quantum dot polymer composites for on-chip light emitting diode applications are described. In an example, a composite for on-chip light emitting diode application includes a polymer matrix, a plurality of quantum dots dispersed in the polymer matrix, and a base dispersed in the polymer matrix.
|
1. A composite for on-chip light emitting diode application, the composite comprising:
a polymer matrix;
a plurality of quantum dots dispersed in the polymer matrix; and
a base chemical compound dispersed in the polymer matrix, wherein the base chemical compound is selected from a group of base chemical compounds consisting of lithium hydroxide (LiOH), potassium hydroxide (KOH), sodium hydroxide (NaOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), magnesium hydroxide (Mg(OH)2), calcium hydroxide (Ca(OH)2), strontium hydroxide (Sr(OH)2), barium hydroxide (Ba(OH)2), tetramethylammonium hydroxide ((Me)4NOH), tetraethyl ammonium hydroxide ((Et)4NOH), tetrabutylammonium hydroxide ((Bu)4NOH)), lithium diisopropyl amide (LDA), sodium bis(trimethylsilyl)amide (sodium HMDS), potassium bis(trimethylsilyl)amide (potassium HMDS), and combinations thereof.
3. The composite of
4. The composite of
5. The composite of
a plurality of light-scattering nanoparticles different from the plurality of quantum dots.
6. The composite of
8. The composite of
dioctyl sodium sulfuccinate dispersed in the polymer matrix.
9. A light emitting diode chip comprising a layer of the composite of
0. 10. A composite for on-chip light emitting diode application, the composite comprising:
a polymer matrix;
a plurality of quantum dots dispersed in the polymer matrix;
a base chemical compound dispersed in the polymer matrix; and
dioctyl sodium sulfuccinate dispersed in the polymer matrix.
|
d addition other than KOH may be used to boost PLQY.
In accordance with another exemplary embodiment,
In accordance with another exemplary embodiment,
In another aspect, whether or not implementing the above described storage and delivery approaches, one or more embodiments described herein are directed to quantum dot polymer composites for on-chip light emitting diode applications. In one such embodiment, a principal strategy involves coating a plurality of nano-particles (such as a plurality of quantum dots) with a layer of silica (SiO2), titania (TiO2), or similar insulator coating (shell). Following completion of such a shelling reaction, the particles are further treated accordingly to one or more (in any suitable combination) of the approaches described below.
In a first approach pertaining to embodiments involving the fabrication of quantum dot polymer composites for on-chip light emitting diode applications, a plurality of quantum dots is subjected to a base pre-treatment. For example, in an embodiment, the addition of base (caustic) is beneficial for quantum dot materials. The base addition can be accomplished in several ways: (1) as a pre-treatment, where the nano-particles are treated with base prior to the addition of the nano-articles to a final polymer composite, or (2) the base can be added directly in a manner such that it remains in the final polymer. Regarding pre-treatment approaches, the base can be added for the pre-treatment in several ways: (a) in a first embodiment, the base is added directly to a concentrated quantum dot stock solution in solvent, (b) in a second embodiment, the base is added to the quantum dots following removal of solvent, (c) in a third embodiment, the base is added to a diluted solution of quantum dots, and (d) in s fourth embodiment the base is added to a slurry of QDs in polymer, the base treated slurry can be optimally heated (for further solvent removal/improved performance) Furthermore, it is to be appreciated that the above variations of base pretreatment may be accompanied by the addition of additives, as described in greater detail below.
In an exemplary, high performance embodiment, a base is added to a dilute solution of quantum dots. Suitable bases include, but are not limited to, lithium hydroxide (LiOH), potassium hydroxide (KOH), sodium hydroxide (NaOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), magnesium hydroxide (Mg(OH)2), calcium hydroxide (Ca(OH)2), strontium hydroxide (Sr(OH)2), barium hydroxide (Ba(OH)2), tetramethylammonium hydroxide ((Me)4NOH), tetraethylammonium hydroxide ((Et)4NOH), tetrabutylammonium hydroxide ((Bu)4NOH)), or combinations thereof. Additionally, organic bases have also shown promise and can be useful when the use of a strong caustic is not desired. Examples include lithium diisopropyl amide (LDA), sodium bis(trimethylsilyl)amide (sodium HMDS), and potassium bis(trimethylsilyl)amide (potassium HMDS). The quantum dot material is treated with the base prior to addition to a polymer mixture. This approach allows for the removal of excess or un-reacted base from the film making process, ensuring that the polymer does not degrade from the reaction of base with silicone. Thus, in accordance with a specific embodiment, the above exemplary approach enables treatment with an excess of base to ensure that optimal pre-treatment conditions have been achieved. For example, the amount of base used is typically far greater when used as a pre-treatment compared to adding the base to the polymer directly. However, the approach leaves room for removal of any base prior to polymer incorporation.
Comparison of a pre-treatment protocol and a leave-in protocol can be made by comparing Experiments 1 and 2, respectively, in the Experimental Section provided below. Acid-base titrations have been performed on the discarded supernatants from each operation of the pre-treatment to determine the amount of base that remains in the polymer. From this procedure, it has determined that approximately 25% of the base added remains or, in other words, the amount of base left in place after each process is roughly equal. Experiment 3 in the Experimental Section provided below represents a suitable base pre-treatment protocol.
In a second approach pertaining to embodiments involving the fabrication of quantum dot polymer composites for on-chip light emitting diode applications, a plurality of quantum dots is subjected to a heat treatment. The heat treatment may be of the quantum dots, the quantum dots including an additive, or the quantum dots including an additive and a polymer. In a exemplary embodiment, a mixture of quantum dots and any additives (including base) is treated with heat in one part of a two-part silicone polymer prior to curing in order to improve ultimate composite performance. In one such embodiment, the heat treatment is performed in a portion of a polymer that includes silicon-hydride species.
A heat treatment may be applied with or without the presence of a base. When the treatment is performed without base, quantum dots exhibit noticeable aggregation of dots in the polymer. By contrast, heat treatment in the presence of a base results in noticeably less aggregation and/or condensation of the silica shell surrounding the QDs. Suitable bases include, but are not limited to, LiOH, KOH, NaOH, RbOH, CsOH, Mg(OH)2, Ca(OH)2, Sr(OH)2, Ba(OH)2, (Me)4NOH, (Et)4NOH, (Bu)4NOH, or combinations thereof. Although not to be bound by theory, it is believed that for quantum dots coated with a silica shell, the heat treatment process serves to further the condensation of the silica shell from unreacted hydroxyl (silanol) groups. The condensation is in effect a densification of the shell that provides to a protective barrier that is less permeable to oxygen and moisture. Along with shell densification, it has been observed that the presence of base prevents the extreme aggregation of particles that would otherwise take place at high temperatures, potentially by forming bonds between the polymer and the silica. In other embodiment, the heat treatment is instead performed in another high-boiling point solvent or polymer. Such embodiments may involve using as a base directly in reaction, or simply as residual base left in the quantum dot materials following a pre-treatment.
In an exemplary heat treatment in the presence of a base, quantum dots having an associated solvent removed are then mixed into a non-catalyst containing polymer component. A base, such as one or more of the above listed bases, is added and the solution is mixed again. The vial is placed in an approximately 150° C. oven for a duration approximately in the range of 2 hours, or until any bubbling is completed. The solution is allowed to cool to room temperature and the polymer component with catalyst is added to the solution and mixed thoroughly. The treatment allows the base to react more completely with the quantum dots, instead of the polymer, maintaining or even enhancing the quantum dot performance at high temperatures.
The above described heat treatment approach may also enable ready incorporation of free powders, such as silica, alumina, titania, or magnesium oxide, into the composite films. In an exemplary embodiment, free silica (e.g., nano-powder or other) is weighed out into a vial and the QDH stock solution is added to the vial and mixed well. The solvent is removed and the residual silica/QDH mixture is dispersed in a silicone fluid, usually the non-catalyst containing component of a silicone polymer mixture (but it is to be appreciated that a non-functional silicone fluid may also be used). The solution is mixed well, base is added, and the solution is again mixed thoroughly. The vial is then placed in an approximately 150° C. oven until the visual signs (e.g., bubbling) of the reaction of the base with the QDH and silica are completed. The solution is allowed to cool to room temperature, the vinyl-containing polymer component is mixed in, and films are cast.
In a third approach pertaining to embodiments involving the fabrication of quantum dot polymer composites for on-chip light emitting diode applications, a plurality of quantum dots is subjected to use of other solvents (e.g., DMSO, xylene) for dispersion of the quantum dots in a polymer. For example, in an embodiment, changing the dispersion characteristics of a plurality of quantum dots by using a solvent different from the solvent used for synthesis can increase the performance of the quantum dots in the final composite films. In one such embodiment, dimethyl sulfoxide (DMSO) is used as a solvent to change the characteristics of a quantum dot stock solution. By comparison, when toluene is used (which is typically used as the synthetic solvent), the quantum dots have a tendency to stick to the glass vial. However, when the quantum dots are later dispersed in DMSO, the same does not occur to the same extent. DMSO also has the potential to greatly increase the efficacy of the base treatment of the quantum dots prior to placing in the polymer matrix. Furthermore, in an embodiment, DMSO maintains the solubility of the quantum dots upon the addition of large excesses of base, at least up to 12 times the amount added to the standard process.
In a fourth approach pertaining to embodiments involving the fabrication of quantum dot polymer composites for on-chip light emitting diode applications, a plurality of quantum dots is subjected to use of dehydrogenative coupling catalysts. In an exemplary embodiment, since quantum dots coated with a shell of silica have many silanol groups on the surface available for reaction, one method of covalently bonding the silica shelled quantum dots into the polymer is through the use of dehydrogenative coupling reactions. The reaction typically involves a reactive hydride and a silanol, in which a covalent siloxane bond (—Si—O—Si—) is formed and hydrogen is liberated as a reaction product. The reaction can be catalyzed by dibutyl tin, zinc octoate, zirconium octaote, etc. Such catalysts may be beneficial to silica shells in that they can serve to promote densification of the shell by catalyzing the reaction between a silanol group on the silica shell and another group either on the silica shell, in the polymer matrix, or with some other additive. In a specific such embodiment, tin is used as the catalyst. However, tin catalysts may poison a platinum catalyst used in a subsequent polymer curing step. Accordingly, in other embodiments, treatments with either zinc octoate, zirconium octoate, or other metal (Ca, Co, etc.) octoate catalysts can be used to provide improved quantum yields at high temperatures.
In a fifth approach pertaining to embodiments involving the fabrication of quantum dot polymer composites for on-chip light emitting diode applications, a plurality of quantum dots is subjected to surface functionalization. In an exemplary embodiment, the surface of silica-shelled quantum dots is further reacted to improve incorporation into polymers, to reduce aggregation, and/or to provide improved environmental protection. In one such embodiment, using a reactive vinyl terminated orthosilicate compound, such as VMES, a layer is added around the silica shelled materials such that vinyl groups extend from the shells. The resulting materials behave differently from comparable quantum dot materials having no vinyl groups in that the vinyl-group-terminated samples do not stick to glass and incorporate readily into other polymers. Thus, improved storage and handling conditions may be provided, while minimizing material losses. In an embodiment, the vinyl groups are further reacted with hydrides present in OE6630 B via a standard platinum catalyzed addition reaction that is already occurs between parts A and B.
In a sixth approach pertaining to embodiments involving the fabrication of quantum dot polymer composites for on-chip light emitting diode applications, a plurality of quantum dots is subjected to inclusion of additives to the quantum dot/polymer composite. In an exemplary embodiment, divinylperfluorohexane is added to the quantum dot/polymer composite. In another embodiment, a silica gel is synthesized by feeding tetramethyl orthosilicate (TMOS) or tetraethyl orthosilicate (TEOS) into water containing approximately 5% of a surfactant, dioctyl sodium sulfosuccinate, also known as AOT. In this way, a vast network of silica gels is formed (e.g., referred to as AOT gel). Adding AOT gel to quantum dot/polymer composites significantly improves the thermal stability and moisture resistance. Typically, the AOT gels are added after mixing quantum dot/polymer composites and base. However, no extra base is needed to compensate the addition of AOT gels. Alternatively, AOT gel may be added after pre-treatment of quantum dot/polymer composites with base.
In an embodiment, the inclusion of other additives can be used to enhance optical performance of quantum dot composites (e.g., polymer matrix-based quantum dot compositions). For example, the addition of fumed silica to polymer formulations can greatly enhance the strength of the resulting film. Additionally, such fillers occupy interstitial matrix space, thus reducing moisture permeation and moisture retention. In one such embodiment, fillers such as fumed silica are added to a composition in order to reduce moisture ingress to the quantum dots. Furthermore, such fillers can act as physical spacers between individual quantum dots, reducing aggregation and reducing inter-particle energy transfer. Additionally, the addition of fillers that are highly scattering (i.e., non-absorbing and having a high index of refraction) can lead to further benefits for quantum dot materials. It is to be appreciated that quantum dots differ from traditional phosphors in that they can exhibit multiexcitonic behavior. When traditional YAG phosphors absorb a photon, an electron is elevated into an excited state. After having absorbed a photon, YAG phosphors they will not absorb more light until they have relaxed back to the ground state. As such, the phosphors become somewhat “transparent” while in the excited state. Quantum dots differ in that they can continue to absorb light while in the excited state. When excited, the resulting electron-hole pair is known as an exciton. Multiple excitons are called multiexcitons. The quantum yield of multiexcitions is in general greatly reduced compared to the single-exciton quantum yield, a result of Auger recombination. By having a highly scattering matrix, the excitation flux is more evenly distributed among all quantum dots in the sample. The flux that each quantum dot experiences is effectively reduced, minimizing multi-exciton events. In turn, this ensures that the quantum yield is as close as possible to the single exciton quantum yield and will suffer fewer losses due to Auger recombination. In accordance with an embodiment of the present invention, a scatterers such as a silica nanopowders, magnesium oxide (MgO), or zirconium oxide (ZrO2) are included in a quantum do/polymer matrix composite to enhance the optical performance of the final material.
In another aspect, the above polymer matrix compositions having a dispersion of nano-particles therein, as described above and in association with
The following are attributes of a quantum dot that may be tuned for optimization, with reference to the parameters provided in
In accordance with an embodiment of the present invention, a high PLQY quantum dot is based on a core/shell pairing using an anisotropic core. With reference again to
A workable range of aspect ratio for an anisotropic nano-crystalline core for a quantum dot may be selected for maximization of PLQY. For example, a core essentially isotropic may not provide advantages for increasing PLQY, while a core with too great an aspect ratio (e.g., 2 or greater) may present challenges synthetically and geometrically when forming a surrounding shell. Furthermore, embedding the core in a shell composed of a material different than the core may also be used enhance PLQY of a resulting quantum dot.
Accordingly, in an embodiment, a semiconductor structure includes an anisotropic nano-crystalline core composed of a first semiconductor material and having an aspect ratio between, but not including, 1.0 and 2.0. The semiconductor structure also includes a nano-crystalline shell composed of a second, different, semiconductor material at least partially surrounding the anisotropic nano-crystalline core. In one such embodiment, the aspect ratio of the anisotropic nano-crystalline core is approximately in the range of 1.01-1.2 and, in a particular embodiment, is approximately in the range of 1.1-1.2. In the case of rounded edges, then, the nano-crystalline core may be substantially, but not perfectly, spherical. However, the nano-crystalline core may instead be faceted. In an embodiment, the anisotropic nano-crystalline core is disposed in an asymmetric orientation with respect to the nano-crystalline shell, as described in greater detail in the example below.
Another consideration for maximization of PLQY in a quantum dot structure is to provide an asymmetric orientation of the core within a surrounding shell. For example, referring again to
With reference to the above described nano-crystalline core and nano-crystalline shell pairings, in an embodiment, the nano-crystalline shell completely surrounds the anisotropic nano-crystalline core. In an alternative embodiment, however, the nano-crystalline shell only partially surrounds the anisotropic nano-crystalline core, exposing a portion of the anisotropic nano-crystalline core, e.g., as in a tetrapod geometry or arrangement. In an embodiment, the nano-crystalline shell is an anisotropic nano-crystalline shell, such as a nano-rod, that surrounds the anisotropic nano-crystalline core at an interface between the anisotropic nano-crystalline shell and the anisotropic nano-crystalline core. The anisotropic nano-crystalline shell passivates or reduces trap states at the interface. The anisotropic nano-crystalline shell may also, or instead, deactivate trap states at the interface.
With reference again to the above described nano-crystalline core and nano-crystalline shell pairings, in an embodiment, the first and second semiconductor materials (core and shell, respectively) are each materials such as, but not limited to, Group II-VI materials (where the group II species could include species from Groups II (e.g., magnesium) or XII of the periodic table), Group III-V materials, Group IV-VI materials, Group I-III-VI materials, or Group II-IV-VI materials and, in one embodiment, are mono-crystalline. In one such embodiment, the first and second semiconductor materials are both Group II-VI materials, the first semiconductor material is cadmium selenide (CdSe), and the second semiconductor material is one such as, but not limited to, cadmium sulfide (CdS), zinc sulfide (ZnS), or zinc selenide (ZnSe). In an embodiment, the semiconductor structure further includes a nano-crystalline outer shell at least partially surrounding the nano-crystalline shell and, in one embodiment, the nano-crystalline outer shell completely surrounds the nano-crystalline shell. The nano-crystalline outer shell is composed of a third semiconductor material different from the first and second semiconductor materials. In a particular such embodiment, the first semiconductor material is cadmium selenide (CdSe), the second semiconductor material is cadmium sulfide (CdS), and the third semiconductor material is zinc sulfide (ZnS).
With reference again to the above described nano-crystalline core and nano-crystalline shell pairings, in an embodiment, the semiconductor structure (i.e., the core/shell pairing in total) has an aspect ratio approximately in the range of 1.5-10 and, 3-6 in a particular embodiment. In an embodiment, the nano-crystalline shell has a long axis and a short axis. The long axis has a length approximately in the range of 5-40 nanometers. The short axis has a length approximately in the range of 1-5 nanometers greater than a diameter of the anisotropic nano-crystalline core parallel with the short axis of the nano-crystalline shell. In a specific such embodiment, the anisotropic nano-crystalline core has a diameter approximately in the range of 2-5 nanometers. The thickness of the nano-crystalline shell on the anisotropic nano-crystalline core along a short axis of the nano-crystalline shell is approximately in the range of 1-5 nanometers of the second semiconductor material.
With reference again to the above described nano-crystalline core and nano-crystalline shell pairings, in an embodiment, the anisotropic nano-crystalline core and the nano-crystalline shell form a quantum dot. In one such embodiment, the quantum dot has a photoluminescence quantum yield (PLQY) of at least 90%. Emission from the quantum dot may be mostly, or entirely, from the nano-crystalline core. For example, in an embodiment, emission from the anisotropic nano-crystalline core is at least approximately 75% of the total emission from the quantum dot. An absorption spectrum and an emission spectrum of the quantum dot may be essentially non-overlapping. For example, in an embodiment, an absorbance ratio of the quantum dot based on absorbance at 400 nanometers versus absorbance at an exciton peak for the quantum dot is approximately in the range of 5-35.
In an embodiment, a quantum dot based on the above described nano-crystalline core and nano-crystalline shell pairings is a down-converting quantum dot. However, in an alternative embodiment, the quantum dot is an up-shifting quantum dot. In either case, a lighting apparatus may include a light emitting diode and a plurality of quantum dots such as those described above. The quantum dots may be applied proximal to the LED and provide down-shifting or upshifting of light emitted from the LED. Thus, semiconductor structures according to the present invention may be advantageously used in solid state lighting. The visible spectrum includes light of different colors having wavelengths between about 380 nm and about 780 nm that are visible to the human eye. An LED will emit a UV or blue light which is down-converted (or up-shifted) by semiconductor structures described herein. Any suitable ratio of emission color from the semiconductor structures may be used in devices of the present invention. LED devices according to embodiments of the present invention may have incorporated therein sufficient quantity of semiconductor structures (e.g., quantum dots) described herein capable of down-converting any available blue light to red, green, yellow, orange, blue, indigo, violet or other color. These structures may also be used to downconvert or upconvert lower energy light (green, yellow, etc) from LED devices, as long as the excitation light produces emission from the structures.
The above described semiconductor structures, e.g., quantum dots, suitable for inclusion as a dispersion in a polymer matrix, as described above and in association with
More specifically, as is described in greater detail below in association with
In a first example,
Referring to
In an embodiment, the compositional transition layer 610 is an alloyed layer composed of a mixture of the first and second semiconductor materials. In another embodiment, the compositional transition layer 610 is a graded layer composed of a compositional gradient of the first semiconductor material proximate to the nano-crystalline core 602 through to the second semiconductor material proximate to the nano-crystalline shell 604. In either case, in a specific embodiment, the compositional transition layer 610 has a thickness approximately in the range of 1.5-2 monolayers. Exemplary embodiments include a structure 600 where the first semiconductor material is cadmium selenide (CdSe), the second semiconductor material is cadmium sulfide (CdS), and the compositional transition layer 610 is composed of CdSexSy, where 0<x<1 and 0<y<1, or where the first semiconductor material is cadmium selenide (CdSe), the second semiconductor material is zinc selenide (ZnSe), and the compositional transition layer 610 is composed of CdxZnySe, where 0<x<1 and 0<y<1.
In accordance with an embodiment of the present invention, the compositional transition layer 610 passivates or reduces trap states where the nano-crystalline shell 604 surrounds the nano-crystalline core 602. Exemplary embodiments of core and/or shell parameters include a structure 600 where the nano-crystalline core 602 is an anisotropic nano-crystalline core having an aspect ratio between, but not including, 1.0 and 2.0 (in a specific embodiment, approximately in the range of 1.01-1.2), and the nano-crystalline shell is an anisotropic nano-crystalline shell having an aspect ratio approximately in the range of 4-6.
In an embodiment, the nano-crystalline shell 604 completely surrounds the nano-crystalline core 602, as depicted in
For embodiments including a nano-crystalline outer shell, an additional compositional transition layer may be included. Thus, in a second example,
Referring to
In an embodiment, the second compositional transition layer 712 is an alloyed layer composed of a mixture of the second and third semiconductor materials. In another embodiment, the second compositional transition layer 712 is a graded layer composed of a compositional gradient of the second semiconductor material proximate to the nano-crystalline shell 604 through to the third semiconductor material proximate to the nano-crystalline outer shell 606. In either case, in a specific embodiment, the second compositional transition layer 712 has a thickness approximately in the range of 1.5-2 monolayers. Exemplary embodiments include a structure 700 where the first semiconductor material is cadmium selenide (CdSe), the second semiconductor material is cadmium sulfide (CdS), the third semiconductor material is zinc sulfide (ZnS), and the second compositional transition layer 1412 is composed of CdxZnyS, where 0<x<1 and 0<y<1, or the first semiconductor material is cadmium selenide (CdSe), the second semiconductor material is zinc selenide (ZnSe), the third semiconductor material is zinc sulfide (ZnS), and the second compositional transition layer 1412 is composed of ZnSexSy, where 0<x<1 and 0<y<1. In accordance with an embodiment of the present invention, the second compositional transition layer 712 passivates or reduces trap states where the nano-crystalline outer shell 606 surrounds the nano-crystalline shell 604.
For other embodiments including a nano-crystalline outer shell, an outer compositional transition layer may be included without including an inner compositional transition layer. Thus, in a third example,
Referring to
Referring to
The above described insulator coating may be formed to encapsulate a quantum dot using a reverse micelle process. For example,
In another aspect, a polymer matrix composition, such as compositions described above and in association with
In a first exemplary embodiment, a method of applying a light-conversion layer to a surface of a light-emitting diode (LED) includes first, separately, forming a polymer matrix from a mixture of quantum dots. The resulting polymer matrix includes a dispersion of the quantum dots therein and is then applied to the surface of the LED. In one such embodiment, applying the polymer matrix to the surface of the LED involves using a technique such as, but not limited to, spraying, dip-coating, spin-coating, or drop-casting. The polymer matrix can be cured with ultra-violet (UV) light exposure or heating, in one embodiment. It is to be appreciated that the polymer matrix having the dispersion of quantum dots therein can be applied to discrete LED devices or, in another embodiment, prior to dicing the LEDs from a wafer having a plurality of LED dies. In the latter case, application of the polymer matrix or matrix can involve uniform distribution across the wafer prior to dicing the wafer.
With respect to illustrating the above concepts in a resulting device configuration,
Different approaches may be used to provide a quantum dot layer in a lighting device. In an example,
Although described herein as applicable for on-chip applications, polymer matrix compositions as described above and in association with
In another example,
In another example,
In additional examples,
Thus, quantum dot polymer composites for on-chip light emitting diode applications have been disclosed.
800 μl of shells are added to a vial (the storage solvent is toluene). 1200 μl of additional toluene is added. 480 μl 2M LiOH in methanol is added. The sample is mixed thoroughly by vortex or similar manner. The sample is sonicated. The sample is centrifuged, and the solvent is decanted. 2 mL of toluene is added followed by mixing steps (vortex and sonication). The sample is centrifuged, and the solvent is decanted. 2 mL of toluene is added followed by mixing steps (vortex and sonication). The sample is centrifuged, and the solvent is decanted. 2 grams of a two-part polymer are added (1.6 g OE 6630 B+0.4 g OE 6630 A). The sample is mixed. The composite is dispensed and cured at 150° C. for two hours.
800 μl of shells are added to a vial (the storage solvent is toluene). The sample is centrifuged, and the solvent is decanted. 2 grams of a two-part polymer are added (1.6 g OE 6630 B+0.4 g OE 6630 A). 120 μl of 2M LiOH in methanol is added. The sample is mixed. The composite is dispensed and cured at 150° C. for two hours.
Add 50 mg silica nanopowder to a glass vial. Add 800 μl of shells to the vial. Mix briefly (vortex). Spin, decant solvent (8 ml vials=>4 k rpm, 5 min; 20 ml vials=3 k rpm 7-10 min). Add 2 mL Octadecene (ODE). Mix briefly (vortex, sonicate). Add 700 μl Lithium Hydroxide. Vortex, sonicate 30 min, vortexing occasionally. Spin, decant. Add 2 mL ODE. Mix briefly (vortex, sonicate). Add 700 μl Methanol. Vortex, sonicate 5 min, vortexing occasionally. Spin, decant. Add 2 mL ODE. Mix briefly (vortex, sonicate). Add 700 μl Methanol. Vortex, sonicate 5 min, vortexing occasionally. Spin, decant. Add 2 mL ODE. Heat 150° C. for 1 hr. Spin, decant. Add 2 mL cyclohexane. Vortex, sonicate 5 min, vortexing occasionally. Spin, decant. Add 2 mL cyclohexane. Vortex, sonicate 5 min, vortexing occasionally. Spin, decant. Heat+vac 65° C. overnight. Scrape vials into pre-weighed SM cup. Weigh powder to determine amount of polymer to add (72.4 mg powder=>2.0 grams polymer).
Mangum, Benjamin Daniel, Haley, Kari N., Zhao, Weiwen, Kurtin, Juanita N., Stott, Nathan Evan
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
8025816, | Jun 19 2002 | National Institute of Advanced Industrial Science and Technology | Semiconductor superfine particle phosphor and light emitting device |
20100276638, | |||
20110195011, | |||
20120296124, | |||
20120309002, | |||
20130112942, | |||
20140049155, | |||
20150236213, | |||
20150299348, | |||
20160197247, | |||
20180006195, | |||
20180122998, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 08 2014 | HALEY, KARI N | PACIFIC LIGHT TECHNOLOGIES CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052296 | /0796 | |
Apr 08 2014 | MANGUM, BENJAMIN DANIEL | PACIFIC LIGHT TECHNOLOGIES CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052296 | /0796 | |
Apr 08 2014 | ZHAO, WEIWEN | PACIFIC LIGHT TECHNOLOGIES CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052296 | /0796 | |
Apr 08 2014 | STOTT, NATHAN EVAN | PACIFIC LIGHT TECHNOLOGIES CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052296 | /0796 | |
Apr 08 2014 | KURTIN, JUANITA N | PACIFIC LIGHT TECHNOLOGIES CORP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052296 | /0796 | |
Dec 15 2017 | PACIFIC LIGHT TECHNOLOGIES CORP | OSRAM Opto Semiconductors GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052296 | /0766 | |
Oct 26 2018 | OSRAM Opto Semiconductors GmbH | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 26 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 12 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 26 2024 | 4 years fee payment window open |
Jul 26 2024 | 6 months grace period start (w surcharge) |
Jan 26 2025 | patent expiry (for year 4) |
Jan 26 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 26 2028 | 8 years fee payment window open |
Jul 26 2028 | 6 months grace period start (w surcharge) |
Jan 26 2029 | patent expiry (for year 8) |
Jan 26 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 26 2032 | 12 years fee payment window open |
Jul 26 2032 | 6 months grace period start (w surcharge) |
Jan 26 2033 | patent expiry (for year 12) |
Jan 26 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |