motion signal generated by motion sensor 58 to detect contraction of an atrium. Mechanical sensing module 60 may also analyze the motion signal to detect ventricular contraction. To detect atrial or ventricular contractions, mechanical sensing module 60 may filter the motion signal to exclude components other than cardiac motion, e.g., components of the motion signal associated with motion engaged in or experienced by patient 14. For example, to detect contraction of an atrium, mechanical sensing module 60 may high-pass filter the motion signal, e.g., to exclude frequencies lower than about 40 Hz. As another example, to detect contraction of a ventricle, mechanical sensing module 60 may high-pass filter the motion signal, e.g., to exclude frequencies lower than about 60 Hz.
Mechanical sensing module 60 may also analyze the motion signal to detect other parameters of patient 14, such as patient activity level. To detect patient activity level, mechanical sensing module 60 may filter the motion signal to exclude components other than those resulting from patient activity, such as components associated with cardiac contraction. For example, mechanical sensing module 60 may low-pass filter the motion signal generated by motion sensor 58, e.g., to exclude frequencies above about 40 Hz. Processing module 50 may control stimulation module 54 to deliver rate responsive ventricular pacing based on the activity level determined by motion sensing module 60. For example, processing module 50 may adjust an AV interval based on the activity level.
In examples in which motion sensor 58 includes a plurality of accelerometers or other sensors, a motion signal generated by motion sensor 58 may include one or more of the signals generated by the sensors, respectively, or a combination of one or more of the respective signals, which may be referred to as component signals of the motion signal. Mechanical sensing module 60 may derive the motion signal based on one or more of the component signals according to a sensing vector, where different sensing vectors specify a different one or more of the component signals. In some examples, mechanical sensing module 60 is configured to derive the motion signal according to a variety of different sensing vectors. In some examples, mechanical sensing module 60 may be configured to sense different parameters or events, e.g., atrial contractions, ventricular contractions, and patient activity, using different sensing vectors. In some examples, mechanical sensing module 60 is configured to detect an event or parameter, e.g., atrial contraction, according to a plurality of sensing vectors, and identify one or more sensing vectors that provide adequate detection of the event.
Communication module 62 may include any suitable hardware (e.g., an antenna), firmware, software, or any combination thereof for communicating with another device, such as programmer 22 (
Memory 52 may include data recorded by LPD 12A, e.g., cardiac electrograms, motion signals, heart rates, information regarding detection of atrial contractions, ventricular pacing efficacy, etc. Under the direction of processing module 50, communication module 62 may transfer data recorded by LDP 12A to another device, such as programmer 22. Memory 52 may also store programming data received by processing module 50 from another device, such as programmer 22, via communication module 62. The programming data stored in memory 52 may include, as examples, lengths of any AV intervals, atrial contraction detection delay periods, and atrial contraction detection windows described herein. The programming data stored in memory 52 may additionally or alternatively include any threshold values described herein, such as for detecting atrial and/or ventricular contractions, determining whether pacing is efficacious, or determining whether atrio-synchronous ventricular pacing should by suspended in favor of asynchronous pacing. The programming data stored in memory 52 may additionally or alternatively include data used by processing module 50 to determine any values described herein, e.g., based determined parameters of heart 16, patient 14, or LPD 12A.
As illustrated by
After the ejection phase, cardiac cycle 78 includes a passive filing stage during diastole, during which passive filling of the ventricles may produce the S3 heart sound. Additionally, near the end of diastole, an atrial contraction 82 occurs, actively filling of the ventricles. The active filing of the ventricles may produce the S4 heart sound. The atrial depolarization that resulted in atrial contraction 82 is not present in cardiac electrogram 70. Another cardiac cycle begins with ventricular depolarization 74B, and the resulting ventricular contraction 80B.
Mechanical sensing module 60 detects atrial contractions, and may also detect ventricular contractions, based on an analysis of a motion signal generated by motion sensor 58. The motion signal generated by motion sensor 58 may vary based on the movement of tissue of heart 16, as well as any associated mechanical perturbations or vibrations, during contraction of heart 16. Mechanical perturbations or vibrations may include those associated with the S1-S4 hearts sounds discussed above. For example, mechanical sensing module 60 may detect an atrial contraction based on features in motion signal 72 that are indicative of movement of cardiac tissue during atrial contraction, and/or the presence of mechanical perturbations associated with the S4 heart sound. As another example, mechanical sensing module 60 may detect a ventricular contraction based on features in motion signal 72 that are indicative of movement of cardiac tissue during ventricular contraction, and/or the presence of mechanical perturbations associated with the S1 heart sound.
In response to identifying activation of the ventricle, mechanical sensing module 60 waits for an atrial contraction detection delay period 94, and then analyzes the motion signal generated by motion sensor 58 within an atrial contraction detection window 96 that begins the atrial contraction detection delay period 94 after the activation of the ventricle, i.e., that begins upon completion of the atrial contraction detection delay period 94. In the example of
Starting atrial contraction detection window 96 upon completion of atrial contraction delay period 94 may allow mechanical sensing module 60 to avoid misidentifying ventricular contraction 92A, or other motion of heart during the cardiac cycle prior to atrial depolarization and contraction, as an atrial contraction. In some examples, atrial contraction delay period 94 is at least approximately 300 milliseconds. In some examples, atrial contraction delay period 94 is at least approximately 400 milliseconds, or is approximately 400 milliseconds. In some examples, atrial contraction detection delay period 94 is at least approximately 600 milliseconds. In some examples, processing module 50 and/or mechanical sensing module 60 adjusts atrial contraction detection delay period 94 based on a heart rate of patient 14, e.g., based on one or more intervals between consecutive intrinsic ventricular depolarizations detected by electrical sensing module 56. For example, processing module 50 and/or mechanical sensing module 60 may increase atrial contraction detection delay period 94 as heart rate decreases, and decrease atrial contraction detection delay period 94 as heart rate increases. In some examples, a clinician or other user may program a length of atrial contraction delay period 94, e.g., using programmer 22. The user may select the length of atrial contraction delay period 94 based on individual patient characteristics.
Based on the analysis of the motion signal within atrial contraction detection window 96, mechanical sensing module 60 may detect atrial contraction 98. Mechanical sensing module 60 may extend atrial contraction detection window 96, and the associated analysis of the motion signal, until detection of atrial contraction 98, or until a subsequent intrinsic ventricular depolarization 90B is detected by electrical sensing module 56, or a subsequent ventricular pacing pulse 104 is delivered by stimulation module 54. In some examples, as described above, mechanical sensing module 60 filters the motion signal within atrial contraction detection window 96. Mechanical sensing module 60 may also rectify the motion signal within atrial contraction detection window 96. In some examples, mechanical sensing module 60 detects atrial contraction 98 by comparing an amplitude of the motion signal within atrial contraction detection window 96 to a threshold 100. In some examples, mechanical sensing module 60 determines a derivative signal of the motion signal, e.g., the filtered and/or rectified motion signal, and compares an amplitude of the derivative signal, which represents the rate of change of the motion signal, to threshold 100. In some examples, mechanical sensing module 60 detects the time of atrial contraction 98 as the earliest time point at which the amplitude of the motion signal, or it derivative signal, exceeds threshold 100.
In some examples, threshold 100 is a constant value, which may be determined by a manufacturer of an LPD 12A, or programmed by a clinician using programmer 22. In other examples, mechanical sensing module 60 and/or processing module 50 determines threshold 100 based on a peak amplitude of the motion signal during one or more previously detected atrial contractions. For example, mechanical sensing module 60 and/or processing module 50 may determine that threshold 100 is a value within a range from approximately 20 percent to approximately 80 percent, such as approximately 50 percent, of the peak amplitude of the motion signal during the most recently detected atrial contraction, or of an average peak amplitude of the motion signal during a plurality of previously detected atrial contractions.
In some examples, instead of or in addition to detection of atrial contraction 98 based on a comparison of the motion signal to threshold 100, mechanical sensing module 60 may detect atrial contraction 98 using morphological comparison techniques. For example, mechanical sensing module 60 may compare the motion signal within atrial contraction detection window 96 to one or more templates representing one or more features of a motion signal during atrial contraction. Mechanical sensing module 60 may detect atrial contraction 98 at the point when a statistic resulting from the comparison indicates a sufficient level of similarity between the motion signal and the one or more templates.
In some examples, processing module 50 determines whether electrical sensing module 56 detects an intrinsic ventricular depolarization 90B resulting from the atrial depolarization that led to atrial contraction 98. For example, processing module 50 may determine whether electrical sensing module 56 detects intrinsic ventricular depolarization 90B within an AV interval 102 that begins upon detection of atrial contraction 98 by mechanical sensing module 60. If electrical sensing module 56 does not detect intrinsic depolarization 90B within AV interval 102, e.g., because it did not occur due to AV nodal block, then processing module 50 controls electrical stimulation module 54 to generate and deliver ventricular pacing pulse 104 at the expiration of AV interval 102. In this manner, LPD 12A delivers atrio-synchronous ventricular pacing based on detection of atrial contractions.
Due to the delay between atrial depolarization and atrial contraction 98, and the resulting temporal proximity between atrial contraction 98 and the time at which a paced or intrinsic ventricular depolarization should occur, AV interval 102, which may be referred to as a mechanical AV interval, may be shorter than an (electrical) AV interval employed by a pacemaker that provides atrio-synchronous ventricular pacing based on detection of atrial depolarizations. In some examples, AV interval 102 is less than approximately 100 milliseconds. In some examples, AV interval 102 is less than approximately 50 milliseconds. In some examples, AV interval 102 is approximately 30 milliseconds. In some examples, mechanical AV interval 102 is approximately 20 to 30 milliseconds shorter than an electrical AV interval for the patient.
In some examples, processing module 50 does not employ an AV interval. In such examples, upon detection of atrial contraction 98 by mechanical sensing module 60, processing module determines whether electrical sensing module 56 has detected intrinsic ventricular depolarization 90B. If electrical sensing module 56 has not detected intrinsic ventricular depolarization 90B, then processing module 50 controls stimulation module 54 to generate and deliver a ventricular pacing pulse.
In some examples, LPD 12A determines whether the delivery of ventricular pacing pulse 104 was effective based on detection of the ventricular contraction 92B resulting from the delivery of pacing pulse 104. In such examples, mechanical sensing module 60 detects ventricular contraction 92B based on the motion signal, e.g., based on a comparison of the motion signal to a threshold 106 in a manner similar to that employed for detection of atrial contraction 98 based on threshold 100, or based on a morphological analysis. In some examples, mechanical sensing module 60 detects the time of ventricular contraction 110 to be the first time-point after delivery of pacing pulse 104 when the amplitude of the motion signal exceeds threshold 106. Mechanical sensing module 60 and/or processing module 50 may determine an interval 108 from delivery of pacing pulse 104 to a time of detection of ventricular contraction 92B. Mechanical sensing module 60 may also determine a peak amplitude 110 of the motion signal during ventricular contraction 92B.
In some examples, processing module 50 adjusts AV interval 102 based on the determination of whether the delivery of pacing pulse 104 to the ventricle was effective. For example, processing module 50 may decrease AV interval 102 in response to determining that interval 108 is less than a threshold. Additionally or alternatively, processing module 50 may increase AV interval 102 in response to determining that peak amplitude 110 is greater than a threshold.
If the LPD detects an intrinsic ventricular depolarization resulting from the atrial depolarization that caused the detected atrial contraction (YES of 124), then the LPD identifies the intrinsic ventricular depolarization as a ventricular activation that begins the next cardiac cycle (120). If the LPD does not detect an intrinsic ventricular depolarization resulting from the atrial depolarization that caused the detected atrial contraction (NO of 124), then the LPD delivers a ventricular pacing pulse (126). For example, the LPD may deliver a ventricular pacing pulse upon expiration of the AV interval without detecting an intrinsic ventricular depolarization. The LPD identifies delivery of the ventricular pacing pulse as a ventricular activation that begins the next cardiac cycle (120). The LPD may also determine whether the delivery of the cardiac pacing pulse was effective, e.g., as described above with respect to
The LPD filters the motion signal within the atrial contraction detection window, rectifies the filtered signal, and generates a derivative signal of the filtered and rectified motion signal within the atrial contraction detection window (134). The LPD determines whether an amplitude of the derivative signal within the atrial contraction detection window exceeds a threshold (136). In response to determining that the amplitude of the derivative signal within the atrial contraction detection window exceeds the threshold (YES of 136), the LPD detects an atrial contraction (138).
The LPD determines an interval from the delivery of the ventricular pacing pulse to the time of detection of the ventricular contraction (142). The LPD determines whether the interval is less than a threshold (144). If the interval is less than the threshold (YES of 144), then the LPD decreases an AV interval used for delivery of atrio-synchronous ventricular pacing pulses after detection of an atrial contraction (146).
If the interval is not less than the threshold, e.g., is greater than the threshold (NO of 144), then the LPD determines a peak amplitude of the motion signal during the detected ventricular contraction (148). The LPD determines whether the peak amplitude of the motion signal during the detected ventricular contraction is greater than a threshold (150). If the peak amplitude is greater than the threshold (YES of 150), then the LPD increases an AV interval used for delivery of atrio-synchronous ventricular pacing pulses after detection of an atrial contraction (152). If the peak amplitude is not greater than the threshold, e.g., is less than the threshold (NO of 150), then the LPD maintains the AV interval at its current value (154).
The LPD determines whether a patient activity level, or a level of motion experienced by the patient, exceeds a threshold (162). The LPD may determine the patient activity or motion level based on the motion signal generated by the motion sensor of the LPD. If the activity or motion level exceeds the threshold (YES of 162), then the LPD switches to an asynchronous ventricular pacing mode (164). In the asynchronous ventricular pacing mode, the LDP may deliver pacing pulses to the ventricle if an intrinsic ventricular depolarization is not detected within a VV interval from the last paced or intrinsic ventricular depolarization. The asynchronous ventricular pacing mode of the LPD may be similar to a conventional VVI or VVIR pacing mode, and may be referred to as a WI or VVIR pacing mode.
If the activity or motion level does not exceed the threshold, e.g., is less than the threshold (NO of 162), then the LPD determines whether the heart rate is greater than a threshold, e.g., greater than approximately 80 beats-per-minute or approximately 100 beats-per-minute, and/or irregular (166). The LPD may determine the heart rate and its regularity based on intervals between previous ventricular depolarizations. If the heart rate is greater than the threshold and/or irregular (YES of 166), then the LPD switches to the asynchronous ventricular pacing mode (164).
If the heart rate is not greater than the threshold and/or not irregular (NO of 166), then the LPD determines whether it is able to detect atrial contractions based on an analysis of the motion signal generated by a motion sensor of the LPD (168). For example, the LPD may determine that it is unable to detect atrial contractions if it determines that it has not detected atrial contractions for a predetermined number of cardiac cycles. The predetermined number of cardiac cycles may be any number of one or more cardiac cycles, which may be consecutive or non-consecutive. For example, the predetermined number of cardiac cycles may be three. If LPD determines that it is unable to detect atrial contraction (NO of 168), then the LPD switches to the asynchronous ventricular pacing mode (170). If the LPD determines that it is unable to detect atrial contractions (NO of 168), then the LPD may also change a motion signal sensing vector according to which the LPD derives the motion signal from one or more of a plurality of signals generated by the motion sensor, e.g., the plurality accelerometers of the motion sensor (172).
If the LPD determines that it is able to detect atrial contractions (YES of 168), then LPD may continue to deliver ventricular pacing according to the atrio-synchronous ventricular pacing mode (160). Further, after delivering pacing according to the asynchronous pacing mode (164, 170) for a period of time, or until a condition that led to the switch to the asynchronous mode has abated, the LPD may switch to delivery of ventricular pacing according to the atrio-synchronous ventricular pacing mode.
According to the example technique of
The techniques described in this disclosure, including those attributed to LPDs 12, programmer 22, or various constituent components, may be implemented, at least in part, in hardware, software, firmware or any combination thereof. For example, various aspects of the techniques may be implemented within one or more processors, including one or more microprocessors, DSPs, ASICs, FPGAs, or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components, embodied in programmers, such as physician or patient programmers, stimulators, image processing devices or other devices. The term “processor” or “processing circuitry” may generally refer to any of the foregoing logic circuitry, alone or in combination with other logic circuitry, or any other equivalent circuitry.
Such hardware, software, firmware may be implemented within the same device or within separate devices to support the various operations and functions described in this disclosure. In addition, any of the described units, modules or components may be implemented together or separately as discrete but interoperable logic devices. Depiction of different features as modules or units is intended to highlight different functional aspects and does not necessarily imply that such modules or units must be realized by separate hardware or software components. Rather, functionality associated with one or more modules or units may be performed by separate hardware or software components, or integrated within common or separate hardware or software components.
When implemented in software, the functionality ascribed to the systems, devices and techniques described in this disclosure may be embodied as instructions on a computer-readable medium such as RAM, ROM, NVRAM, EEPROM, FLASH memory, magnetic data storage media, optical data storage media, or the like. The instructions may be executed to support one or more aspects of the functionality described in this disclosure.
Various examples have been described. These and other examples are within the scope of the following claims.
Sheldon, Todd J., Cho, Yong K., Sambelashvili, Aleksandre T.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3486506, | |||
3659615, | |||
3678937, | |||
3693625, | |||
3835864, | |||
3943936, | Sep 21 1970 | Rasor Associates, Inc. | Self powered pacers and stimulators |
4091818, | Aug 03 1976 | PENNSYLVANIA RESEARCH CORPORATION, THE, | Cardiac pacing apparatus with electromagnetic interference protection |
4157720, | Sep 16 1977 | Cardiac pacemaker | |
4256115, | Dec 20 1976 | American Technology, Inc. | Leadless cardiac pacer |
4333469, | Jul 20 1979 | ELECTRO-BIOLOGY, INC , #1 ELECTRO-BIOLOGY BOULEVARD, LOS FRAILES INDUSTRIAL PARK, GUAYNABO, PUERTO RICO 00657-1359, A CORP OF DE | Bone growth stimulator |
5170784, | Nov 27 1990 | Leadless magnetic cardiac pacemaker | |
5179947, | Jan 15 1991 | Cardiac Pacemakers, Inc. | Acceleration-sensitive cardiac pacemaker and method of operation |
5193539, | Dec 18 1991 | ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH, THE | Implantable microstimulator |
5193540, | Dec 18 1991 | ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH | Structure and method of manufacture of an implantable microstimulator |
5243977, | Jun 26 1991 | Pacemaker | |
5312439, | Dec 12 1991 | ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH | Implantable device having an electrolytic storage electrode |
5324316, | Dec 18 1991 | ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH, THE | Implantable microstimulator |
5404877, | Jun 04 1993 | Pacesetter, Inc | Leadless implantable sensor assembly and a cardiac emergency warning alarm |
5405367, | Dec 18 1991 | Alfred E. Mann Foundation for Scientific Research | Structure and method of manufacture of an implantable microstimulator |
5411535, | Mar 03 1992 | Terumo Kabushiki Kaisha | Cardiac pacemaker using wireless transmission |
5438990, | Aug 26 1991 | Medtronic, Inc. | Magnetic field sensor |
5441527, | Feb 20 1992 | AMEI TECHNOLOGIES, INC | Implantable bone growth stimulator and method of operation |
5496361, | Jul 14 1993 | Pacesetter, Inc | System and method for detecting cardiac arrhythmias using a cardiac wall acceleration sensor signal |
5529578, | Dec 09 1993 | Medtronic, Inc. | Cardiac pacemaker with triggered magnet modes |
5549650, | Jun 13 1994 | Pacesetter, Inc | System and method for providing hemodynamically optimal pacing therapy |
5674259, | Oct 20 1992 | GRAEMED PTY LIMITED | Multi-focal leadless apical cardiac pacemaker |
5697958, | Jun 07 1995 | SULZER INTERMEDICS INC | Electromagnetic noise detector for implantable medical devices |
5722998, | Jun 07 1995 | Intermedics, Inc. | Apparatus and method for the control of an implantable medical device |
5792208, | Oct 20 1992 | GRAEMED PTY LIMITED | Heart pacemaker |
5814089, | Dec 18 1996 | JARO, MICHAEL J | Leadless multisite implantable stimulus and diagnostic system |
5843132, | Oct 07 1996 | Self-contained, self-powered temporary intravenous pacing catheter assembly | |
5891175, | Dec 26 1996 | Cardiac Pacemakers, Inc | Method and apparatus for rate-responsive cardiac pacing |
5895414, | Apr 19 1996 | Pacemaker housing | |
5954757, | May 17 1991 | GRAEMED PTY LIMITED | Heart pacemaker |
5970986, | Sep 20 1996 | Biotronik Mess- und Therapiegerate GmbH & Co. Ingenieurburo Berlin | Apparatus for rejection diagnostics after organ transplants |
5987352, | Jul 11 1996 | Medtronic, Inc | Minimally invasive implantable device for monitoring physiologic events |
6044300, | May 17 1991 | GRAEMED PTY LIMITED | Heart pacemaker |
6051017, | Feb 20 1996 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator and systems employing the same |
6141588, | Jul 24 1998 | Intermedics Inc | Cardiac simulation system having multiple stimulators for anti-arrhythmia therapy |
6144879, | May 17 1991 | GRAEMED PTY LIMITED | Heart pacemaker |
6175764, | Feb 20 1996 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator system for producing repeatable patterns of electrical stimulation |
6181965, | Feb 20 1996 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator system for prevention of disorders |
6185452, | Feb 26 1997 | ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH | Battery-powered patient implantable device |
6185455, | Feb 20 1996 | Boston Scientific Neuromodulation Corporation | Method of reducing the incidence of medical complications using implantable microstimulators |
6198972, | Apr 30 1997 | Medtronic, Inc. | Control of externally induced current in implantable medical devices |
6208894, | Feb 26 1997 | Boston Scientific Neuromodulation Corporation | System of implantable devices for monitoring and/or affecting body parameters |
6208900, | Mar 28 1996 | Medtronic, Inc. | Method and apparatus for rate-responsive cardiac pacing using header mounted pressure wave transducer |
6208901, | Mar 03 1997 | BIOTRONIK MESS - UND THERAPIEGERAETE GMBH & CO INGENIEURBUERO BERLIN | Apparatus for determining the AV transmission time |
6214032, | Feb 20 1996 | Boston Scientific Neuromodulation Corporation | System for implanting a microstimulator |
6240316, | Aug 14 1998 | Boston Scientific Neuromodulation Corporation | Implantable microstimulation system for treatment of sleep apnea |
6315721, | Feb 26 1997 | Boston Scientific Neuromodulation Corporation | System of implantable devices for monitoring and/or affecting body parameters |
6348070, | Apr 17 1998 | MED-EL ELEKTROMEDIZINISCHE GERATE GES M B H | Magnetic-interference-free surgical prostheses |
6366811, | Oct 13 1998 | Cardiac Pacemakers, Inc. | Extraction of hemodynamic pulse pressure from fluid and myocardial accelerations |
6415184, | Jan 06 1999 | BALL SEMICONDUCTOR, INC | Implantable neuro-stimulator with ball implant |
6445953, | Jan 16 2001 | Kenergy, Inc. | Wireless cardiac pacing system with vascular electrode-stents |
6580947, | Mar 10 2000 | Medtronic, Inc. | Magnetic field sensor for an implantable medical device |
6592518, | Apr 05 2001 | KENERGY, INC | Cardiac monitoring system and method with multiple implanted transponders |
6628989, | Oct 16 2000 | Remon Medical Technologies, Ltd. | Acoustic switch and apparatus and methods for using acoustic switches within a body |
6654638, | Apr 06 2000 | Cardiac Pacemakers, Inc | Ultrasonically activated electrodes |
6662050, | Aug 03 2001 | Medtronic, Inc | Notification of programmed state of medical device |
6733485, | May 25 2001 | Boston Scientific Neuromodulation Corporation | Microstimulator-based electrochemotherapy methods and systems |
6735474, | Jul 06 1998 | Boston Scientific Neuromodulation Corporation | Implantable stimulator system and method for treatment of incontinence and pain |
6735475, | Jan 30 2001 | Boston Scientific Neuromodulation Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain |
6738672, | Jun 18 2001 | ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH | Miniature implantable connectors |
6764446, | Oct 16 2000 | Remon Medical Technologies LTD | Implantable pressure sensors and methods for making and using them |
6788975, | Jan 30 2001 | Boston Scientific Neuromodulation Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for epilepsy |
6804561, | Oct 11 2000 | Alfred E. Mann Foundation for Scientific Research; ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH | Antenna for miniature implanted medical device |
6871099, | Aug 18 2000 | Boston Scientific Neuromodulation Corporation | Fully implantable microstimulator for spinal cord stimulation as a therapy for chronic pain |
6901292, | Mar 19 2001 | Medtronic, Inc. | Control of externally induced current in an implantable pulse generator |
6907285, | Jan 16 2001 | Kenergy, Inc. | Implantable defibrillartor with wireless vascular stent electrodes |
6917833, | Sep 16 2003 | Kenergy, Inc. | Omnidirectional antenna for wireless communication with implanted medical devices |
6925328, | Apr 20 2000 | Medtronic, Inc | MRI-compatible implantable device |
6937906, | Jan 29 2002 | Medtronic, Inc | Method and apparatus for detecting static magnetic fields |
6941171, | Jul 06 1998 | Boston Scientific Neuromodulation Corporation | Implantable stimulator methods for treatment of incontinence and pain |
6947782, | Jun 18 2001 | ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH | Miniature implantable connectors |
7003350, | Nov 03 2003 | Kenergy, Inc.; KENERGY, INC | Intravenous cardiac pacing system with wireless power supply |
7006864, | Jun 17 2003 | EBR Systems, Inc. | Methods and systems for vibrational treatment of cardiac arrhythmias |
7024248, | Oct 16 2000 | Remon Medical Technologies LTD | Systems and methods for communicating with implantable devices |
7047074, | Feb 20 2001 | Medtronic, Inc | Electromagnetic interference immune tissue invasive system |
7050849, | Nov 06 2003 | EBR Systems, Inc. | Vibrational therapy device used for resynchronization pacing in a treatment for heart failure |
7054692, | Jun 22 2001 | Boston Scientific Neuromodulation Corporation | Fixation device for implantable microdevices |
7076283, | Oct 31 2001 | Medtronic, Inc | Device for sensing cardiac activity in an implantable medical device in the presence of magnetic resonance imaging interference |
7082328, | Jan 29 2002 | Medtronic, Inc | Methods and apparatus for controlling a pacing system in the presence of EMI |
7082336, | Jun 04 2003 | NuXcel2, LLC | Implantable intravascular device for defibrillation and/or pacing |
7103408, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Electrode assembly for a microstimulator |
7114502, | Feb 26 1997 | Alfred E. Mann Foundation for Scientific Research | Battery-powered patient implantable device |
7120992, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Method of making an electronic module |
7132173, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Self-centering braze assembly |
7167751, | Mar 01 2001 | Boston Scientific Neuromodulation Corporation | Method of using a fully implantable miniature neurostimulator for vagus nerve stimulation |
7177698, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Telemetry system for use with microstimulator |
7184830, | Aug 18 2003 | EBR Systems, Inc. | Methods and systems for treating arrhythmias using a combination of vibrational and electrical energy |
7198603, | Apr 14 2003 | Remon Medical Technologies LTD | Apparatus and methods using acoustic telemetry for intrabody communications |
7200437, | Oct 13 2004 | Pacesetter, Inc.; Pacesetter, Inc | Tissue contact for satellite cardiac pacemaker |
7203548, | Jun 20 2002 | Boston Scientific Neuromodulation Corporation | Cavernous nerve stimulation via unidirectional propagation of action potentials |
7212863, | Sep 23 2002 | ST JUDE MEDICAL AB | Implantable medical device operable in a special mode upon activation during a programmed time |
7214189, | Sep 02 2004 | PROTEUS DIGITAL HEALTH, INC | Methods and apparatus for tissue activation and monitoring |
7236821, | Feb 19 2002 | Cardiac Pacemakers, Inc | Chronically-implanted device for sensing and therapy |
7236829, | Aug 30 2004 | Pacesetter, Inc.; Pacesetter, Inc | Implantable leadless cardiac device with flexible flaps for sensing |
7242981, | Jun 30 2003 | MEDOS INTERNATIONAL SARL | System and method for controlling an implantable medical device subject to magnetic field or radio frequency exposure |
7260436, | Oct 16 2001 | Case Western Reserve University | Implantable networked neural system |
7283873, | May 03 2004 | Pacesetter, Inc. | Monitoring and synchronizing ventricular contractions using an implantable stimulation device |
7283874, | Oct 16 2000 | Remon Medical Technologies LTD | Acoustically powered implantable stimulating device |
7286883, | Jun 18 2001 | Alfred E. Mann Foundation for Scientific Research | Miniature implantable connection method |
7292890, | Jun 20 2002 | Boston Scientific Neuromodulation Corporation | Vagus nerve stimulation via unidirectional propagation of action potentials |
7294108, | Jan 27 2005 | Pacesetter, Inc. | Cardiac event microrecorder and method for implanting same |
7295879, | Jun 24 2005 | Kenergy, Inc. | Double helical antenna assembly for a wireless intravascular medical device |
7310556, | Mar 24 2005 | Kenergy, Inc. | Implantable medical stimulation apparatus with intra-conductor capacitive energy storage |
7330756, | Mar 18 2005 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator with conductive plastic electrode and methods of manufacture and use |
7343204, | Jun 18 2001 | Alfred E. Mann Foundation for Scientific Research | Miniature implantable connectors |
7351921, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Assembly for a microstimulator |
7363082, | Mar 24 2005 | Interventional Autonomics Corporation | Flexible hermetic enclosure for implantable medical devices |
7428438, | Jun 28 2002 | BOSTON SCIENTIIC NEUROMODULATION CORPORATION | Systems and methods for providing power to a battery in an implantable stimulator |
7437193, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Microstimulator employing improved recharging reporting and telemetry techniques |
7444180, | May 25 2005 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator with dissecting tip and/or retrieving anchor and methods of manufacture and use |
7450996, | Feb 20 2001 | Medtronic, Inc | Medical device with an electrically conductive anti-antenna geometrical shaped member |
7450998, | Nov 21 2003 | Alfred E. Mann Foundation for Scientific Research | Method of placing an implantable device proximate to neural/muscular tissue |
7493172, | Jan 30 2001 | Boston Scientific Neuromodulation Corporation | Methods and systems for stimulating a nerve originating in an upper cervical spine area to treat a medical condition |
7513257, | Feb 26 1997 | Alfred E. Mann Foundation for Scientific Research | System of implantable devices for monitoring and/or affecting body parameters |
7519421, | Jan 16 2001 | KENERGY, INC | Vagal nerve stimulation using vascular implanted devices for treatment of atrial fibrillation |
7519424, | Jan 30 2006 | KLEIN, GEORGE J , M D | Intravascular medical device |
7529589, | Jun 04 2003 | NuXcel2, LLC | Intravascular electrophysiological system and methods |
7532932, | Mar 08 2005 | Kenergy, Inc. | Implantable medical apparatus having an omnidirectional antenna for receiving radio frequency signals |
7532933, | Oct 20 2004 | SciMed Life Systems, INC | Leadless cardiac stimulation systems |
7535296, | Feb 24 2006 | KENERGY, INC | Class-E radio frequency power amplifier with feedback control |
7555345, | Mar 11 2005 | Medtronic, Inc. | Implantable neurostimulator device |
7558631, | Dec 21 2004 | EBR SYSTEMS, INC | Leadless tissue stimulation systems and methods |
7561915, | Dec 17 2004 | Cardiac Pacemakers, Inc. | MRI system having implantable device safety features |
7565195, | Apr 11 2005 | Pacesetter, Inc. | Failsafe satellite pacemaker system |
7587241, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Method for controlling telemetry in an implantable medical device based on power source capacity |
7606621, | Dec 21 2004 | EBR Systems, Inc. | Implantable transducer devices |
7610092, | Dec 21 2004 | EBR Systems, Inc. | Leadless tissue stimulation systems and methods |
7616990, | Oct 24 2005 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
7616992, | Jan 30 2006 | KLEIN, GEORGE J , M D | Intravascular medical device |
7617007, | Jun 04 2003 | Interventional Autonomics Corporation | Method and apparatus for retaining medical implants within body vessels |
7627371, | Feb 13 2006 | NATIONAL SUN YAT-SEN UNIVERSITY | Implantable biomedical chip with modulator for a wireless neural stimulation system |
7627376, | Jan 30 2006 | KLEIN, GEORGE J , M D | Intravascular medical device |
7627383, | Mar 15 2005 | Boston Scientific Neuromodulation Corporation | Implantable stimulator |
7630767, | Jul 14 2004 | Pacesetter, Inc. | System and method for communicating information using encoded pacing pulses within an implantable medical system |
7634313, | Apr 11 2005 | Pacesetter, Inc. | Failsafe satellite pacemaker system |
7637867, | Sep 02 2004 | PROTEUS DIGITAL HEALTH, INC | Methods for configuring implantable satellite effectors |
7640060, | Sep 02 2004 | PROTEUS DIGITAL HEALTH, INC | Implantable satellite effectors |
7640061, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Electronic module design to maximize volume efficiency |
7647109, | Oct 20 2004 | SciMed Life Systems, INC | Leadless cardiac stimulation systems |
7650186, | Oct 20 2004 | Boston Scientific Scimed, Inc. | Leadless cardiac stimulation systems |
7706892, | Jan 20 2005 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator with plastic housing and methods of manufacture and use |
7713194, | Sep 02 2004 | PROTEUS DIGITAL HEALTH, INC | Methods for configuring satellite electrodes |
7734343, | Jun 04 2003 | NuXcel2, LLC | Implantable intravascular device for defibrillation and/or pacing |
7747335, | Dec 12 2003 | Interventional Autonomics Corporation | Implantable medical device having pre-implant exoskeleton |
7751881, | Jun 20 2006 | EBR Systems, Inc. | Acoustically-powered wireless defibrillator |
7766216, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Self-centering braze assembly methods |
7771838, | Oct 12 2004 | Boston Scientific Neuromodulation Corporation | Hermetically bonding ceramic and titanium with a Ti-Pd braze interface |
7781683, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Assembly for a microstimulator |
7809438, | Aug 18 2003 | EBR Systems, Inc. | Methods and systems for treating arrhythmias using a combination of vibrational and electrical energy |
7822480, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Systems and methods for communicating with an implantable stimulator |
7826903, | Oct 05 2005 | Kenergy, Inc. | Radio frequency antenna for a wireless intravascular medical device |
7840282, | Jun 04 2003 | NuXcel2, LLC | Method and apparatus for retaining medical implants within body vessels |
7848815, | Dec 21 2004 | EBR Systems, Inc. | Implantable transducer devices |
7848823, | Dec 09 2005 | Boston Scientific Scimed, Inc | Cardiac stimulation system |
7860564, | Dec 15 2005 | Cardiac Pacemakers, Inc | Method and apparatus for a small power source for an implantable device |
7860570, | Jun 20 2002 | Boston Scientific Neuromodulation Corporation | Implantable microstimulators and methods for unidirectional propagation of action potentials |
7890173, | Dec 21 2004 | EBR Systems, Inc. | Implantable transducer devices |
7894907, | Jun 20 2006 | EBR Systems, Inc. | Systems and methods for implantable leadless nerve stimulation |
7899541, | Jun 20 2006 | EBR Systems, Inc. | Systems and methods for implantable leadless gastrointestinal tissue stimulation |
7899542, | Jun 20 2006 | EBR Systems, Inc. | Systems and methods for implantable leadless spine stimulation |
7899554, | Jun 04 2003 | NuXcel2, LLC | Intravascular System and Method |
7904167, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Telemetry system for use with microstimulator |
7930031, | Oct 16 2000 | Remon Medical Technologies, Ltd. | Acoustically powered implantable stimulating device |
7937148, | Oct 14 2005 | Pacesetter, Inc | Rate responsive leadless cardiac pacemaker |
7945333, | Oct 14 2005 | Pacesetter, Inc | Programmer for biostimulator system |
7957805, | Jun 01 2005 | Boston Scientific Neuromodulation Corporation | Implantable microstimulator with external electrodes disposed on a film substrate and methods of manufacture and use |
7979126, | Oct 18 2006 | Boston Scientific Neuromodulation Corporation | Orientation-independent implantable pulse generator |
7991467, | Apr 26 2005 | Medtronic, Inc | Remotely enabled pacemaker and implantable subcutaneous cardioverter/defibrillator system |
7996097, | Mar 29 2004 | iRobot Corporation | Methods and apparatus for position estimation using reflected light sources |
8010209, | Oct 14 2005 | Pacesetter, Inc | Delivery system for implantable biostimulator |
8019419, | Sep 25 2007 | Methods and apparatus for leadless, battery-less, wireless stimulation of tissue | |
8032219, | Apr 22 2005 | Biotronik CRM Patent AG | Cardiac pacemaker having a sealed oblong housing |
8032227, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Method for controlling telemetry in an implantable medical device based on power source capacity |
8078279, | Jan 30 2006 | KLEIN, GEORGE J , M D | Intravascular medical device |
8078283, | Jun 20 2006 | EBR Systems, Inc. | Systems and methods for implantable leadless bone stimulation |
8103344, | Oct 31 2006 | ST JUDE MEDICAL AB | Method, device, implantable stimulator and dual chamber cardiac therapy system |
8116883, | Jun 04 2003 | NuXcel2, LLC | Intravascular device for neuromodulation |
8126561, | Oct 24 2005 | Cardiac Pacemakers, Inc. | Implantable and rechargeable neural stimulator |
8127424, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Method for assembling components of a microstimulator |
8165696, | Feb 25 2005 | Boston Scientific Neuromodulation Corporation | Multiple-pronged implantable stimulator and methods of making and using such a stimulator |
8185212, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Chair pad charging and communication system for a battery-powered microstimulator |
8204595, | Mar 11 2005 | Boston Scientific Neuromodulation Corporation | Lead assembly for implantable microstimulator |
8224449, | Jun 29 2009 | Boston Scientific Neuromodulation Corporation | Microstimulator with flap electrodes |
8239045, | Jun 04 2003 | NuXcel2, LLC | Device and method for retaining a medical device within a vessel |
8240780, | Nov 26 2008 | Robert Bosch GmbH | Hydraulic brake booster |
8295939, | Oct 14 2005 | Pacesetter, Inc | Programmer for biostimulator system |
8301242, | Dec 15 2005 | Cardiac Pacemakers, Inc. | Method and apparatus for a small power source for an implantable device |
8301262, | Feb 06 2008 | Cardiac Pacemakers, Inc. | Direct inductive/acoustic converter for implantable medical device |
8311627, | Dec 15 2005 | International Business Machines Corp | Method and apparatus for a small power source for an implantable device |
8315701, | Dec 21 2004 | EBR Systems, Inc. | Leadless tissue stimulation systems and methods |
8321036, | Feb 15 2002 | CERBERUS BUSINESS FINANCE, LLC, AS COLLATERAL AGENT | Cardiac rhythm management device |
8332036, | Oct 20 2004 | Boston Scientific Scimed, Inc | Leadless cardiac stimulation systems |
8340780, | Oct 20 2004 | SciMed Life Systems, Inc. | Leadless cardiac stimulation systems |
8352025, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker triggered by conductive communication |
8352028, | Mar 26 2010 | Medtronic, Inc | Intravascular medical device |
8359098, | May 29 2009 | Medtronic, Inc. | Implantable medical device with exposed generator |
8364267, | Jan 28 2008 | Boston Scientific Neuromodulation Corporation | Fixation of implantable pulse generators |
8364276, | Mar 25 2008 | EBR SYSTEMS, INC | Operation and estimation of output voltage of wireless stimulators |
8364278, | Jan 29 2003 | Boston Scientific Neuromodulation Corporation | Lead assembly for implantable microstimulator |
8364280, | May 28 2004 | Boston Scientific Neuromodulation Corporation | Engagement tool for implantable medical devices |
8368051, | Jul 11 2008 | California Institute of Technology | Complementary barrier infrared detector (CBIRD) |
8374696, | Sep 14 2005 | UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC | Closed-loop micro-control system for predicting and preventing epileptic seizures |
8386051, | Dec 30 2010 | Medtronic, Inc | Disabling an implantable medical device |
8457742, | Oct 14 2005 | Pacesetter, Inc | Leadless cardiac pacemaker system for usage in combination with an implantable cardioverter-defibrillator |
8478408, | Oct 20 2004 | Boston Scientific Scimed, Inc | Leadless cardiac stimulation systems |
8478431, | Apr 13 2010 | Medtronic, Inc.; MEDTRONIC VASCULAR INC | Slidable fixation device for securing a medical implant |
8489205, | May 03 2011 | Biotronik SE & Co. KG | System for temporary fixation of an implantable medical device |
8494637, | Jun 20 2006 | EBR Systems, Inc. | Systems and methods for implantable leadless gastrointestinal tissue stimulation |
8494642, | Jun 20 2006 | EBR Systems, Inc. | Systems and methods for implantable leadless spine stimulation |
8494644, | Jun 20 2006 | EBR Systems, Inc. | Systems and methods for implantable leadless bone stimulation |
8504156, | Aug 26 2011 | Medtronic, Inc.; Medtronic, Inc | Holding members for implantable cardiac stimulation devices |
8527068, | Feb 02 2009 | Pacesetter, Inc | Leadless cardiac pacemaker with secondary fixation capability |
8532790, | Apr 13 2010 | Medtronic, Inc.; Medtronic Vascular, Inc | Slidable fixation device for securing a medical implant |
8541131, | May 29 2009 | Medtronic, Inc. | Elongate battery for implantable medical device |
8543190, | Jul 30 2010 | Medtronic, Inc | Inductive coil device on flexible substrate |
8543204, | Dec 22 2011 | Medtronic, Inc. | Timing pacing pulses in single chamber implantable cardiac pacemaker systems |
8543205, | Oct 12 2010 | Pacesetter, Inc | Temperature sensor for a leadless cardiac pacemaker |
8543216, | Jun 28 2002 | Boston Scientific Neuromodulation Corporation | Charging and communication system for a battery-powered microstimulator |
8548605, | Jun 14 2010 | Sorin CRM S.A.S. | Apparatus and system for implanting an autonomous intracardiac capsule |
8560892, | Dec 14 2010 | Medtronic, Inc.; Medtronic, Inc | Memory with selectively writable error correction codes and validity bits |
8565897, | Jun 24 2011 | Sorin CRM S.A.S.; SORIN CRM S A S | Autonomous (leadless) intracardiac implantable medical device with releasable base and fastener element |
8588926, | Mar 25 2008 | EBR Systems, Inc. | Implantable wireless accoustic stimulators with high energy conversion efficiencies |
8626294, | Jul 29 2011 | Medtronic, Inc. | Methods for setting cardiac pacing parameters in relatively high efficiency pacing systems |
8634912, | Nov 04 2011 | Pacesetter, Inc | Dual-chamber leadless intra-cardiac medical device with intra-cardiac extension |
8634919, | Dec 20 2012 | Pacesetter, Inc.; Pacesetter, Inc | Intracardiac implantable medical device for biatrial and/or left heart pacing and method of implanting same |
8639335, | Jan 28 2011 | Medtronic, Inc. | Disabling an implanted medical device with another medical device |
8644922, | Dec 15 2005 | Cardiac Pacemakers, Inc. | Method and apparatus for a small power source for an implantable device |
8660660, | Nov 14 2006 | CORTIGENT, INC | Power scheme for implant stimulators on the human or animal body |
8670842, | Dec 14 2012 | Pacesetter, Inc | Intra-cardiac implantable medical device |
9399140, | Jul 25 2014 | Medtronic, Inc. | Atrial contraction detection by a ventricular leadless pacing device for atrio-synchronous ventricular pacing |
20030114905, | |||
20030144704, | |||
20030204212, | |||
20040015204, | |||
20040073267, | |||
20040088012, | |||
20040093039, | |||
20040122477, | |||
20040133242, | |||
20040147973, | |||
20040162590, | |||
20040172089, | |||
20040215264, | |||
20040225332, | |||
20050038482, | |||
20050055061, | |||
20050070962, | |||
20050256549, | |||
20050288717, | |||
20060074449, | |||
20060135999, | |||
20060136005, | |||
20060167496, | |||
20060173295, | |||
20060173497, | |||
20060241705, | |||
20060241732, | |||
20060293591, | |||
20060293714, | |||
20070027508, | |||
20070060961, | |||
20070073353, | |||
20070075905, | |||
20070078490, | |||
20070088396, | |||
20070088397, | |||
20070106332, | |||
20070106357, | |||
20070118187, | |||
20070129773, | |||
20070135883, | |||
20070150037, | |||
20070156204, | |||
20070173890, | |||
20070185538, | |||
20070210862, | |||
20070219590, | |||
20070238975, | |||
20070255327, | |||
20070276444, | |||
20070288076, | |||
20070288077, | |||
20070293904, | |||
20070293908, | |||
20070293912, | |||
20070293913, | |||
20080009910, | |||
20080033497, | |||
20080039904, | |||
20080051854, | |||
20080058886, | |||
20080077184, | |||
20080077188, | |||
20080097529, | |||
20080109054, | |||
20080119911, | |||
20080132961, | |||
20080140154, | |||
20080154342, | |||
20080234771, | |||
20080269816, | |||
20080269825, | |||
20080288039, | |||
20080294208, | |||
20080294210, | |||
20080319502, | |||
20090024180, | |||
20090048583, | |||
20090082827, | |||
20090082828, | |||
20090105779, | |||
20090157146, | |||
20090171408, | |||
20090192570, | |||
20090198293, | |||
20090198295, | |||
20090198308, | |||
20090326601, | |||
20100049270, | |||
20100094367, | |||
20100161002, | |||
20100179628, | |||
20100198294, | |||
20100249883, | |||
20100249885, | |||
20100286744, | |||
20100304209, | |||
20100305627, | |||
20100305628, | |||
20100305629, | |||
20100312320, | |||
20110054555, | |||
20110060392, | |||
20110071585, | |||
20110071586, | |||
20110077707, | |||
20110077708, | |||
20110077721, | |||
20110137378, | |||
20110160792, | |||
20110160801, | |||
20110208260, | |||
20110245782, | |||
20110270339, | |||
20110270340, | |||
20110282423, | |||
20110313490, | |||
20120059431, | |||
20120081201, | |||
20120095521, | |||
20120095539, | |||
20120101392, | |||
20120109149, | |||
20120109236, | |||
20120116489, | |||
20120143271, | |||
20120158090, | |||
20120158111, | |||
20120165827, | |||
20120172690, | |||
20120172891, | |||
20120172892, | |||
20120172943, | |||
20120179219, | |||
20120197352, | |||
20120197373, | |||
20120215274, | |||
20120232371, | |||
20120271186, | |||
20120290021, | |||
20120290025, | |||
20120316622, | |||
20120323099, | |||
20120330174, | |||
20130023975, | |||
20130030483, | |||
20130035748, | |||
20130053907, | |||
20130053913, | |||
20130066169, | |||
20130073004, | |||
20130079798, | |||
20130079861, | |||
20130085407, | |||
20130103047, | |||
20130103109, | |||
20130110127, | |||
20130110219, | |||
20130116529, | |||
20130116738, | |||
20130116740, | |||
20130123872, | |||
20130123875, | |||
20130131159, | |||
20130131693, | |||
20130138006, | |||
20130150695, | |||
20130184790, | |||
20130226259, | |||
20130231710, | |||
20130234692, | |||
20130235663, | |||
20130235672, | |||
20130238044, | |||
20130238056, | |||
20130238072, | |||
20130238073, | |||
20130238840, | |||
20130253309, | |||
20130253344, | |||
20130253345, | |||
20130253346, | |||
20130253347, | |||
20130261497, | |||
20130268042, | |||
20130274828, | |||
20130274847, | |||
20130282070, | |||
20130282073, | |||
20130302665, | |||
20130303872, | |||
20130324825, | |||
20130325081, | |||
20130331903, | |||
20130345770, | |||
20140012342, | |||
20140012344, | |||
20140018688, | |||
20140018876, | |||
20140018877, | |||
20140026016, | |||
20140031836, | |||
20140031837, | |||
20140039570, | |||
20140039578, | |||
20140039588, | |||
20140039591, | |||
20140046200, | |||
20140046395, | |||
20140058240, | |||
20140072872, | |||
20140100627, | |||
20140121720, | |||
CN101185789, | |||
CN101284160, | |||
EP1493460, | |||
EP1541191, | |||
EP2526999, | |||
RE30366, | Sep 15 1976 | INTERMEDICS, INC , A CORP OF TEX | Organ stimulator |
TW1251986, | |||
TW1252007, | |||
WO2005035048, | |||
WO2006081434, | |||
WO2006099425, | |||
WO2007117835, | |||
WO2009006531, | |||
WO2009052480, | |||
WO2012057662, | |||
WO2012150000, | |||
WO2012154599, | |||
WO2013080038, | |||
WO2013121431, | |||
WO2014046662, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 19 2014 | CHO, YONG K | Medtronic, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050165 | /0344 | |
Dec 19 2014 | SAMBELASHVILI, ALEKSANDRE T | Medtronic, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050165 | /0344 | |
Dec 19 2014 | SHELDON, TODD J | Medtronic, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050165 | /0344 | |
Jul 25 2018 | Medtronic, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 25 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Dec 19 2023 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 08 2023 | 4 years fee payment window open |
Mar 08 2024 | 6 months grace period start (w surcharge) |
Sep 08 2024 | patent expiry (for year 4) |
Sep 08 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 08 2027 | 8 years fee payment window open |
Mar 08 2028 | 6 months grace period start (w surcharge) |
Sep 08 2028 | patent expiry (for year 8) |
Sep 08 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 08 2031 | 12 years fee payment window open |
Mar 08 2032 | 6 months grace period start (w surcharge) |
Sep 08 2032 | patent expiry (for year 12) |
Sep 08 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |