A system and method for determining transmission delay in a communications system. In some embodiments, satellite positioning information having system Frame Number (SFN) information may be received for a mobile device and observed time difference of arrival (otdoa) measurements may be received for a mobile device. A location of the mobile device may be determined as a function of the received satellite positioning information. A global positioning system (GPS) time estimate may be determined as a function of the determined location of the mobile device. transmission delay between a node serving the mobile device and an antenna serving the mobile device may be determined as a function of the received otdoa measurements and determined GPS time estimate.

Patent
   RE48505
Priority
Jan 12 2012
Filed
Oct 02 2019
Issued
Apr 06 2021
Expiry
Jan 14 2033
Assg.orig
Entity
Large
0
155
window open
1. A method of determining transmission delay in a communications network having a plurality of nodes comprising the steps of:
(a) receiving satellite positioning information for a mobile device, the received satellite positioning information including system Frame Number (SFN) information;
(b) receiving observed time difference of arrival (otdoa) measurements for a mobile device from one or more of the plural nodes;
(c) determining a location of the mobile device as a function of the received satellite positioning information;
(d) determining a global positioning system (GPS) time estimate as a function of the determined location of the mobile device; and
(e) determining transmission delay between a node serving the mobile device and an antenna serving the mobile device as a function of the received otdoa measurements and determined GPS time estimate.
0. 14. A communication system, comprising:
a plurality of nodes configured to provide wireless service to one or more mobile devices;
one or more processors coupled to a memory, wherein the one or more processors are configured to:
receive satellite positioning information for a mobile device, the received satellite positioning information including system Frame Number (SFN) information;
receive observed time difference of arrival (otdoa) measurements for the mobile device from one or more of the plural nodes;
determine a location of the mobile device as a function of the received satellite positioning information;
determine a global positioning system (GPS) time estimate as a function of the determined location of the mobile device; and
determine transmission delay between a node of the plurality of nodes serving the mobile device and an antenna serving the mobile device as a function of the received otdoa measurements and determined GPS time estimate.
2. The method of claim 1 wherein the step of receiving satellite positioning information further comprises requesting the mobile device to report a GPS to network time relationship.
3. The method of claim 1 wherein the serving node is an eNodeB.
4. The method of claim 1 wherein the otdoa measurements include SFN initialization time.
5. The method of claim 1 further comprising the step of determining propagation delay between the serving antenna and the mobile device as a function of the determined mobile device location and location of the serving antenna, wherein the determined transmission delay is a function of the determined propagation delay.
6. The method of claim 5 wherein the determined propagation delay is a function of a transmission path from the mobile device to the serving antenna or from the serving antenna to the mobile device.
7. The method of claim 1 wherein the step of determining transmission delay further comprises determining cable delay and/or radio frequency component delay.
8. The method of claim 1 further comprising the step of iteratively repeating step (c) and averaging the determined locations over the iteration.
9. The method of claim 1 further comprising the step of determining a location of one or more other mobile devices using respective received satellite information, wherein the step of determining transmission delay comprises determining transmission delay as a function of the determined locations of the one or more other mobile devices to minimize bias.
0. 10. The method of claim 1 wherein the serving node is a baseband processing unit.
0. 11. The method of claim 10 wherein a radio frequency front end is positioned between the baseband processing unit and the serving antenna.
0. 12. The method of claim 11 wherein the step of determining transmission delay further comprises determining cable delay or radio frequency component delay.
0. 13. The method of claim 11 wherein the step of determining transmission delay further comprises determining cable delay and radio frequency component delay.
0. 15. The communication system of claim 14, wherein the one or more processors are further configured to request the mobile device to report a GPS to network time relationship.
0. 16. The communication system of claim 14, wherein the serving node is an eNodeB.
0. 17. The communication system of claim 14, wherein the otdoa measurements include SFN initialization time.
0. 18. The communication system of claim 17, wherein the one or more processors are further configured to determine propagation delay between the serving antenna and the mobile device as a function of the determined mobile device location and location of the serving antenna, wherein the determined transmission delay is a function of the determined propagation delay.
0. 19. The communication system of claim 18, wherein the determined propagation delay is a function of a transmission path from the mobile device to the serving antenna or from the serving antenna to the mobile device.
0. 20. The communication system of claim 14, wherein the one or more processors are configured to determine transmission delay between the node serving the mobile device and the antenna serving the mobile device by determining cable delay and/or radio frequency component delay.
0. 21. The communication system of claim 14, wherein the one or more processors are further configured to iteratively repeat determining a location of the mobile device as a function of the received satellite positioning information and average the determined locations over the iteration.
0. 22. The communication system of claim 14, wherein the one or more processors are configured to determine a location of one or more other mobile devices using respective received satellite information;
wherein the one or more processors are configured to determine transmission delay between the node serving the mobile device and the antenna serving the mobile device by determining transmission delay as a function of the determined locations of the one or more other mobile devices to minimize bias.
0. 23. The communication system of claim 14, wherein the serving node is a baseband processing unit.
0. 24. The communication system of claim 23, wherein a radio frequency front end is positioned between the baseband processing unit and the serving antenna.
0. 25. The communication system of claim 24, wherein the one or more processors are configured to determine transmission delay between the node serving the mobile device and the antenna serving the mobile device by determining cable delay or radio frequency component delay.
0. 26. The communication system of claim 24, wherein the one or more processors are configured to determine transmission delay between the node serving the mobile device and the antenna serving the mobile device by determining cable delay and radio frequency component delay.


where SFNi represents the SFN initialization time at the nth eNodeB and may be reported under assistance information from the ith eNodeB under the OTDOA cell info Information Element (IE), and δi represents the delay at the ith base station between the respective time stamping module and the transmission cell site antenna.

Exemplary embodiments may determine the delay in the transmission path by using A-GNSS or A-GPS capable UEs, SETs or other mobile devices. Of course, A-GNSS and A-GPS are provided as non-limiting examples, as embodiments of the present subject matter may include other exemplary satellite systems such as, but not limited to, GLONASS, Galileo, Compass, BeiDou and the like.

For example, in one embodiment an E-SMLC or equivalent may initiate network assisted GNSS positioning procedures and/or an E-CID procedure to obtain measurements from the UE associated with the procedure. A delay in the transmission path may be determined based upon Timing Advance (TA) measurements from the E-CID procedure and/or a target location determined from any A-GNSS measurements. Thus, to determine the transmission path delay, the UE(s) position(s) determined by or at the E-SMLC may be paired or associated with respective TA measurements for the UE(s) obtained from the E-CID procedure.

In this embodiment of the present subject matter, both A-GPS/GNSS and E-CID positioning may be invoked from the E-SMLC or SLP. In one embodiment, E-CID positioning may be invoked through the control plane to provide better accuracy, and/or A-GPS/GNSS positioning may be invoked through the SLP to minimize messaging overhead in the control plane. Of course, embodiments of the present subject matter should not be so limited as both the control and user planes may be utilized in embodiments of the present subject matter.

If the position of the UE is determined using an exemplary A-GPS/GNSS positioning method, then the TA received using E-CID may be employed to estimate the delay occurring in the transmission path or of the eNodeB as illustrated in FIG. 3. Further information regarding TA is provided in 3GPP TS 36.214, the entirety of which is incorporated herein by reference. With reference to FIG. 3, using an exemplary uplink E-CID positioning method where measurements may be obtained by the eNodeB 310, an E-SMLC may receive measurement results from the serving eNodeB 310 containing TA for a target UE 320 as illustrated in Figure Ia. As described in 3GPP TS 36.455, the entirety of which is incorporated herein by reference, two types of TA information may be available from eNodeBs. According to 3GPP TS 36.214, TA may be determined at the transmission/receiver (Tx/Rx) antenna connector point of the eNodeB. The TA may account for both the propagation path delay and Rx/Tx path delay. Hence, if one assumes that the delay in the Tx and/or Rx path (i.e., the “transmission” path), 8, between the cell site antenna 330 and eNodeB 310 are both equal, then the following relationship may be obtained:
TADV_type1=2*(τ+δ)  (2)
where, τ represents the propagation delay. Equation (2) may then be rearranged to provide the transmission delay as:
δ=(TADV_type1)/2−τ  (3)

It should be noted that the asymmetry of delay in the Tx and Rx path due to different size of filters in the RF front end may impact the actual delay but should not impact the relative timing of downlink signals as these asymmetries between the Tx and Rx path or chain may not vary significantly from one base station to the other. Further, in embodiments where an SLP invokes an E-CID positioning procedure, TADV_type1 may be replaced by the TA received from a SET within an LTE LID.

The propagation delay τ between the cell site antenna 330 and UE 320 may be determined using knowledge of the position of the UE 320 and the location of the cell site; hence, an A-GPS/A-GNSS capable UE 320 may be used to determine the location of the UE 320. In the absence of TA Type 1, TA Type 2 may also be used. In this embodiment, the transmission delay may be determined using the following relationship:
δ=½(TADV_type2)−τ  (4)

When an E-SMLC, SLP, or other management server or entity desires to characterize the delay in the transmission path or chain for a particular site, a number of GPS/GNSS capable UEs served by that cell may be selected. Thus, the E-SMLC or SLP may invoke A-GNSS and E-CID positioning procedures on the UEs and may retrieve positioning measurements from UE as outlined in 3GPP TS 36.305, 3GPP TS 36.455, and 3GPP TS 36.355, the entirety of each being incorporated herein by reference.

In another embodiment, a delay in the transmission path may be determined from measurements obtained from the A-GNSS positioning procedures and the SFN. Thus, the E-SMLC or equivalent may request the UE to report a GNSS-network-time association when returning A-GNSS signal measurement information. In this embodiment of the present subject matter, an A-GPS/A-GNSS positioning method may be invoked by the E-SMLC or SLP, and the E-SMLC or SLP may receive OTDOA cell information from the serving cell of the UE.

When initiating the A-GNSS method, an exemplary E-SMLC may request the target UE to report GNSS-network time association. The fineTimeAssistanceMeasReq field may be set as TRUE under the IE GNSS-PositioningInstructions as discussed in 3GPP TS 36.355, the entirety of which is incorporated herein by reference. It should be noted that, while not required, the UE may support fine time assistance measurements, as indicated by the field fta-MeasSupport, in the IE A-GNSS-Provide-Capabilities.

When the E-SMLC indicates fineTimeAssistanceMeasReq, then the UE may align the measurement point with a cellular frame boundary and include the same in the network time (e.g., SFN) so that the GNSS time reported may be the time occurs at the frame boundary. FIG. 4 provides an illustration of such an embodiment. With reference to FIG. 4, precise time may be available after position determination, so the E-SMLC may establish the final GNSS-network time relationship. From the positioning determination of the UE, precise GNSS/GPS time of the SFN boundary observed at the UE may be determined. Assuming that the determined GNSS/GPS time of SFNn observed at the UE is UERxNth SFN, one may determine the propagation delay τ from the cell site antenna to the UE as a function of the determined location of the UE and the cell site location. If transmission time of the downlink frame N from the ith base station cell site antenna is represented as Tx_eNBiNth SFN, where i represents the serving base station, the following relationship may be obtained:
Tx_eNBiNth SFN=UERxNth SFN−τ  (5)

The E-SMLC may also obtain OTDOA cell information of the serving eNodeB including SFN initialization time. The SFN initialization time (in sec relative to 00:00:00 on 1 Jan. 1900) may be translated to GNSS/GPS reference time. Thus, assuming that the translated SFN time is represented as eNBiSFN_init, if both eNBiSFN_init and Tx_eNBiNth SFN are expressed in GPS/GNSS time of day (TOD), then the transmission delay may be determined as provided in the relationship below:
δ=Tx_eNBiNth SFN−eNBiNFNinit  (6)

To minimize measurement errors, the location of the UE may be obtained from A-GPS/A-GNSS methods by keeping the UE stationary and/or averaging the same over a predetermined number of iterations to minimize UE location error. Tx delay, δ, may thus be obtained by averaging over several times for a stationary UE location. This embodiment may also be repeated by placing UE(s) distributed over the cell area to minimize any bias from a particular location.

Thus, embodiments of the present subject matter may provide a method of determining delay using a mobile device's location and a respective signal's propagation delay. Such delay may include cable and/or other RF component delays. Further, the propagation delay may be either uplink and/or downlink paths and may be averaged for better accuracy.

FIG. 5 is a diagram of one embodiment of the present subject matter. With reference to FIG. 5, a method 500 of determining transmission delay in a communications system is provided. At step 510, the method may include receiving satellite positioning information for a mobile device. At step 520, E-CID positioning information may be received for the mobile device. In some embodiments, the received E-CID positioning information may include timing advance information of an uplink signal transmitted from the mobile device or timing advance information of a downlink signal received by the mobile device. In other embodiments, the E-CID positioning measurements may include timing advance type 1 or timing advance type 2. In yet another embodiment, step 520 may include invoking an E-CID positioning procedure from the UP or from the CoP.

A location of the mobile device may then be determined at step 530 as a function of the received satellite positioning information. At step 540, transmission delay between a node serving the mobile device and an antenna serving the mobile device may be determined as a function of the received E-CID positioning information and the determined location of the mobile device. In an alternative embodiment, step 540 may include determining cable delay and/or radio frequency component delay. In one embodiment, the serving node is an eNodeB. In a further embodiment, the method may include the step of determining propagation delay between the serving antenna and the mobile device as a function of the determined mobile device location and location of the serving antenna, where the determined transmission delay is a function of the determined propagation delay. In such a method, the determined propagation delay may be a function of a transmission path from the mobile device to the serving antenna or from the serving antenna to the mobile device. In additional embodiments, the method may include the step of iteratively repeating step 530 and averaging the determined locations over the several iterations. In an alternative embodiment, the method may include the step of determining a location of one or more other mobile devices using respective received satellite information, whereby step 540 would include determining transmission delay as a function of the determined locations of the one or more other mobile devices to minimize bias from any single location determination.

FIG. 6 is a diagram of another embodiment of the present subject matter. With reference to FIG. 6, a method 600 of determining transmission delay in a communications network having a plurality of nodes is provided. The method may include receiving satellite positioning information for a mobile device, the received satellite positioning information including SFN information at step 610 and receiving OTDOA measurements for a mobile device from one or more of the plural nodes at step 620. In one embodiment, step 610 includes requesting the mobile device to report a GPS to network time relationship. In another embodiment, the OTDOA measurements may include SFN initialization time.

A location of the mobile device may be determined as a function of the received satellite positioning information at step 630. At step 640, a GPS time estimate may be determined as a function of the determined location of the mobile device. At step 650, transmission delay between a node serving the mobile device and an antenna serving the mobile device may be determined as a function of the received OTDOA measurements and determined GPS time estimate. In one embodiment, the serving node is an eNodeB. In a further embodiment, the method may include the step of determining propagation delay between the serving antenna and the mobile device as a function of the determined mobile device location and location of the serving antenna, where the determined transmission delay is a function of the determined propagation delay. In such a method, the determined propagation delay may be a function of a transmission path from the mobile device to the serving antenna or from the serving antenna to the mobile device. In additional embodiments, the method may include the step of iteratively repeating step 630 and averaging the determined locations over the several iterations. In an alternative embodiment, step 650 may include determining cable delay and/or radio frequency component delay. In an alternative embodiment, the method may include the step of determining a location of one or more other mobile devices using respective received satellite information, whereby step 650 would include determining transmission delay as a function of the determined locations of the one or more other mobile devices to minimize bias from any single location determination.

While the discussion above has referenced certain exemplary networks such as UMTS networks, the disclosure herein should not be so limited. For example, the principles discussed herein are equally applicable to other networks such as, but not limited to, a TDMA network, CDMA network, a WiMax network, a WiFi network, networks utilizing EDVO, a CDMA2000 network, and 1×RTT standards or another equivalent networks or other networks that may include a system clock or equivalent. Such exemplary system clocks may thus be utilized by embodiments of the present subject matter to determine timing relationships relevant herein.

The present disclosure may be implemented by a general purpose computer programmed in accordance with the principals discussed herein. It may be emphasized that the above-described embodiments, particularly any “preferred” or exemplary embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the present subject matter. Many variations and modifications may be made to the above-described embodiments of the present subject matter without departing substantially from the spirit and principles of the present subject matter. All such modifications and variations are intended to be included herein within the scope of this present subject matter.

Embodiments of the subject matter and the functional operations described herein may be implemented in digital electronic circuitry, or in computer software, firmware, or hardware, including the structures disclosed in this specification and their structural equivalents, or in combinations of one or more of them. Embodiments of the subject matter described herein may be implemented as one or more computer program products, i.e., one or more modules of computer program instructions encoded on a tangible program carrier for execution by, or to control the operation of, data processing apparatus. The tangible program carrier may be a computer readable medium. The computer readable medium may be a machine-readable storage device, a machine-readable storage substrate, a memory device, or a combination of one or more of them.

The term “processor” encompasses all apparatus, devices, and machines for processing data, including by way of example a programmable processor, a computer, or multiple processors or computers. The processor may include, in addition to hardware, code that creates an execution environment for the computer program in question, e.g., code that constitutes processor firmware, a protocol stack, a database management system, an operating system, or a combination of one or more of them.

A computer program (also known as a program, software, software application, script, or code) may be written in any form of programming language, including compiled or interpreted languages, or declarative or procedural languages, and it may be deployed in any form, including as a standalone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. A computer program does not necessarily correspond to a file in a file system. A program may be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program may be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.

The processes and logic flows described herein may be performed by one or more programmable processors executing one or more computer programs to perform functions by operating on input data and generating output. The processes and logic flows may also be performed by, and apparatus may also be implemented as, special purpose logic circuitry, e.g., an FPGA (field programmable gate array) or an ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer program include, by way of example, both general and special purpose microprocessors, and any one or more processors of any kind of digital computer. Generally, a processor will receive instructions and data from a read only memory or a random access memory or both. The essential elements of a computer are a processor for performing instructions and one or more data memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto optical disks, or optical disks. However, a computer need not have such devices. Moreover, a computer may be embedded in another device, e.g., a mobile telephone, a personal digital assistant (PDA), a mobile audio or video player, a game console, a Global Positioning System (GPS) receiver, to name just a few.

Computer readable media suitable for storing computer program instructions and data include all forms data memory including nonvolatile memory, media and memory devices, including by way of example semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory devices; magnetic disks, e.g., internal hard disks or removable disks; magneto optical disks; and CD-ROM and DVD-ROM disks. The processor and the memory may be supplemented by, or incorporated in, special purpose logic circuitry.

To provide for interaction with a user, embodiments of the subject matter described herein may be implemented on a computer having a display device, e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor, for displaying information to the user and a keyboard and a pointing device, e.g., a mouse or a trackball, by which the user may provide input to the computer. Other kinds of devices may be used to provide for interaction with a user as well; for example, input from the user may be received in any form, including acoustic, speech, or tactile input.

Embodiments of the subject matter described herein may be implemented in a computing system that includes a back end component, e.g., as a data server, or that includes a middleware component, e.g., an application server, or that includes a front end component, e.g., a client computer having a graphical user interface or a Web browser through which a user may interact with an implementation of the subject matter described herein, or any combination of one or more such back end, middleware, or front end components. The components of the system may be interconnected by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include a local area network (“LAN”) and a wide area network (“WAN”), e.g., the Internet.

The computing system may include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.

While this description may contain many specifics, these should not be construed as limitations on the scope thereof, but rather as descriptions of features that may be specific to particular embodiments. Certain features that have been heretofore described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations and may even be initially claimed as such, one or more features from a claimed combination may in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings or figures in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems may generally be integrated together in a single software product or packaged into multiple software products.

The present subject matter may thus provide a method and system for determining the delay in the transmission path to allow for appropriate deployments of an exemplary OTDOA system.

As shown by the various configurations and embodiments illustrated in FIGS. 1-6, various embodiments for autonomous transmit chain delay measurements have been described.

While preferred embodiments of the present subject matter have been described, it is to be understood that the embodiments described are illustrative only and that the scope of the invention is to be defined solely by the appended claims when accorded a full range of equivalence, many variations and modifications naturally occurring to those of skill in the art from a perusal hereof.

Hannan, Ariful, Al-Mufti, Khalid W., Islam, Tariqul

Patent Priority Assignee Title
Patent Priority Assignee Title
3150372,
3659085,
4728959, Aug 08 1986 TRUEPOSITION, INC Direction finding localization system
4814751, Feb 27 1987 Wildlife Materials, Inc. Patient tracking system
4845504, Apr 08 1987 AMP Incorporated; AMP INVESTMENTS, INC ; WHITAKER CORPORATION, THE Mobile radio network for nationwide communications
4891650, May 16 1988 COMCAST TM, INC Vehicle location system
5056106, Aug 02 1990 Golf course ranging and direction-finding system using spread-spectrum radiolocation techniques
5218618, Nov 07 1990 Hughes Electronics Corporation Cellular telephone service using spread spectrum transmission
5317323, Mar 05 1993 Allen Telecom LLC Passive high accuracy geolocation system and method
5327144, May 07 1993 TRUEPOSITION, INC Cellular telephone location system
5365544, Dec 05 1990 InterDigital Technology Corporation CDMA communications and geolocation system and method
5372144, Dec 01 1992 Boston Scientific Scimed, Inc Navigability improved guidewire construction and method of using same
5404376, Sep 09 1993 BlackBerry Limited Navigation assistance for call handling in mobile telephone systems
5423067, Sep 09 1991 NEC Corporation Digital mobile communications system and method for providing intensity/coverage reference maps using base stations and mobile stations
5465289, Mar 05 1993 Allen Telecom LLC Cellular based traffic sensor system
5506863, Aug 25 1993 Google Technology Holdings LLC Method and apparatus for operating with a hopping control channel in a communication system
5506864, Dec 05 1990 InterDigital Technology Corporation CDMA communications and geolocation system and method
5508708, May 08 1995 Google Technology Holdings LLC Method and apparatus for location finding in a CDMA system
5512908, Jul 08 1994 ADC Telecommunications, Inc Apparatus and method for locating cellular telephones
5515419, Jun 01 1992 Trackmobile Tracking system and method for tracking a movable object carrying a cellular phone unit, and integrated personal protection system incorporating the tracking system
5519760, Jun 22 1994 Verizon Laboratories Inc Cellular network-based location system
5559864, Mar 05 1993 Allen Telecom LLC Cellular based traffic sensor system
5592180, Aug 20 1992 NEXUS TELECOMMUNICATION SYSTEMS LTD ; Nexus 1994 Limited Direction finding and mobile location system for trunked mobile radio systems
5608410, May 07 1993 TRUEPOSITION, INC System for locating a source of bursty transmissions cross reference to related applications
5614914, Sep 06 1994 Intel Corporation Wireless telephone distribution system with time and space diversity transmission for determining receiver location
5675344, Jun 28 1996 Google Technology Holdings LLC Method and apparatus for locating a mobile station in a spread spectrum communication system
5736964, May 08 1995 Google Technology Holdings LLC Method and apparatus for location finding in a CDMA system
5815538, Jun 25 1993 WESTAR CAPITAL; WESTAR CAPITAL II, LLC Method and apparatus for determining location of a subscriber device in a wireless cellular communications system
5825887, Dec 28 1995 Trimble Navigation Limited Transmitting and receiving apparatus for full code correlation operation under encryption for satellite positioning system
5870029, Jul 08 1996 Harris Corporation Remote mobile monitoring and communication system
5920278, May 28 1997 Science Applications International Corporation Method and apparatus for identifying, locating, tracking, or communicating with remote objects
5952969, Aug 18 1997 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Method and system for determining the position of mobile radio terminals
5959580, Nov 03 1994 TRUEPOSITION, INC Communications localization system
5960341, Sep 28 1994 Qwest Communications International Inc Positioning system having an RF-measurements databank
5973643, Apr 11 1997 AUTHORIZE NET LLC Method and apparatus for mobile emitter location
5987329, Jul 30 1997 Ericsson Inc System and method for mobile telephone location measurement using a hybrid technique
6014102, Apr 17 1998 Google Technology Holdings LLC Method and apparatus for calibrating location finding equipment within a communication system
6047192, May 13 1996 SKYHOOK HOLDING, INC Robust, efficient, localization system
6091362, Jan 08 1999 SKYHOOK HOLDING, INC Bandwidth synthesis for wireless location system
6097336, Jan 08 1999 SKYHOOK HOLDING, INC Method for improving the accuracy of a wireless location system
6097959, Jan 29 1998 Ericsson Inc System and method for accurate positioning of mobile terminals
6101178, Jul 10 1997 SKYHOOK HOLDING, INC Pseudolite-augmented GPS for locating wireless telephones
6108555, May 17 1996 SKYHOOK HOLDING, INC Enchanced time difference localization system
6115599, Jan 08 1999 SKYHOOK HOLDING, INC Directed retry method for use in a wireless location system
6119013, May 17 1996 SKYHOOK HOLDING, INC Enhanced time-difference localization system
6127975, Nov 03 1994 TRUEPOSITION, INC Single station communications localization system
6144711, Aug 27 1997 Cisco Systems, Inc Spatio-temporal processing for communication
6172644, Jan 08 1999 SKYHOOK HOLDING, INC Emergency location method for a wireless location system
6184829, Jan 08 1999 SKYHOOK HOLDING, INC Calibration for wireless location system
6188351, Aug 13 1998 Ericsson Inc. Method for improving signal acquistion in a global positioning system receiver
6191738, Sep 30 1999 Google Technology Holdings LLC Method and apparatus for locating a remote unit within a communication system
6201499, Feb 03 1998 AUTHORIZE NET LLC Time difference of arrival measurement system
6201803, May 02 1995 BT CELLNET LIMITED Cellular radio location system
6212319, Nov 27 1997 Dassault Electronique Electro-optical device, notably for optical distribution
6233459, Apr 10 1997 Allen Telecom LLC System for providing Geolocation of a mobile transceiver
6236359, May 14 1998 TELECOMMUNICATION SYSTEMS, INC Cellular terminal location using GPS signals in the cellular band
6246884, Aug 19 1998 Sigmaone Communications Corporation System and method for measuring and locating a mobile station signal in a wireless communication system
6266013, Jan 08 1999 SKYHOOK HOLDING, INC Architecture for a signal collection system of a wireless location system
6281834, Jan 08 1999 SKYHOOK HOLDING, INC Calibration for wireless location system
6285321, Jan 08 1999 SKYHOOK HOLDING, INC Station based processing method for a wireless location system
6288675, Feb 26 1998 SKYHOOK HOLDING, INC Single station communications localization system
6288676, Nov 03 1994 SKYHOOK HOLDING, INC Apparatus and method for single station communications localization
6295455, Jun 11 1999 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for locating a mobile telecommunications station
6311043, Jun 05 2000 NOKIA SIEMENS NETWORKS GMBH & CO KG Method and measurement configuration for measuring the characteristics of radio channels
6317081, Jan 08 1999 SKYHOOK HOLDING, INC Internal calibration method for receiver system of a wireless location system
6317604, Jan 08 1999 SKYHOOK HOLDING, INC Centralized database system for a wireless location system
6334059, Jan 08 1999 SKYHOOK HOLDING, INC Modified transmission method for improving accuracy for e-911 calls
6351235, Jan 08 1999 SKYHOOK HOLDING, INC Method and system for synchronizing receiver systems of a wireless location system
6366241, Jun 26 2000 SKYHOOK HOLDING, INC Enhanced determination of position-dependent signal characteristics of a wireless transmitter
6388618, Jan 08 1999 SKYHOOK HOLDING, INC Signal collection system for a wireless location system
6400320, Jan 08 1999 SKYHOOK HOLDING, INC Antenna selection method for a wireless location system
6407703, Aug 07 2000 Lockheed Martin Corporation Multi-platform geolocation method and system
6463290, Jan 08 1999 SKYHOOK HOLDING, INC Mobile-assisted network based techniques for improving accuracy of wireless location system
6470195, Oct 31 2000 OL SECURITY LIMITED LIABILITY COMPANY Method and apparatus for modeling a smart antenna in a network planning tool
6477161, Dec 21 1998 Apple Inc Downlink beamforming approach for frequency division duplex cellular systems
6483460, Jan 08 1999 SKYHOOK HOLDING, INC Baseline selection method for use in a wireless location system
6492944, Jan 08 1999 SKYHOOK HOLDING, INC Internal calibration method for receiver system of a wireless location system
6501955, Jun 19 2000 Apple Inc RF signal repeater, mobile unit position determination system using the RF signal repeater, and method of communication therefor
6519465, Jan 08 1999 SKYHOOK HOLDING, INC Modified transmission method for improving accuracy for E-911 calls
6546256, May 13 1996 SKYHOOK HOLDING, INC Robust, efficient, location-related measurement
6553322, Sep 29 1999 Honeywell International Inc. Apparatus and method for accurate pipeline surveying
6563460, Jan 08 1999 SKYHOOK HOLDING, INC Collision recovery in a wireless location system
6571082, Oct 29 1999 Verizon Laboratories Inc Wireless field test simulator
6603428, Jan 08 1999 SKYHOOK HOLDING, INC Multiple pass location processing
6603761, Sep 17 1999 WSOU Investments, LLC Using internet and internet protocols to bypass PSTN, GSM map, and ANSI-41 networks for wireless telephone call delivery
6640106, Sep 20 2001 Google Technology Holdings LLC Method and system for verifying the position of a mobile station using checkpoints
6646604, Jan 08 1999 SKYHOOK HOLDING, INC Automatic synchronous tuning of narrowband receivers of a wireless location system for voice/traffic channel tracking
6661379, Jan 08 1999 SKYHOOK HOLDING, INC Antenna selection method for a wireless location system
6765531, Jan 08 1999 SKYHOOK HOLDING, INC System and method for interference cancellation in a location calculation, for use in a wireless location system
6771625, Jul 10 1997 SKYHOOK HOLDING, INC Pseudolite-augmented GPS for locating wireless telephones
6771969, Jul 06 2000 Harris Corporation Apparatus and method for tracking and communicating with a mobile radio unit
6782264, Jan 08 1999 TRUEPOSITION, INC Monitoring of call information in a wireless location system
6834234, Nov 22 2000 Trimble Navigation, Limited AINS land surveyor system with reprocessing, AINS-LSSRP
6839539, Jun 19 2000 Apple Inc RF signal repeater in mobile communications systems
6845240, Dec 11 2000 Allen Telecom LLC System and method for analog cellular radio geolocation
6859172, Feb 17 2003 Global Business Software Development Technologies, Inc. System and method for locating a mobile phone
6871077, Oct 09 2001 Allen Telecom LLC System and method for geolocating a wireless mobile unit from a single base station using repeatable ambiguous measurements
6873290, Jan 08 1999 SKYHOOK HOLDING, INC Multiple pass location processor
6876859, Jul 18 2001 SKYHOOK HOLDING, INC Method for estimating TDOA and FDOA in a wireless location system
6920329, Jan 16 2001 Allen Telecom LLC Method and system for applying wireless geolocation technology
6922170, Jan 24 2002 Google Technology Holdings LLC Methods and apparatus for determining a direction of arrival in a wireless communication system
6952158, Dec 11 2000 Allen Telecom LLC Pseudolite positioning system and method
6987979, Dec 22 2001 Unwired Planet, LLC Locating packet-switched mobile terminals using network initiated artificial cell hops
6996392, Sep 03 2002 SKYHOOK HOLDING, INC E911 overlay solution for GSM, for use in a wireless location system
7023383, Jan 08 1999 SKYHOOK HOLDING, INC Multiple pass location processor
7167713, Jan 08 1999 SKYHOOK HOLDING, INC Monitoring of call information in a wireless location system
7271765, Jan 08 1999 SKYHOOK HOLDING, INC Applications processor including a database system, for use in a wireless location system
7340259, May 13 1996 SKYHOOK HOLDING, INC Robust, efficient, localization system
7427952, Apr 08 2005 SKYHOOK HOLDING, INC Augmentation of commercial wireless location system (WLS) with moving and/or airborne sensors for enhanced location accuracy and use of real-time overhead imagery for identification of wireless device locations
7440762, Dec 30 2003 SKYHOOK HOLDING, INC TDOA/GPS hybrid wireless location system
7593738, Dec 29 2005 SKYHOOK HOLDING, INC GPS synchronization for wireless communications stations
9423508, Jan 12 2012 CommScope Technologies LLC Autonomous Transmit Chain Delay Measurements
9778371, Jan 12 2012 CommScope Technologies LLC Autonomous transmit chain delay measurements
20020172223,
20030064734,
20030139188,
20030190919,
20030203738,
20040043775,
20040132466,
20040203921,
20040218664,
20040252752,
20050058182,
20050136945,
20050164712,
20050192026,
20060003695,
20060003775,
20060030333,
20060116130,
20060125695,
20060141998,
20060154607,
20060240836,
20070087689,
20070111746,
20070155401,
20070155489,
20070202885,
20080132244,
20080132247,
20080137524,
20080158059,
20080160952,
20080160953,
20080161015,
20080248811,
20080261611,
20080261612,
20080261613,
20080261614,
20090005061,
JP6347529,
WO2006088472,
///////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 11 2013HANNAN, ARIFULAndrew LLCCORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY ASSIGNEE NAME PREVIOUSLY RECORDED ON REEL 050607 FRAME 0840 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0507410466 pdf
Jan 11 2013ISLAM, TARIQULAndrew LLCCORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY ASSIGNEE NAME PREVIOUSLY RECORDED ON REEL 050607 FRAME 0840 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0507410466 pdf
Jan 11 2013AL-MUFTI, KHALID W Andrew LLCCORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY ASSIGNEE NAME PREVIOUSLY RECORDED ON REEL 050607 FRAME 0840 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0507410466 pdf
Jan 11 2013ISLAM, TARIQULCommScope Technologies LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0506070840 pdf
Jan 11 2013HANNAN, ARIFULCommScope Technologies LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0506070840 pdf
Jan 11 2013AL-MUFTI, KHALID W CommScope Technologies LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0506070840 pdf
Feb 27 2015Andrew LLCCommScope Technologies LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0507410483 pdf
Oct 02 2019CommScope Technologies LLC(assignment on the face of the patent)
Nov 15 2021RUCKUS WIRELESS, INC WILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Nov 15 2021COMMSCOPE, INC OF NORTH CAROLINAWILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Nov 15 2021CommScope Technologies LLCWILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Nov 15 2021ARRIS ENTERPRISES LLCWILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Nov 15 2021ARRIS SOLUTIONS, INC WILMINGTON TRUSTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0607520001 pdf
Apr 25 2024CommScope Technologies LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TERM 0672590697 pdf
Apr 25 2024ARRIS ENTERPRISES LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TERM 0672590697 pdf
Apr 25 2024COMMSCOPE, INC OF NORTH CAROLINAJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT ABL 0672520657 pdf
Apr 25 2024CommScope Technologies LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT ABL 0672520657 pdf
Apr 25 2024ARRIS ENTERPRISES LLCJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT ABL 0672520657 pdf
Apr 25 2024COMMSCOPE, INC OF NORTH CAROLINAJPMORGAN CHASE BANK, N A , AS COLLATERAL AGENTPATENT SECURITY AGREEMENT TERM 0672590697 pdf
Date Maintenance Fee Events
Oct 02 2019BIG: Entity status set to Undiscounted (note the period is included in the code).


Date Maintenance Schedule
Apr 06 20244 years fee payment window open
Oct 06 20246 months grace period start (w surcharge)
Apr 06 2025patent expiry (for year 4)
Apr 06 20272 years to revive unintentionally abandoned end. (for year 4)
Apr 06 20288 years fee payment window open
Oct 06 20286 months grace period start (w surcharge)
Apr 06 2029patent expiry (for year 8)
Apr 06 20312 years to revive unintentionally abandoned end. (for year 8)
Apr 06 203212 years fee payment window open
Oct 06 20326 months grace period start (w surcharge)
Apr 06 2033patent expiry (for year 12)
Apr 06 20352 years to revive unintentionally abandoned end. (for year 12)