A system can obtain an operational metric associated with the transceiver, determine a target figure of merit based on a compromise between a desired transmitter performance and a desired receiver, determine a current figure of merit based on the operational metric, and adjust the variable reactance component of the impedance matching circuit based on a comparison of the current figure of merit with the target figure of merit. Other embodiments are disclosed.

Patent
   RE48435
Priority
Nov 14 2007
Filed
Apr 02 2019
Issued
Feb 09 2021
Expiry
Nov 14 2027

TERM.DISCL.
Assg.orig
Entity
Large
0
637
EXPIRED
19. A method comprising:
obtaining an operational metric for a transceiver of a communication device;
determining a target figure of merit based on transceiver performance of the communication device;
determining a current figure of merit based on the operational metric, wherein the determining of the target figure of merit is not based on phase information;
comparing the current figure of merit to the target figure of merit to determine a figure of merit comparison; and
adjusting, by a processor of the communication device, a variable reactance component of an impedance matching circuit a variable tuner network operably coupled with an antenna of the communication device, the adjusting of the variable reactance component being performed based on the figure current and target figures of merit comparison and based on previous tuning results associated with previous adjusting of the variable reactance component the variable tuner network, wherein the obtaining of the operational metric is during a transmit mode of the transceiver, and wherein the variable reactance component is adjusted without utilizing operational metrics measured during a receive mode of the communication device.
0. 30. A communication device comprising:
an antenna;
a transceiver;
a variable tuner network coupled with the antenna;
a memory that stores computer instructions; and
a controller coupled with the memory and the variable tuner network, wherein the controller, responsive to executing the computer instructions, performs operations comprising:
obtaining an operational metric for communications of a communication device;
determining a target figure of merit based on communications performance of the communication device;
determining a current figure of merit based on the operational metric, wherein the determining of the target figure of merit is not based on phase information; and
adjusting the variable tuner network based on the current and target figures of merit, wherein the obtaining of the operational metric is during a transmit mode of the transceiver, and wherein the variable tuner network is adjusted without utilizing operational metrics measured during a receive mode of the communication device.
1. A method comprising:
obtaining, by a processor of a communication device, an operational metric for a transceiver of the communication device;
identifying a desired transmitter performance and a desired receiver performance;
determining, by the processor, a target figure of merit based on a compromise between the desired transmitter performance and the desired receiver performance;
determining, by the processor, a current figure of merit based on the operational metric;
comparing, by the processor, the current figure of merit to the target figure of merit; and
adjusting, by the processor, a variable reactance component of an impedance matching circuit a variable tuner network operably coupled with an antenna of the communication device, the adjusting of the variable reactance component being performed based on the comparing of the current and the target figures of merit, wherein the obtaining of the operational metric is during a transmit mode of the transceiver of the communication device, wherein the variable reactance component is adjusted without utilizing operational metrics measured during a receive mode of the communication device.
0. 25. A communication device comprising:
an antenna;
a transceiver;
a variable tuner network coupled with the antenna;
a memory that stores computer instructions; and
a controller coupled with the memory and the variable tuner network, wherein the controller, responsive to executing the computer instructions, performs operations comprising:
obtaining a non-receiver operational metric;
identifying a first desired performance of the communication device;
identifying a second desired performance of the communication device;
determining a target figure of merit based on a compromise between the first desired performance and the second desired performance;
determining a current figure of merit based on the non-receiver operational metric; and
adjusting a variable reactance of the variable tuner network based on the current figure of merit and the target figure of merit, wherein the obtaining of the operational metric is during a transmit mode of the transceiver, and wherein the variable reactance component is adjusted without utilizing operational metrics measured during a receive mode of the communication device.
13. A communication device comprising:
an antenna;
a transceiver;
an impedance matching a variable tuner network coupled with the antenna and the transceiver, wherein the impedance matching variable tuner network includes a variable reactance component;
a memory to store computer instructions; and
a controller coupled with the memory and the impedance matching variable tuner network, wherein the controller, responsive to executing the computer instructions, performs operations comprising:
obtaining an operational metric associated with the transceiver communication device;
identifying a desired transmitter performance and a desired receiver performance;
determining a target figure of merit based on a compromise between the desired transmitter performance and the desired receiver performance;
determining a current figure of merit based on the operational metric; and
adjusting the variable reactance component of the impedance matching circuit variable tuner network based on a comparison of the current figure of merit with and the target figure of merit, wherein the obtaining of the operational metric is during a transmit mode of the transceiver, and wherein the variable reactance component is adjusted without utilizing operational metrics measured during a receive mode of the communication device.
0. 2. The method of claim 1, wherein the obtaining of the operational metric is during a transmit mode of the transceiver, wherein the variable reactance component is adjusted without utilizing operational metrics measured during a receive mode of the communication device.
3. The method of claim 1, comprising communicating, by the communication device, utilizing frequency division multiplexing.
4. The method of claim 1, wherein the determining of the target figure of merit includes selecting a mid-point between the desired transmitter performance and the desired receiver performance.
5. The method of claim 1, wherein the determining of the current figure of merit is based on known parameters associated with the variable reactance component and is not based on phase information.
6. The method of claim 1, comprising:
storing a tuning value based on the adjusting of the variable reactance component; and
utilizing the tuning value as a default value for subsequent tuning of the antenna.
7. The method of claim 6, comprising:
determining an operational state of the communication device; and
utilizing information associated with the operational state as a default value for subsequent tuning of the antenna.
8. The method of claim 7, wherein the operational state comprises a use case scenario selected from the group consisting essentially of hand held operation, antenna position and slider position.
9. The method of claim 1, wherein the compromise between the desired transmitter performance and the desired receiver performance is based on an evaluation of total radiated power, isotropic power or a combination thereof.
10. The method of claim 1, wherein the compromise between the desired transmitter performance and the desired receiver performance is based on an evaluation of total isotropic sensitivity a type of communication service.
11. The method of claim 1, wherein the compromise between the desired transmitter performance and the desired receiver performance is based on an evaluation of transmitter linearity.
12. The method of claim 1, wherein the compromise between the desired transmitter performance and the desired receiver performance is based on an evaluation of transmitter efficiency.
14. The communication device of claim 13, further comprising a transceiver, wherein the variable reactance component includes a voltage tunable capacitor, and wherein the operations of the controller further comprise:
determining a use case for the communication device; and
performing an initial adjustment of the voltage tunable capacitor based on the use case without utilizing any operational metrics associated with the transceiver, wherein the initial adjustment of the voltage tunable capacitor is performed prior to the adjusting based on the comparison of the current figure of merit with the target figure of merit.
15. The communication device of claim 13, wherein the variable reactance component includes a Micro-Electro-Mechanical Systems (MEMS) variable reactance component.
16. The communication device of claim 13, wherein the operations of the controller further comprise:
storing a tuning value based on the adjusting of the variable reactance component; and
utilizing the tuning value as a default value for subsequent tuning of the antenna.
0. 17. The communication device of claim 13, wherein the obtaining of the operational metric is during a transmit mode of the transceiver, and wherein the variable reactance component is adjusted without utilizing operational metrics measured during a receive mode of the communication device.
18. The communication device of claim 13, wherein the adjusting of the variable reactance component is associated with a communication session that utilizes frequency division multiplexing.
20. The method of claim 19, comprising monitoring the previous tuning results by determining a change in the current figure of merit based on different reactance values for the variable reactance component.
0. 21. The method of claim 19, wherein the operational metric comprises a return loss.
0. 22. The method of claim 19, wherein the variable reactance component includes at least one of a Micro-Electro-Mechanical Systems (MEMS) variable reactance component and a voltage tunable capacitor.
0. 23. The method of claim 19, wherein the current figure of merit, the target figure of merit or both is according to a vector measurement of a transmission reflection coefficient.
0. 24. The method of claim 1, wherein the adjusting of the variable reactance component is based on tuning values stored in a lookup table.
0. 26. The communication device of claim 25, wherein the target figure of merit is stored in a lookup table.
0. 27. The communication device of claim 25, wherein the first desired performance is associated with a first component of the communication device, and wherein the second desired performance is associated with a second component of the communication device.
0. 28. The communication device of claim 25, wherein the variable tuner network includes a Micro-Electro-Mechanical Systems (MEMS) variable reactance component.
0. 29. The communication device of claim 25, wherein the variable tuner network includes a voltage tunable capacitor.
0. 31. The communication device of claim 30, wherein the adjusting of the variable tuner network is further based on previous tuning results associated with previous adjusting of the variable tuner network.
0. 32. The communication device of claim 30, wherein the operational metric comprises a return loss.
0. 33. The communication device of claim 30, wherein the communications performance is associated with total radiated power, total isotropic sensitivity, linearity or a combination thereof.
0. 34. The communication device of claim 30, wherein the variable tuner network includes a Micro-Electro-Mechanical Systems (MEMS) variable reactance component.
0. 35. The communication device of claim 30, wherein the variable tuner network includes a voltage tunable capacitor.

It should be noted that this equation is only a non-limiting example of an equation that could be used for a particular circuit under particular operating conditions and the present invention is not limited to utilization of this particular equation.

FIG. 5 is a flow diagram illustrating the steps involved in an exemplary embodiment of the present invention operating in a TDM environment. During the transmitter time slot, the AIMM algorithm presented in FIG. 3, or some other suitable algorithm, can be applied on a continual basis to move operation of the transmitter towards the target FOM. However, when the receive time slot is activated 505, the AIMM should be adjusted to match for the receiver frequency. The adjustment to the receiver mode of operation may initially involve determining the current operating conditions of the device 510. Based on the current operating conditions, a translation for tuning of the various circuits in the AIMM 100 are identified 520. For instance, various states, components or conditions can be sensed and analyzed to determine or detect a current state or a current use case for the device. Based on this information, a particular translation value or function may be retrieved and applied. It should also be appreciated that such translations can be determined during the design phase and loaded into the device. Finally, the translations are applied to the AIMM 100 530. When operation returns to the transmitter time slot 535, the AIMM algorithm again takes over to optimize operation based on the target FOM.

It should be understood that the translation applied to tuning of the AIMM 100 during the receiver time slot is based on the particular circuit and device and can be determined during design or even on an individual basis during manufacturing and testing. As such, the specific translations identified herein are for illustrative purposes only and should not be construed to limit the operation of the present invention.

Thus, for TDM systems, embodiments of the present invention operate to optimize operation of a device by tuning the matching circuit for an antenna to optimize operation based on a target FOM. During the receiver time slot, a translation is applied to the tuned components to improve receiver performance. The target FOM can be based on a variety of performance metrics and a typical such metric is the reflection loss of the transmitter. The values for the tuned components can be set based on operational conditions and using a look-up table, can be initially set by using such a look-up table and then heuristically fine tuned, or may be heuristically determined on the fly during operation. The translations applied during the receiver operation are determined empirically based on the design of the circuitry and/or testing and measurements of the operation of the circuit. However, a unique aspect of the present invention is tuning of the matching circuit during transmit mode and based on non-receiver related metrics and then retuning the circuit during receive mode operation based on a translation to optimize or attain a desired level of receiver operation.

In an exemplary embodiment of the present invention operating within an FDM environment, the AIMM 100 can be adjusted to so that the matching characteristics represent a compromise between optimal transmitter and receiver operation. Several techniques can be applied to achieve this compromise. In one technique, the translation applied in the TDM example could be modified to adjust the AIMM 100 as a compromise between the optimal transmit and receive settings. For instance, in the example illustrated in FIG. 2, the value of PTC1 and PTC2 can be determined and adjusted periodically, similar to TDM operation (even though such action would temporarily have an adverse effect on the receiver). Then, a translation could be applied to the values of PTC1 and PTC2 for the majority of the operation time. For instance, in the TDM example shown in FIG. 4, the transmitter values were adjusted by multiplying the PTC2 value by 0.6 in three modes of operation and using the above-identified equation during a forth mode of operation. This same scheme could be used in the FDM mode of operation however, the scaling factor would be different to obtain operation that is compromised between the optimal transmitter setting and optimal receiver setting. For example, multiplying the PTC2 value by 0.8 could attain an acceptable compromise.

However, another technique of an embodiment of the present invention is to apply an algorithm that operates to attain a target FOM that is based on one or more transmitter related metrics (such as return loss) and the values of the adjustable components in the AIMM. Advantageously, this aspect of the present invention continuously attempts to maintain a compromised state of operation that keeps the operation of the transmitter and the receiver at a particular target FOM that represents a compromise performance metric level.

In the particular example illustrated in FIG. 2, such an algorithm could be based on a target FOM that is an expression consisting of the transmitter return loss and the values of PTC1 and PTC2. Because the algorithm is not operating to minimize the transmitter return loss in this embodiment of an FDM system, a compromised value is specified. For instance, a specific target transmitter return loss can be pursued for both transmitter and receiver operation by tuning the AIMM based on a FOM that is not only a function of the return loss, but also a function of the values of PTC1 and PTC2 that will encourage operation at a specific level. The target FOM is attained when the actual transmitter return loss is equal to the target transmitter return loss and, specified preferences for PTC1 and PTC2 are satisfied. The preferences illustrated are for the value of PTC1 to be the highest possible value and the value of PTC2 to be the lowest possible value while maintaining the transmit return loss at the target value and satisfying the PTC1 and PTC2 preferences.

FIG. 6 is a return loss contour diagram in the PTC plane for a particular frequency (i.e., 825 MHz/870 MHz operation). Obviously, optimal operation in an FDM system cannot typically be attained because the settings for optimal transmitter operation most likely do not coincide with those for optimal receiver operation. As such, a compromise is typically selected. For instance, a compromise may include operating the transmitter at a target return loss value of −12 dB and at a point at which the transmitter −12 dB contour is closest to a desired receiver contour (i.e., −12 dB).

The operational goal of the system is to attempt to maintain the matching circuit at a point where the operational metrics for the transmitter are at a target value (eg. −12 dB) and the estimated desired receiver operation is most proximate. In an exemplary embodiment of the present invention, an equation used to express the target FOM for such an arrangement can be stated as follows:
Target FOM=f(Tx_RL,TX_RL_Target)+f(PTC2,PTC1)
Where: TX_RL is the measure transmitter return loss
TX_RL_Target is the targeted transmitter return loss

In an exemplary embodiment suitable for the circuit provided in FIG. 2, the FOM may be expressed as:
FOM=(Tx_RL−Tx_RL_Target)+C2*PTC2−C1*PTC1), where,
C1 and C2 are preference constants or scaled values, and
if Tx_RL>Tx_RL_Target then Tx_RL=Tx_RL_Target.

In operation, exemplary embodiments of the present invention optimize the transmitter based on the target reflected loss to attain operation on the desired contour 610 (as shown in FIG. 6) and also adjusts the values of PTC1 and PTC2 to attain operation at the desired location 630 (or minimum FOM) on the contour. The portion of the FOM equation including the TxRL and TX_RL_Target values ensures operation on the targeted RL contour 610 (i.e., the −12 db RL contour). By observing the contour 610, it is quite apparent that not all points on the target reflected loss contour have the same value for the PTC1 and PTC2. Because of this, the values of PTC1 and PTC2 can be incorporated into the target FOM equation to force or encourage operation at a particular location on the reflected loss contour. In the illustrated example, the target FOM is the point at which the reflected loss contour is closest to the expected same valued reflected loss contour for the receiver. However, it will be appreciated that other performance goals may also be sought and the present invention is not limited to this particular example. For instance, in other embodiments, the target FOM may be selected to encourage operation at a mid-point between optimal transmitter performance and expected optimal receiver performance. In yet another embodiment, the target FOM may be selected to encourage operation at a point that is mid-point between a desired transmitter metric and an estimated or measured equivalent for the receiver metric.

In the provided example illustrated in FIG. 6, the optimum, compromised or desired point on the target contour is the point that minimizes the value of PTC2 and maximizes the value of PTC1 in accordance with the equation C2*PTC2-C1*PTC1. Thus, the portion of the expression including PTC1 and PTC2 ensures that operation is at a particular location on the contour that is desired—namely on the lower portion of the contour and closest to the RX_RL contour 620. In general, the algorithm operates to optimize the current FOM or, more particularly in the illustrated embodiment, to minimize the expression of C2*PTC2−C1*PTC1 as long as the desired TX_RL parameter is also met. It should be appreciated that the details associated with this example are associated with a specific circuit design and a wide variety of relationships between the adjustable components of the AIMM would apply on a circuit by circuit basis and as such, the present invention is not limited to this specific example.

Another embodiment of the present invention may take into consideration historical performance of the tunable components as well as current values. As an example, as the tunable components are adjusted, changes in the current FOM will occur in a particular direction (i.e., better or worse). As an example, if the AIMM adjustments 26 result in the current FOM falling on the top portion of a desired performance contour, making a particular adjustment may result in making the current FOM worse or better. If the adjustment was known to cause a certain result when the current FOM is located on the bottom of the contour and this time, the opposite result occurs, then this knowledge can help identify where the current FOM is located on the contour. Thus, knowing this information can be used in combination with the operation metric to attain the operation at the target FOM. For instance, the target FOM may be a function of the operational metrics, the current states of the tunable components, and the knowledge of previous results from adjusting the tunable components.

Stated another way, when a current FOM is calculated, the adjustments to reach the target FOM may take into consideration past reactions to previous adjustments. Thus, the adjustment to the tunable components may be a function of the FOM associated with a current setting and, the change in the current FOM resulting from previous changes to the tunable components.

In another embodiment of the present invention operating in an FDM environment, the FOM may be optimized similar to operation in the TDM environment. For example, the FOM may be a function of the transmitter reflected loss metric and the system may function to optimize the FOM based on this metric. Once optimized, the tunable components can be adjusted based on a predetermined translation to move the FOM from the optimized for the transmitter position to a position that is somewhere between the optimal transmitter setting and the optimal receiver setting.

FIG. 7 is a flow diagram illustrating the steps involved in an exemplary embodiment of the present invention in obtaining the preference values for PTC1 and PTC2. Initially, the process 700 involves plotting of the return loss contours for the various modes of operation, or a reasonable subset thereof 710. FIG. 6 is an example of such a plot generated as a result of performing this step. Next, the compromised tuning location is identified 720. As previously mentioned, a variety of factors may be weighed to determine the compromised tuning location and one example, as illustrated in FIG. 6, is the point at which a target reflected loss for the transmitter is the most proximate to a target reflected loss for the receiver. In a typical embodiment, this is the point at which the target transmitter and receiver contours at the desired reflected loss are closest to each other and nearly parallel. Once the compromised location is determined, the preference values can be characterized 730. For instance, in the example in FIG. 6, by drawing a perpendicular line between the two contours and passing through the compromised location, the slope and hence the preferences can be identified. These preference values can then be determined and then applied across the broad spectrum of frequencies and usage scenarios 740.

It should be appreciated that the values of C1 and C2 are constants and can vary among embodiments of the invention, as well as among devices employing the invention. As such, the values are determined empirically as described above. In an exemplary embodiment, the values of C1 and C2 are 0.7 and 2 respectively for a given circuit and a given antenna, given mode of operation, etc. Thus, any given set of constants are determined empirically and only apply to a specific antenna design, circuit and mode of operation and, although the use of these specific values may in and of itself be considered novel, the present invention is not limited to the particular expression. In fact, depending on particular goals, design criteria, operational requirements, etc. different values may be required to attain the compromised performance. It will also be appreciated that in various embodiments, it may be desired to have a different targeted reflection loss for the transmitter than for the receiver.

In another embodiment of the present invention, rather than analyzing the transmitter reflected power as the performance metric, the reflection coefficient vector may be measured. In this embodiment, the phase information of the reflection coefficient may be included within the FOM. For example, FIG. 8 is a contour plot showing the magnitude and the phase of the reflection coefficient. The preferred point of operation 830 is shown as falling on the −12 dB contour 810 and at a phase of 45 degrees. In such an embodiment, the components of the matching circuit of the AIMM 100 can be adjusted to meet a reflected loss value that falls on the −12 db contour and that also approaches the specific point on the contour—namely at the point where the reflection coefficient differs by 45 degrees.

As mentioned, mobile and transportable transceivers are subjected to a variety of use cases. For instance, a typical cellular telephone could be operated in various scenarios including speaker phone mode, ear budded, with the antenna in the up position or the down position, in the user's hand, holster, pocket, with a slider closed or extended, in a holster or out of a holster, etc. All of these scenarios, as well as a variety of other environmental circumstances can drastically alter the matching characteristics of the cellular telephone's antenna circuitry. As such, not only do the various embodiments of the present invention operate to tune the matching circuitry based on the operational frequency, but in addition, adjust the matching characteristics based on changes in the modes of operation. Advantageously, this greatly improves the performance of the device without requiring separate matching circuitry for the various modes of operation of the device. Thus, it will be appreciated that various other parameters can be monitored to identify various use cases and then adjustments to the tuning circuitry can be immediately deployed followed by fine tuning adjustments to optimize the FOM. The other parameters in which the embodiments of the present invention may function are referred to as modes of operation. The various modes of operation include the use cases as previously described, along with operating environments, bands of operation, channel frequencies, modulation formats and schemes, and physical environments. Thus, the various embodiments of the present invention may make changes, select default values, calculate adjustment values, etc., all as a function of one or more of the modes of operation.

One embodiment of the present invention may maintain a set of initial starting values based on the various use cases and operational environments. For instance, each use case may include a default value. Upon detection or activation of the device in a new use case, the default value is obtained from memory and the components in the AIMM are tuned accordingly. From that point on, the adjustment algorithm can then commence fine tuning of the operation. As previously mentioned, each time the target FOM is attained for a particular use case, the new values may be written into the default location as the new default values. Thus, every time the operational state of the device changes, such as changing between bands of operation etc., the default values are obtained and applied, and then adjustments can resume or, operation can simply be held at the default value.

Numerous specific details have now been set forth to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention.

Unless specifically stated otherwise, as apparent from the description, it is appreciated that throughout the specification discussions that different electronic devices could be used to create a variable tuner network. The embodiments used in the examples discussed were specific to variable capacitor devices, however variable inductors, or other tunable networks, built out of elements such as Micro-Electro-Mechanical Systems (MEMS) and/or other tunable variable impedance networks could be used in such an AIMM system.

Unless specifically stated otherwise, as apparent from the description, it is appreciated that throughout the specification discussions utilizing terms such as “processing,” “computing,” “calculating,” “determining,” or the like, refer to the action and/or processes of a microprocessor, microcontroller, computer or computing system, or similar electronic computing device, that manipulate and/or transform data represented as physical, such as electronic, quantities within the computing system's registers and/or memories into other data similarly represented as physical quantities within the computing system's memories, registers or other such information storage, transmission or display devices.

Embodiments of the present invention may include apparatuses for performing the operations herein. An apparatus may be specially constructed for the desired purposes, or it may comprise a general purpose computing device selectively activated or reconfigured by a program stored in the device. Such a program may be stored on a storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, compact disc read only memories (CD-ROMs), magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), electrically programmable read-only memories (EPROMs), electrically erasable and programmable read only memories (EEPROMs), magnetic or optical cards, or any other type of media suitable for storing electronic instructions, and capable of being coupled to a system bus for a computing device.

The processes presented herein are not inherently related to any particular computing device or other apparatus. Various general purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the desired method. The desired structure for a variety of these systems will appear from the description below. In addition, embodiments of the present invention are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein. In addition, it should be understood that operations, capabilities, and features described herein may be implemented with any combination of hardware (discrete or integrated circuits) and software.

Use of the terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may be used to indicated that two or more elements are in either direct or indirect (with other intervening elements between them) physical or electrical contact with each other, and/or that the two or more elements co-operate or interact with each other (e.g. as in a cause an effect relationship).

In the description and claims of the present application, each of the verbs, “comprise,” “include,” and “have”, and conjugates thereof, are used to indicate that the object or objects of the verb are not necessarily a complete listing of members, components, elements, or parts of the subject or subjects of the verb.

The present invention has been described using detailed descriptions of embodiments thereof that are provided by way of example and are not intended to limit the scope of the invention. The described embodiments comprise different features, not all of which are required in all embodiments of the invention. Some embodiments of the present invention utilize only some of the features or possible combinations of the features. Variations of embodiments of the present invention that are described and embodiments of the present invention comprising different combinations of features noted in the described embodiments will occur to persons of the art.

It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described herein above. Rather the scope of the invention is defined by the claims that follow.

Greene, Matthew Russell

Patent Priority Assignee Title
Patent Priority Assignee Title
2745067,
3117279,
3160832,
3390337,
3443231,
3509500,
3571716,
3590385,
3601717,
3742279,
3749491,
3794941,
3919644,
3990024, Jan 06 1975 Xerox Corporation Microstrip/stripline impedance transformer
3995237, Oct 15 1974 Cincinnati Electronics Corporation Automatic matching method and apparatus
4186359, Aug 22 1977 Tx Rx Systems Inc. Notch filter network
4201960, May 24 1978 Motorola, Inc. Method for automatically matching a radio frequency transmitter to an antenna
4227256, Jan 06 1978 Panasonic Corporation of North America AM Broadcast tuner with automatic gain control
4383441, Jul 20 1981 Ford Motor Company Method for generating a table of engine calibration control values
4476578, Nov 27 1981 Thomson-CSF Device for detecting the optimum anode load impedance of a tube transmitter in a high frequency transmission chain
4493112, Nov 19 1981 Rockwell International Corporation Antenna tuner discriminator
4509019, Jan 27 1983 AT&T Bell Laboratories Tunable active filter
4777490, Apr 22 1986 Lockheed Martin Corporation Monolithic antenna with integral pin diode tuning
4799066, Jul 26 1985 EMTEC Magnetics GmbH Impedance matching arrangement
4965607, Apr 30 1987 BR Communications, Inc. Antenna coupler
4970478, Jun 14 1989 Honeywell, Inc. Matched microwave variable attenuator
4980656, Dec 01 1989 Motorola, Inc. Active input impedance tuner for compensating for power loss
5032805, Oct 23 1989 GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE ARMY, THE RF phase shifter
5136478, Sep 06 1991 Marine Mechanical Corporation Solid electrolyte capacitor and method of making
5142255, May 07 1990 TEXAS A & M UNIVERSITY SYSTEM, THE, Planar active endfire radiating elements and coplanar waveguide filters with wide electronic tuning bandwidth
5177670, Feb 08 1991 Hitachi, Ltd. Capacitor-carrying semiconductor module
5195045, Feb 27 1991 MKS Instruments, Inc Automatic impedance matching apparatus and method
5200826, Jun 21 1990 Samsung Electronics Co., Ltd. TV signal receiving double conversion television tuner system having automatic gain control provisions
5212463, Jul 22 1992 The United States of America as represented by the Secretary of the Army Planar ferro-electric phase shifter
5215463, Nov 05 1991 UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY Disappearing target
5216392, Jul 05 1991 Motorola, Inc. Automatically controlled varactor tuned matching networks for a crystal filter
5230091, Sep 25 1989 Nokia Mobile Phones LTD Method and apparatus for tuning and compensating power levels in a radio telephone
5243358, Jul 15 1991 Ball Aerospace & Technologies Corp Directional scanning circular phased array antenna
5258728, Sep 30 1987 Fujitsu Ten Limited Antenna circuit for a multi-band antenna
5276912, Feb 06 1990 Motorola, Inc. Radio frequency power amplifier having variable output power
5301358, Dec 05 1988 Seiko Instruments Inc Automatic antenna tuning method and apparatus
5307033, Jan 19 1993 The United States of America as represented by the Secretary of the Army Planar digital ferroelectric phase shifter
5310358, Dec 22 1992 The Whitaker Corporation Computer docking system
5312790, Jun 09 1993 The United States of America as represented by the Secretary of the Army Ceramic ferroelectric material
5334958, Jul 06 1993 The United States of America as represented by the Secretary of the Army Microwave ferroelectric phase shifters and methods for fabricating the same
5361403, Nov 14 1990 Ericsson GE Mobile Communication Holding, Inc. AM-FM transmitter power amplifier
5371473, Sep 10 1993 Hughes Electronics Corporation Thermally stable ALC for pulsed output amplifier
5409889, May 03 1993 Ferroelectric high Tc superconductor RF phase shifter
5427988, Jun 09 1993 BlackBerry Limited Ceramic ferroelectric composite material - BSTO-MgO
5430417, Jul 05 1991 AFT Advanced Ferrite Technology GmbH Tunable matching network
5446447, Feb 16 1994 MOTOROLA SOLUTIONS, INC RF tagging system including RF tags with variable frequency resonant circuits
5448252, Mar 15 1994 The United States of America as represented by the Secretary of the Air Wide bandwidth microstrip patch antenna
5451567, Mar 30 1994 High power ferroelectric RF phase shifter
5451914, Jul 05 1994 Motorola, Inc. Multi-layer radio frequency transformer
5457394, Apr 12 1993 Lawrence Livermore National Security LLC Impulse radar studfinder
5472935, Dec 01 1992 YANDROFSKI, ROBERT M ; Y DEVELOPMENT, LLC, A COLORADO ENTITY Tuneable microwave devices incorporating high temperature superconducting and ferroelectric films
5479139, Apr 19 1995 The United States of America as represented by the Secretary of the Army System and method for calibrating a ferroelectric phase shifter
5486491, Jun 09 1993 The United States of America as represented by the Secretary of the Army Ceramic ferroelectric composite material - BSTO-ZrO2
5496795, Aug 16 1994 High TC superconducting monolithic ferroelectric junable b and pass filter
5502372, Oct 07 1994 Hughes Aircraft Company Microstrip diagnostic probe for thick metal flared notch and ridged waveguide radiators
5524281, Mar 31 1988 Anritsu Company Apparatus and method for measuring the phase and magnitude of microwave signals
5548837, Mar 28 1994 Motorola Mobility LLC Method and apparatus for producing diversity gain of a received signal
5561086, Jun 18 1993 LSI Logic Corporation Techniques for mounting semiconductor dies in die-receiving areas having support structure having notches
5561407, Jan 31 1995 The United States of America as represented by the Secretary of the Army Single substrate planar digital ferroelectric phase shifter
5564086, Nov 29 1993 Motorola Mobility LLC Method and apparatus for enhancing an operating characteristic of a radio transmitter
5583359, Mar 03 1995 RPX CLEARINGHOUSE LLC Capacitor structure for an integrated circuit
5589844, Jun 06 1995 HYSKY TECHNOLOGIES, INC Automatic antenna tuner for low-cost mobile radio
5593495, Jun 16 1994 Sharp Kabushiki Kaisha Method for manufacturing thin film of composite metal-oxide dielectric
5635433, Sep 11 1995 The United States of America as represented by the Secretary of the Army Ceramic ferroelectric composite material-BSTO-ZnO
5635434, Sep 11 1995 BlackBerry Limited Ceramic ferroelectric composite material-BSTO-magnesium based compound
5640042, Dec 14 1995 The United States of America as represented by the Secretary of the Army Thin film ferroelectric varactor
5679624, Feb 24 1995 High Tc superconductive KTN ferroelectric time delay device
5689219, Jun 30 1994 Nokia Siemens Networks Oy Summing network
5693429, Jan 20 1995 The United States of America as represented by the Secretary of the Army Electronically graded multilayer ferroelectric composites
5694134, Dec 01 1992 YANDROFSKI, ROBERT M ; Y DEVELOPMENT, LLC, A COLORADO ENTITY Phased array antenna system including a coplanar waveguide feed arrangement
5699071, Mar 26 1991 Sumitomo Chemical Company, Limited; Nippon Sheet Glass Co., Ltd. Glass antenna system for automobile
5721194, Dec 01 1992 YANDROFSKI, ROBERT M ; Y DEVELOPMENT, LLC, A COLORADO ENTITY Tuneable microwave devices including fringe effect capacitor incorporating ferroelectric films
5766697, Dec 08 1995 The United States of America as represented by the Secretary of the Army Method of making ferrolectric thin film composites
5777581, Dec 07 1995 Titan Aerospace Electronics Division Tunable microstrip patch antennas
5778308, May 25 1994 Nokia Mobile Phones Limited Adaptive antenna matching
5786727, Oct 15 1996 Google Technology Holdings LLC Multi-stage high efficiency linear power amplifier and method therefor
5812572, Jul 01 1996 II-VI DELAWARE, INC Intelligent fiberoptic transmitters and methods of operating and manufacturing the same
5812943, Sep 01 1995 NEC Corporation; International Superconductivity Technology Center High frequency band high temperature superconductor mixer antenna which allows a superconductor feed line to be used in a low frequency region
5830591, Apr 29 1996 ARMY, UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE Multilayered ferroelectric composite waveguides
5846893, Dec 08 1995 ARMY, UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY Thin film ferroelectric composites and method of making
5874926, Mar 11 1996 MURATA MANUFACTURING CO , LTD Matching circuit and antenna apparatus
5880635, Apr 16 1997 Sony Corporation; Sony Electronics, Inc. Apparatus for optimizing the performance of a power amplifier
5886867, Mar 21 1995 RPX CLEARINGHOUSE LLC Ferroelectric dielectric for integrated circuit applications at microwave frequencies
5892482, Dec 06 1996 Raytheon Company Antenna mutual coupling neutralizer
5926751, Feb 19 1997 Google Technology Holdings LLC Method and apparatus for receiving communication signals
5929717, Jan 09 1998 Lam Research Corporation Method of and apparatus for minimizing plasma instability in an RF processor
5940030, Mar 18 1998 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Steerable phased-array antenna having series feed network
5963871, Oct 04 1996 BlackBerry Limited Retractable multi-band antennas
5969582, Jul 03 1997 Ericsson Inc. Impedance matching circuit for power amplifier
5973568, Jun 01 1998 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Power amplifier output module for dual-mode digital systems
5982099, Mar 29 1996 Lam Research Corporation Method of and apparatus for igniting a plasma in an r.f. plasma processor
5990766, Jun 28 1996 YANDROFSKI, ROBERT M ; Y DEVELOPMENT, LLC, A COLORADO ENTITY Electrically tunable microwave filters
6008759, Dec 05 1997 WSOU Investments, LLC Method of determining the direction of arrival of a radio signal, as well as radio base station and radiocommunications system
6009124, Sep 22 1997 Intel Corporation High data rate communications network employing an adaptive sectored antenna
6020787, Jun 07 1995 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Method and apparatus for amplifying a signal
6020795, May 19 1997 SAMSUNG ELECTRONICS CO , LTD Electrically controllable impedance matching device for use in RF amplifier
6029075, Apr 17 1997 Manoj K., Bhattacharygia; Satyendranath, Das High Tc superconducting ferroelectric variable time delay devices of the coplanar type
6045932, Aug 28 1998 Los Alamos National Security, LLC Formation of nonlinear dielectric films for electrically tunable microwave devices
6061025, Dec 07 1995 Titan Aerospace Electronics Division Tunable microstrip patch antenna and control system therefor
6064865, Mar 01 1999 THE BANK OF NEW YORK MELLON, AS ADMINISTRATIVE AGENT Proportional diversity radio receiver system with dynamic noise-controlled antenna phasers
6074971, Nov 13 1998 BlackBerry Limited Ceramic ferroelectric composite materials with enhanced electronic properties BSTO-Mg based compound-rare earth oxide
6096127, Feb 28 1997 YANDROFSKI, ROBERT M ; Y DEVELOPMENT, LLC, A COLORADO ENTITY Tuneable dielectric films having low electrical losses
6100733, Jun 09 1998 Infineon Technologies AG Clock latency compensation circuit for DDR timing
6101102, Apr 28 1999 Raytheon Company Fixed frequency regulation circuit employing a voltage variable dielectric capacitor
6115585, Aug 07 1996 Nokia Mobile Phones Limited Antenna switching circuits for radio telephones
6125266, Dec 31 1997 Nokia Mobile Phones Limited Dual band architectures for mobile stations having transmitter linearization feedback
6133868, Jun 05 1998 KATHREIN-WERKE KG System and method for fully self-contained calibration of an antenna array
6133883, Nov 17 1998 LAIRDTECHNOLOGEIS, INC Wide band antenna having unitary radiator/ground plane
6172385, Oct 30 1998 International Business Machines Corporation Multilayer ferroelectric capacitor structure
6215644, Sep 09 1999 MEMSCAP S A High frequency tunable capacitors
6242989, Sep 12 1998 Bell Semiconductor, LLC Article comprising a multi-port variable capacitor
6266528, Dec 23 1998 TUMBLEWEED HOLDINGS LLC Performance monitor for antenna arrays
6281748, Jan 14 2000 Google Technology Holdings LLC Method of and apparatus for modulation dependent signal amplification
6281847, Dec 17 1998 Southern Methodist University Electronically steerable and direction finding microstrip array antenna
6309895, Oct 27 1998 Precision Instrument Development Center, National Science Council Method for fabricating capacitor containing amorphous and polycrystalline ferroelectric films and method for forming amorphous ferroelectric film
6343208, Dec 16 1998 Telefonaktiebolaget LM Ericsson Printed multi-band patch antenna
6377142, Oct 16 1998 NXP USA, INC Voltage tunable laminated dielectric materials for microwave applications
6377217, Sep 14 1999 NXP USA, INC Serially-fed phased array antennas with dielectric phase shifters
6377440, Sep 12 2000 NXP USA, INC Dielectric varactors with offset two-layer electrodes
6384785, May 29 1995 Nippon Telegraph and Telephone Corporation Heterogeneous multi-lamination microstrip antenna
6404614, May 02 2000 NXP USA, INC Voltage tuned dielectric varactors with bottom electrodes
6408190, Sep 01 1999 Telefonaktiebolaget LM Ericsson Semi built-in multi-band printed antenna
6414562, May 27 1997 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Circuit and method for impedance matching
6415562, Nov 09 1998 GENEVA SCIENTIFIC, INC Artificial board
6438360, Jul 22 1999 Google Technology Holdings LLC Amplifier system with load control to produce an amplitude envelope
6452776, Apr 06 2000 Intel Corporation Capacitor with defect isolation and bypass
6461930, Jun 19 1998 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Capacitor and method for forming the same
6466774, Jul 21 1998 MAXELL, LTD Wireless handset
6492883, Nov 03 2000 NXP USA, INC Method of channel frequency allocation for RF and microwave duplexers
6514895, Jun 15 2000 NXP USA, INC Electronically tunable ceramic materials including tunable dielectric and metal silicate phases
6525630, Nov 04 1999 NXP USA, INC Microstrip tunable filters tuned by dielectric varactors
6531936, Oct 16 1998 NXP USA, INC Voltage tunable varactors and tunable devices including such varactors
6535076, May 15 2001 NXP USA, INC Switched charge voltage driver and method for applying voltage to tunable dielectric devices
6535722, Jul 09 1998 MEDIATEK, INC Television tuner employing micro-electro-mechanically-switched tuning matrix
6538603, Jul 21 2000 NXP USA, INC Phased array antennas incorporating voltage-tunable phase shifters
6556102, Nov 18 1999 NXP USA, INC RF/microwave tunable delay line
6556814, Jul 22 1999 Google Technology Holdings LLC Memory-based amplifier load adjust system
6570462, Nov 08 2000 Malikie Innovations Limited Adaptive tuning device and method utilizing a surface acoustic wave device for tuning a wireless communication device
6590468, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
6590541, Dec 11 1998 Robert Bosch GmbH Half-loop antenna
6597265, Nov 14 2000 NXP USA, INC Hybrid resonator microstrip line filters
6608603, Aug 24 2001 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Active impedance matching in communications systems
6624786, Jun 01 2000 NXP B V Dual band patch antenna
6628962, Dec 24 1997 Mitsubishi Denki Kabushiki Kaisha PDA antenna device for switching between antennae of a PDA unit based on detected use condition
6640085, Sep 01 1999 SIRIUS XM RADIO INC Electronically steerable antenna array using user-specified location data for maximum signal reception based on elevation angle
6657595, May 09 2002 Google Technology Holdings LLC Sensor-driven adaptive counterpoise antenna system
6661638, Dec 07 2001 COMMSCOPE, INC OF NORTH CAROLINA Capacitor employing both fringe and plate capacitance and method of manufacture thereof
6670256, Jan 18 2000 Round Rock Research, LLC Metal oxynitride capacitor barrier layer
6710651, Oct 22 2001 Kyocera Corporation Systems and methods for controlling output power in a communication device
6724611, Mar 29 2000 Intel Corporation Multi-layer chip capacitor
6724890, Nov 24 1998 HANGER SOLUTIONS, LLC Adaptive transmission line impedance matching device and method
6737179, Jun 16 2000 NXP USA, INC Electronically tunable dielectric composite thick films and methods of making same
6747522, May 03 2002 M-RED INC Digitally controlled crystal oscillator with integrated coarse and fine control
6759918, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
6765540, Apr 11 2001 Kyocera Corporation Tunable antenna matching circuit
6768472, Aug 24 2001 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Active impedance matching in communications systems
6774077, Jan 24 2001 NXP USA, INC Electronically tunable, low-loss ceramic materials including a tunable dielectric phase and multiple metal oxide phases
6795712, Sep 20 2000 WASHINGTON SUB, INC ; ALPHA INDUSTRIES, INC ; Skyworks Solutions, Inc System for allowing a TDMA/CDMA portable transceiver to operate with closed loop power control
6825818, Apr 11 2001 Kyocera Corporation Tunable matching circuit
6839028, Aug 10 2001 Southern Methodist University Microstrip antenna employing width discontinuities
6845126, Jan 26 2001 Ericsson Inc System and method for adaptive antenna impedance matching
6859104, Apr 11 2001 Kyocera Corporation Tunable power amplifier matching circuit
6862432, Jul 27 1999 LG Electronics Inc. Antenna impedance matching device and method for a portable radio telephone
6864757, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
6868260, Mar 18 2000 Cinterion Wireless Modules GmbH Radio station with optimized impedance
6875655, Mar 17 2003 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming DRAM capacitors with protected outside crown surface for more robust structures
6882245, Jun 05 2002 RFSTREAM CORPORATION, A JAPANESE CORPORATION Frequency discrete LC filter bank
6888714, Nov 01 1999 GLOBALFOUNDRIES Inc Tuneable ferroelectric decoupling capacitor
6905989, Jun 01 2001 NXP USA, INC Tunable dielectric compositions including low loss glass
6906653, Oct 18 2000 Linear Cell Design Co., Ltd. Digital to analog converter with a weighted capacitive circuit
6907234, Oct 26 2001 Microsoft Technology Licensing, LLC System and method for automatically tuning an antenna
6914487, Apr 19 2002 National Semiconductor Corporation Method and system for providing power management in a radio frequency power amplifier using adaptive envelope tracking
6920315, Mar 22 2000 Unwired Planet, LLC Multiple antenna impedance optimization
6922330, Apr 18 2002 Medtronic, Inc Implantable medical device having flat electrolytic capacitor fabricated with laser welded anode sheets
6943078, Aug 31 2000 Micron Technology, Inc.; Micron Technology, Inc Method and structure for reducing leakage current in capacitors
6946847, Feb 08 2002 DAIHEN CORPORATION Impedance matching device provided with reactance-impedance table
6949442, May 05 2003 Infineon Technologies AG Methods of forming MIM capacitors
6961368, Jan 26 2001 Ericsson Inc. Adaptive antenna optimization network
6964296, Feb 07 2001 Modine Manufacturing Company Heat exchanger
6965837, Oct 18 2002 III HOLDINGS 3, LLC Method and arrangement for detecting load mismatch, and a radio device utilizing the same
6987493, Apr 15 2002 NXP USA, INC Electronically steerable passive array antenna
6993297, Jul 12 2002 Sony Ericsson Mobile Communications AB Apparatus and methods for tuning antenna impedance using transmitter and receiver parameters
6999297, Jan 20 1999 NXP B V Breakdown-resistant thin film capacitor with interdigitated structure
7009455, Apr 11 2001 Kyocera Corporation Tunable power amplifier matching circuit
7071776, Oct 22 2001 Kyocera Corporation Systems and methods for controlling output power in a communication device
7106715, Nov 16 2001 Rovi Guides, Inc System for providing data to multiple devices and method thereof
7107033, Apr 17 2002 NXP USA, INC Smart radio incorporating Parascan® varactors embodied within an intelligent adaptive RF front end
7113614, Nov 18 1993 DIGIMARC CORPORATION AN OREGON CORPORATION Embedding auxiliary signals with multiple components into media signals
7151411, Mar 17 2004 NXP USA, INC Amplifier system and method
7176634, May 31 2002 Tokyo Electron Limited Coaxial type impedance matching device and impedance detecting method for plasma generation
7176845, Feb 12 2002 Kyocera Corporation System and method for impedance matching an antenna to sub-bands in a communication band
7180467, Feb 12 2002 Kyocera Corporation System and method for dual-band antenna matching
7218186, Mar 29 2004 Scientific Components Corporation Directional coupler
7221327, Apr 11 2001 Kyocera Corporation Tunable matching circuit
7298329, Oct 12 2004 The Trustees of Columbia University in the City of New York Systems and methods for providing optimized patch antenna excitation for mutually coupled patches
7299018, Jul 21 2000 Semiconductor Ideas to the Market Receiver comprising a digitally controlled capacitor bank
7312118, Nov 27 2002 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
7332980, Sep 22 2005 Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD System and method for a digitally tunable impedance matching network
7332981, Nov 09 2004 DAIHEN CORPORATION Impedance matching apparatus for a plasma chamber comprising two separate storage units and three separate calculators
7339527, Nov 20 2002 Nokia Technologies Oy Controllable antenna arrangement
7369828, Feb 05 2003 NXP USA, INC Electronically tunable quad-band antennas for handset applications
7426373, Jan 11 2005 The Boeing Company Electrically tuned resonance circuit using piezo and magnetostrictive materials
7427949, Dec 05 2005 Cobham Defense Electronic Systems Corporation System and method of using absorber-walls for mutual coupling reduction between microstrip antennas or brick wall antennas
7453405, May 31 2004 Panasonic Corporation Portable wireless device
7468638, Jun 20 2006 Marvell International Ltd.; MARVELL INTERNATIONAL LTD Transmit/receive switch device
7469129, Jun 07 1999 Gentex Corporation Transceiver with closed loop control of antenna tuning and power level
7528674, Jan 31 2005 Panasonic Corporation Mobile radio apparatus capable of adaptive impedance matching
7531011, Dec 25 2003 Shinko Electric Industries Co., Ltd. Method of manufacturing capacitor device
7535080, Jun 30 2005 Intel Corporation Reducing parasitic mutual capacitances
7535312, Nov 08 2006 NXP USA, INC Adaptive impedance matching apparatus, system and method with improved dynamic range
7539527, Dec 27 2004 LG Electronics Inc. Apparatus and method for matching antenna of mobile communication terminal
7557507, Jan 05 2004 AU Optronics Corporation Electrode and method of manufacture
7567782, Jul 28 2006 NXP, B V F K A FREESCALE SEMICONDUCTOR, INC Re-configurable impedance matching and harmonic filter system
7596357, Feb 27 2004 Kyocera Corporation High-frequency switching circuit, high-frequency module, and wireless communications device
7633355, Apr 22 2004 Panasonic Corporation Variable matching circuit
7642879, Nov 09 2004 DAIHEN CORPORATION Impedance matching apparatus
7655530, Aug 05 2005 SB Electronics, Inc. Segmented end electrode capacitor and method of segmenting an end electrode of a capacitor
7667663, Feb 15 2007 Advanced Connectek, Inc. Coupling antenna
7671693, Feb 17 2006 Samsung Electronics Co., Ltd. System and method for a tunable impedance matching network
7705692, Apr 07 2005 Hitachi Metals, Ltd. High-frequency circuit and communications apparatus comprising same
7711337, Jan 14 2006 NXP USA, INC Adaptive impedance matching module (AIMM) control architectures
7714676, Nov 08 2006 NXP USA, INC Adaptive impedance matching apparatus, system and method
7714678, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
7728693, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
7760699, Aug 05 2006 System and method for efficient transmission of electronic information
7768400, Jun 25 2005 HID GLOBAL CORPORATION Electromagnetic radiation decoupler
7786819, Aug 31 2007 Nokia Technologies Oy Apparatus comprising an antenna element, which efficiently performs at both a first resonant frequency band and a second resonant frequency band, method and computer program therefore
7795990, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
7830320, Aug 20 2007 KYOCERA AVX COMPONENTS SAN DIEGO , INC Antenna with active elements
7852170, Nov 08 2006 NXP USA, INC Adaptive impedance matching apparatus, system and method with improved dynamic range
7856228, Feb 28 2006 AT&T MOBILITY II LLC Measurement, collection, distribution and reporting of atmospheric data
7865154, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
7907094, Jan 20 2006 Panasonic Corporation Portable terminal apparatus
7917104, Apr 23 2007 NXP USA, INC Techniques for improved adaptive impedance matching
7940223, Feb 24 2006 Qualcomm Incorporated Internal diversity antenna architecture
7949309, Mar 14 2007 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Antenna system for use within a wireless communication device
7969257, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
7983615, Oct 17 2006 D&M HOLDINGS, INC Configuring and connecting to a media wireless network
7991363, Nov 14 2007 NXP USA, INC Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics
8008982, Nov 08 2006 NXP USA, INC Method and apparatus for adaptive impedance matching
8072285, Sep 24 2008 NXP USA, INC Methods for tuning an adaptive impedance matching network with a look-up table
8112043, Apr 11 2008 Intel Corporation Radio frequency communication devices and methods
8170510, May 29 2009 Intel Corporation Minimizing mutual coupling
8190109, Oct 14 2009 Malikie Innovations Limited Dynamic real-time calibration for antenna matching in a radio frequency transmitter system
8204446, Oct 29 2009 Google Technology Holdings LLC Adaptive antenna tuning systems and methods
8213886, May 07 2007 NXP USA, INC Hybrid techniques for antenna retuning utilizing transmit and receive power information
8217731, Nov 08 2006 NXP USA, INC Method and apparatus for adaptive impedance matching
8217732, Nov 08 2006 NXP USA, INC Method and apparatus for adaptive impedance matching
8299867, Nov 08 2006 NXP USA, INC Adaptive impedance matching module
8320850, Mar 18 2009 Qorvo US, Inc Power control loop using a tunable antenna matching circuit
8325097, Jan 14 2006 NXP USA, INC Adaptively tunable antennas and method of operation therefore
8405563, Jan 14 2006 NXP USA, INC Adaptively tunable antennas incorporating an external probe to monitor radiated power
8421548, Sep 24 2008 NXP USA, INC Methods for tuning an adaptive impedance matching network with a look-up table
8432234, Nov 08 2010 NXP USA, INC Method and apparatus for tuning antennas in a communication device
8442457, Sep 08 2009 GOOGLE LLC System and method for adaptive beamforming for specific absorption rate control
8454882, Oct 23 2008 The Procter & Gamble Company Material dispensing system and method for making same
8457569, May 07 2007 NXP USA, INC Hybrid techniques for antenna retuning utilizing transmit and receive power information
8472888, Aug 25 2009 NXP USA, INC Method and apparatus for calibrating a communication device
8478344, Jun 21 2006 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Power recovery circuit based on partial standing waves
8543123, Jan 22 2010 Samsung Electronics Co., Ltd. Method and apparatus for scheduling resource allocation to control inter-cell interference in a cellular communication system, and base station thereof
8543176, Dec 08 2009 Cellco Partnership Method and system for optimizing impedance match in a mobile communication device
8558633, Nov 08 2006 NXP USA, INC Method and apparatus for adaptive impedance matching
8564381, Nov 08 2006 NXP USA, INC Method and apparatus for adaptive impedance matching
8594584, May 16 2011 NXP USA, INC Method and apparatus for tuning a communication device
8620236, Apr 23 2007 NXP USA, INC Techniques for improved adaptive impedance matching
8620246, Jan 16 2007 NXP USA, INC Adaptive impedance matching module (AIMM) control architectures
8620247, Jan 14 2006 NXP USA, INC Adaptive impedance matching module (AIMM) control architectures
8655286, Feb 25 2011 NXP USA, INC Method and apparatus for tuning a communication device
8674783, Sep 24 2008 NXP USA, INC Methods for tuning an adaptive impedance matching network with a look-up table
8680934, Nov 08 2006 NXP USA, INC System for establishing communication with a mobile device server
8693963, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
8712340, Feb 18 2011 NXP USA, INC Method and apparatus for radio antenna frequency tuning
8712348, Sep 01 2010 Samsung Electronics Co., Ltd. Apparatus and method for controlling a tunable matching network in a wireless network
8773019, Feb 23 2012 BARCLAYS BANK PLC, AS COLLATERAL AGENT Feedback control and coherency of multiple power supplies in radio frequency power delivery systems for pulsed mode schemes in thin film processing
8774743, Oct 14 2009 Malikie Innovations Limited Dynamic real-time calibration for antenna matching in a radio frequency receiver system
8787845, Aug 25 2009 NXP USA, INC Method and apparatus for calibrating a communication device
8803631, Mar 22 2010 NXP USA, INC Method and apparatus for adapting a variable impedance network
8860525, Apr 20 2010 NXP USA, INC Method and apparatus for managing interference in a communication device
8948889, Jun 01 2012 NXP USA, INC Methods and apparatus for tuning circuit components of a communication device
8957742, Sep 24 2008 NXP USA, INC Methods for tuning an adaptive impedance matching network with a look-up table
9026062, Oct 10 2009 NXP USA, INC Method and apparatus for managing operations of a communication device
9083405, Jun 29 2010 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Uplink switched antenna transmit diversity method and apparatus
9119152, May 07 2007 NXP USA, INC Hybrid techniques for antenna retuning utilizing transmit and receive power information
9231643, Feb 18 2011 NXP USA, INC Method and apparatus for radio antenna frequency tuning
9374113, Dec 21 2012 NXP USA, INC Method and apparatus for adjusting the timing of radio antenna tuning
9379454, Nov 08 2010 NXP USA, INC Method and apparatus for tuning antennas in a communication device
9406444, Nov 14 2005 NXP USA, INC Thin film capacitors
9473194, Feb 27 2014 Skyworks Solutions, Inc Systems, devices and methods related to radio-frequency step attenuators
9698758, Sep 24 2008 NXP USA, INC Methods for tuning an adaptive impedance matching network with a look-up table
9698858, Feb 18 2011 NXP USA, INC Method and apparatus for radio antenna frequency tuning
9742375, Mar 22 2010 NXP USA, INC Method and apparatus for adapting a variable impedance network
9762416, Sep 08 2015 Qorvo US, Inc Reflection coefficient reader
9768752, Jul 20 2000 NXP USA, INC Tunable microwave devices with auto-adjusting matching circuit
9768810, Dec 21 2012 NXP USA, INC Method and apparatus for adjusting the timing of radio antenna tuning
9853363, Jul 06 2012 NXP USA, INC Methods and apparatus to control mutual coupling between antennas
9935674, Feb 18 2011 NXP USA, INC Method and apparatus for radio antenna frequency tuning
20020008672,
20020030566,
20020047154,
20020079982,
20020109642,
20020118075,
20020145483,
20020167963,
20020183013,
20020187780,
20020191703,
20020193088,
20030060227,
20030071300,
20030114124,
20030137464,
20030142022,
20030184319,
20030193997,
20030199286,
20030210203,
20030210206,
20030216150,
20030232607,
20040009754,
20040090372,
20040100341,
20040125027,
20040127178,
20040137950,
20040202399,
20040204027,
20040227176,
20040232982,
20040257293,
20040263411,
20040264610,
20050007291,
20050032488,
20050032541,
20050042994,
20050059362,
20050082636,
20050083234,
20050085204,
20050093624,
20050130608,
20050130699,
20050145987,
20050208960,
20050215204,
20050227627,
20050227633,
20050259011,
20050260962,
20050264455,
20050280588,
20050282503,
20060003537,
20060009165,
20060022882,
20060030277,
20060077082,
20060084392,
20060099915,
20060099952,
20060119511,
20060148415,
20060160501,
20060183431,
20060183433,
20060183442,
20060195161,
20060205368,
20060209767,
20060223451,
20060252391,
20060281423,
20070001924,
20070013483,
20070035458,
20070042725,
20070042734,
20070063788,
20070077956,
20070080888,
20070082611,
20070085609,
20070091006,
20070093282,
20070109716,
20070111681,
20070121267,
20070142011,
20070142014,
20070149146,
20070171879,
20070182636,
20070184825,
20070194859,
20070197180,
20070200766,
20070200773,
20070210899,
20070222697,
20070248238,
20070285326,
20070293176,
20080007478,
20080018541,
20080030165,
20080051096,
20080055016,
20080055168,
20080081670,
20080090539,
20080090573,
20080094149,
20080106350,
20080111748,
20080122553,
20080122723,
20080129612,
20080158076,
20080174508,
20080261544,
20080266190,
20080268893,
20080274706,
20080280570,
20080285729,
20080288028,
20080294718,
20080300027,
20080305749,
20080305750,
20080309617,
20090002077,
20090016124,
20090027286,
20090039976,
20090051604,
20090051611,
20090079656,
20090082017,
20090088093,
20090109880,
20090121963,
20090149136,
20090180403,
20090184879,
20090196192,
20090215446,
20090231220,
20090253385,
20090264065,
20090278685,
20090295651,
20090323572,
20090323582,
20100041348,
20100053009,
20100060531,
20100069011,
20100073103,
20100085260,
20100085884,
20100105425,
20100107067,
20100134215,
20100156552,
20100164640,
20100164641,
20100201598,
20100214189,
20100232474,
20100244576,
20100277363,
20100285836,
20100302106,
20100304684,
20100304688,
20100308933,
20110002080,
20110012790,
20110012792,
20110014879,
20110014886,
20110019606,
20110026415,
20110039504,
20110043298,
20110043328,
20110053524,
20110063042,
20110086600,
20110086630,
20110102290,
20110105023,
20110116395,
20110116423,
20110117863,
20110117973,
20110121079,
20110122040,
20110133994,
20110140982,
20110183628,
20110183633,
20110195679,
20110227666,
20110237207,
20110249760,
20110250852,
20110254637,
20110254638,
20110256857,
20110281532,
20110285511,
20110299438,
20110306310,
20110309980,
20120039189,
20120051409,
20120056689,
20120062431,
20120075159,
20120084537,
20120094708,
20120099462,
20120100802,
20120112851,
20120112852,
20120112970,
20120119843,
20120119844,
20120139810,
20120154975,
20120214421,
20120220243,
20120243579,
20120286586,
20120293384,
20120295554,
20120295555,
20120309332,
20130005277,
20130052967,
20130056841,
20130076579,
20130076580,
20130106332,
20130122829,
20130137384,
20130154897,
20130182583,
20130194054,
20130215846,
20130231155,
20130265912,
20130293425,
20130315285,
20140002323,
20140009360,
20140128032,
20140162572,
20140210686,
20140287698,
20140366927,
20160173172,
20160241276,
20160269055,
20160277129,
20160322991,
20160336916,
20160352408,
20160373146,
20170011858,
20170085244,
20170197180,
20170264322,
20170264335,
20170294712,
20170294891,
20170353956,
20170373661,
20180083657,
20180109235,
20180198482,
20180262257,
CA2914562,
CN101640949,
CN105703797,
CN201765685,
DE102008050743,
DE102009018648,
DE10258805,
DE19614655,
EM909024,
EP685936,
EP909024,
EP1079296,
EP1137192,
EP1298810,
EP20070197180,
EP2214085,
EP2328233,
EP2388925,
EP2424119,
EP2638640,
EP3131157,
JP10209722,
JP2000124066,
JP2005130441,
JP2077580,
JP3276901,
JP9321526,
KR100645526,
KR100740177,
WO2001071846,
WO2006031170,
WO2008030165,
WO2008133854,
WO2009064968,
WO2009108391,
WO2009155966,
WO2010028521,
WO2010121914,
WO2011044592,
WO2011084716,
WO2011102143,
WO2011133657,
WO2012067622,
WO2012085932,
WO2012112831,
WO2011028453,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 27 2010GREENE, MATTHEW R PARATEK MICROWAVE, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0490380799 pdf
Jun 08 2012PARATEK MICROWAVE, INC Research In Motion RF, IncCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0490430558 pdf
Jul 09 2013Research In Motion RF, IncResearch In Motion CorporationCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0490390022 pdf
Jul 10 2013Research In Motion CorporationBlackBerry LimitedCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0490390121 pdf
Apr 02 2019NXP USA, INC.(assignment on the face of the patent)
Feb 28 2020BlackBerry LimitedNXP USA, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0520950443 pdf
Date Maintenance Fee Events
Apr 02 2019BIG: Entity status set to Undiscounted (note the period is included in the code).
Mar 28 2022REM: Maintenance Fee Reminder Mailed.
Jun 03 2022M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 03 2022M1555: 7.5 yr surcharge - late pmt w/in 6 mo, Large Entity.
Sep 12 2022EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Feb 09 20244 years fee payment window open
Aug 09 20246 months grace period start (w surcharge)
Feb 09 2025patent expiry (for year 4)
Feb 09 20272 years to revive unintentionally abandoned end. (for year 4)
Feb 09 20288 years fee payment window open
Aug 09 20286 months grace period start (w surcharge)
Feb 09 2029patent expiry (for year 8)
Feb 09 20312 years to revive unintentionally abandoned end. (for year 8)
Feb 09 203212 years fee payment window open
Aug 09 20326 months grace period start (w surcharge)
Feb 09 2033patent expiry (for year 12)
Feb 09 20352 years to revive unintentionally abandoned end. (for year 12)