A vehicle control system having a controller and a spatial database adapted to provide spatial data to the controller at control speed. The spatial data provided from the spatial database to the controller includes images collected from an optical sensor subsystem in addition to other data collected by a variety of sensor types, including a GNSS or inertial measurement system. The spatial data received by the controller from the database forms at least part of the control inputs that the controller operates on to control the vehicle. The advantage provided by the present invention allows control system to “think” directly in terms of spatial location. A vehicle control system in accordance with one particular embodiment of the invention comprises a task path generator, a spatial database, at least one external spatial data receiver, a vehicle attitude compensation module, a position error generator, a controller, and actuators to control the vehicle.
|
0. 21. A method of controlling a vehicle having a single gimbal-mounted optical movement sensor mounted thereon or plural optical movement sensors mounted thereon in transversely-spaced relation, the method comprising:
converting position and attitude information from the single optical movement sensor or the plural optical movement sensors into a calculated position and attitude of the vehicle, wherein the calculated attitude defines a roll, yaw, and pitch of the vehicle;
steering the vehicle using the calculated position and attitude of the vehicle and spatial data corresponding to absolute positions in a region;
wherein the spatial data is from a database, and the method further comprises updating the database with updated spatial data as the vehicle traverses the region.
0. 18. An apparatus for controlling a vehicle, the apparatus comprising:
a spatial database containing spatial data corresponding to absolute positions in a region; and
a controller, in communication with a single gimbal-mounted optical movement sensor of the vehicle or plural optical movement sensors mounted on the vehicle in transversely-spaced relation, the controller configured to:
convert position and attitude information from the single optical movement sensor or the plural optical movement sensors into a calculated position and attitude of the vehicle, wherein the calculated attitude defines a roll, yaw, and pitch of the vehicle,
steer the vehicle using the calculated position and attitude of the vehicle and the spatial data from the spatial database, and
update the spatial database with updated spatial data as the vehicle traverses the region.
0. 1. A system for controlling a vehicle, the vehicle including an automatic steering system and roll, pitch and yaw axes, and the control system comprising:
a spatial database containing spatial data corresponding to GPS-defined positions in the region;
a controller mounted on said vehicle and adapted for computing guidance signals, to receive spatial data from the spatial database at control speed, and to control the steering of the vehicle;
a guidance subsystem mounted on said vehicle and connected to said controller, said guidance subsystem being adapted for receiving said guidance signals from said controller and utilizing said guidance signals for guiding said vehicle;
external spatial data sources mounted on said vehicle, comprising at least an optical movement sensor subsystem adapted for optically sensing movement of said vehicle relative to a surface over which said vehicle is traveling;
said optical movement sensor subsystem including an optical movement sensor connected to said controller and adapted for providing optically-sensed vehicle movement signals thereto corresponding to optically-sensed relative vehicle movement;
said optical movement sensor subsystem including an optical movement sensor and an optimal estimator providing a statistically optimal estimate of the position and attitude information received from the optical movement sensor;
said optimal estimator including algorithms that receive the position and attitude information from the optical movement sensor and converts said information into a calculated or determined position and attitude of said vehicle producing a statistically optimal estimate of the calculated or determined position and attitude of said vehicle;
said controller being adapted for computing said guidance signals utilizing said vehicle movement signals;
the controller correlating images from said optical movement sensor subsystem to obtain data relating to the vehicle's motion;
a vehicle reference point located at an intersection of the vehicle roll, pitch and yaw axes; and
the spatial database being adapted to receive updated spatial data from the controller and the external spatial data sources as the vehicle traverses the region.
0. 2. The system for controlling a vehicle according to
a global navigation satellite system (GNSS) positioning subsystem mounted on said vehicle and adapted for providing GNSS-derived position signals to said controller;
said controller using said GNSS-derived position signals for computing said guidance signals;
said GNSS positioning subsystem including a pair of antennas mounted on said vehicle; and
said antennas receiving GNSS ranging signals corresponding to their respective geo-reference locations.
0. 3. The system for controlling a vehicle according to
said processor being adapted for computing an attitude of said vehicle using ranging differences between the GNSS signals received by said antennas; and
said GNSS antennas being mounted on said vehicle in transversely-spaced relation.
0. 4. The system for controlling a vehicle according to
said vehicle including a motive component and an implement connected to said motive component;
a GNSS antenna mounted on said implement and connected to said GNSS receiver; and
said guidance subsystem being adapted for automatically steering said vehicle utilizing said positioning signals to accommodate an offset between said tractor and implement and correct relative positioning of said tractor and implement to maintain said implement on a guide path.
0. 5. The system for controlling a vehicle according to
said guidance subsystem including an hydraulic steering valve block connected to said controller and to a steering mechanism of said vehicle; and
said guidance subsystem including a graphic user interface (GUI) adapted for displaying a guide path of said vehicle.
0. 6. The system for controlling a vehicle according to
a GNSS base station including a radio transmitter and a radio receiver;
said vehicle including an RF receiver adapted to receive RF transmissions from said base station; and
a real-time kinematic (RTK) correction subsystem using carrier phase satellite transmissions with said vehicle in motion.
0. 7. The system for controlling a vehicle according to
a pair of said optical movement sensors fixedly mounted in spaced relation on said vehicle.
0. 8. The system for controlling a vehicle according to
a GNSS system including an antenna and a receiver;
an inertial navigation system (INS) including a gyroscope and an accelerometer; and
a tilt sensor.
0. 9. A control system as claimed in
0. 10. A system for controlling an agricultural vehicle, the vehicle including an automatic steering system and roll, pitch and yaw axes, and the control system comprising:
a spatial database containing spatial data corresponding to GPS-defined positions in the region;
a controller mounted on said vehicle and adapted for computing guidance signals, to receive spatial data from the spatial database at control speed, and to control the steering of the vehicle;
a guidance subsystem mounted on said vehicle and connected to said controller, said guidance subsystem being adapted for receiving said guidance signals from said controller and utilizing said guidance signals for guiding said vehicle;
external spatial data sources mounted on said vehicle, comprising at least an optical movement sensor subsystem adapted for optically sensing movement of said vehicle relative to a surface over which said vehicle is traveling;
said optical movement sensor subsystem including an optical movement sensor connected to said controller and adapted for providing optically-sensed vehicle movement signals thereto corresponding to optically-sensed relative vehicle movement;
said optical movement sensor subsystem including an optical movement sensor and an optimal estimator providing a statistically optimal estimate of the position and attitude information received from the optical movement sensor;
said optimal estimator including algorithms that receive the position and attitude information from the optical movement sensor and converts said information into a calculated or determined position and attitude of said vehicle producing a statistically optimal estimate of the calculated or determined position and attitude of said vehicle;
said controller being adapted for computing said guidance signals utilizing said vehicle movement signals;
the controller correlating images from said optical movement sensor subsystem to obtain data relating to the vehicle's motion;
a vehicle reference point located at an intersection of the vehicle roll, pitch and yaw axes;
the spatial database being adapted to receive updated spatial data from the controller and the external spatial data sources as the vehicle traverses the region;
a global navigation satellite system (GNSS) positioning subsystem mounted on said vehicle and adapted for providing GNSS-derived position signals to said controller;
said controller using said GNSS-derived position signals for computing said guidance signals;
said GNSS positioning subsystem including a pair of antennas mounted on said vehicle;
said antennas receiving GNSS ranging signals corresponding to their respective geo-reference locations;
said processor being adapted for computing an attitude of said vehicle using ranging differences between the GNSS signals received by said antennas;
said GNSS antennas being mounted on said vehicle in transversely-spaced relation;
said vehicle including a motive component and an implement connected to said motive component;
a GNSS antenna mounted on said implement and connected to said GNSS receiver;
said guidance subsystem being adapted for automatically steering said vehicle utilizing said positioning signals to accommodate an offset between said tractor and implement and correct relative positioning of said tractor and implement to maintain said implement on a guide path;
said guidance subsystem including an hydraulic steering valve block connected to said controller and to a steering mechanism of said vehicle;
said guidance subsystem including a graphic user interface (GUI) adapted for displaying a guide path of said vehicle;
a GNSS base station including a radio transmitter and a radio receiver;
said vehicle including an RF receiver adapted to receive RF transmissions from said base station; and
a real-time kinematic (RTK) correction subsystem using carrier phase satellite transmissions with said vehicle in motion.
0. 11. A method for controlling a vehicle within a region to be traversed, the vehicle including an automatic steering system and roll, pitch and yaw axes, the method comprising the steps:
providing a spatial database;
populating said database with spatial data corresponding to GPS-defined positions in the region;
providing a position error generator;
providing a controller;
mounting said controller to said vehicle;
traversing the region with said vehicle;
receiving spatial data with said controller from the spatial database at control speed;
controlling the steering of the vehicle with the controller as the vehicle traverses the region;
providing the controller with a task path generator;
receiving data from the spatial database with the controller and controller task path generator;
providing the controller with a vehicle attitude compensation module;
mounting external spatial data sources, including at least an optical movement sensor subsystem, on said vehicle and optically sensing movement of said vehicle relative to a surface over which said vehicle is traveling;
said optical movement sensor subsystem including an optimal estimator providing a statistically optimal estimate of the position and attitude information received from the optical movement sensor;
providing said optimal estimator with algorithms that receive the position and attitude information from the optical movement sensor and convert said information into a calculated or determined position and attitude of said vehicle producing a statistically optimal estimate of the calculated or determined position and attitude of said vehicle;
populating said spatial database with ground images from said optical movement sensor subsystem;
inputting said ground images to the controller;
correlating the images with said controller to obtain data relating to the vehicle's motion;
designating and locating a vehicle reference point at an intersection of the vehicle roll, pitch, and yaw axes; and
updating said spatial database with spatial data from the controller and said external spatial data sources as the vehicle traverses the region.
0. 12. The method for controlling a vehicle according to
providing a global navigation satellite system (GNSS) positioning subsystem mounted on said vehicle and providing GNSS-derived position signals to said controller;
providing said GNSS positioning subsystem with a pair of antennas mounted on said vehicle;
receiving with said antennas GNSS ranging signals corresponding to their respective geo-reference locations; and
computing with said processor an attitude of said vehicle using ranging differences between the GNSS signals received by said antennas.
0. 13. The method for controlling a vehicle according to
mounting said GNSS antennas on said vehicle in transversely-spaced relation.
0. 14. The method for controlling a vehicle according to
providing said vehicle with a motive component and an implement connected to said motive component;
mounting a GNSS antenna on said implement and connecting said implement-mounted GNSS antennas to said GNSS receiver; and
said guidance subsystem automatically steering said vehicle utilizing said positioning signals to accommodate an offset between said tractor and said implement and to maintain said implement on a guide path.
0. 15. The method according to
providing said optical movement sensor subsystem with a pair of optical movement sensors; and
fixedly mounting said optical movement sensors in spaced relation on said vehicle.
0. 16. The method for controlling a vehicle according to
a GNSS system including an antenna and a receiver;
an inertial navigation system (INS) including a gyroscope and an accelerometer; and
a tilt sensor.
0. 17. The method for controlling a vehicle according to
0. 19. The apparatus of claim 18, further comprising an optimal estimator to calculate the calculated position and attitude of the vehicle by calculating a statistically optimal estimate of the position and attitude information received from the single optical movement sensor or the plural optical movement sensors.
0. 20. The apparatus of claim 19, wherein the optimal estimator includes algorithms that receive the position and attitude information from the single optical movement sensor or the plural optical movement sensors and convert the information into the calculated position and attitude of the vehicle by calculating the statistically optimal estimate.
0. 22. The method of claim 21, further comprising calculating a statistically optimal estimate of the position and attitude information received from the single optical movement sensor or the plural optical movement sensors.
0. 23. The method of claim 22, further comprising:
receiving the position and attitude information from the single optical movement sensor or the plural optical movement sensors; and
converting the received information into the calculated position and attitude of the vehicle by calculating the statistically optimal estimate.
|
This application LED(GNSS)138219 319
where n is the number of states.
In general, the mathematical model used to model the vehicle's motion and aspects of its operation will comprise a series of differential equations. The number of equations will be the same as the number of states. In some cases, the differential equations will be linear in terms of the states, whereas in other situations the equations may be nonlinear in which case they must generally be “linearized” about a point in the “state space”. Linearization techniques that may be used to do this will be well known to those skilled in this area.
Next, by noting that any jth order linear differential equations can be re-written equivalently as a set
where
Next, it will be noted that both the state equation and the measurement equation defined above are continuous functions of time. However, continuous time functions do not often lend themselves to easy digital implementation (such as will generally be required in implementing the present invention) because digital control systems generally operate as recursively repeating algorithms. Therefore, for the purpose of implementing the equations digitally, the continuous time equations may be converted into the following recursive discrete time equations by making the substitutions set out below and noting that (according to the principle of superposition) the overall response of a linear system is the sum of the free (unforced) response of that system and the responses of that system due to forcing/driving inputs. The recursive discrete time equations are:
Xk+1=FXk+GUk+1+Lwk+1
Yk+1=ZYk+JUk+1+Nwk+1
where
Finally, the “curvature error” is the difference between the actual instantaneous radius of curvature r of the vehicle's motion and the desired instantaneous radius of curvature R. The curvature error is given by:
Curvature Error=1/R−1/r
It will also be clearly appreciated that there may be many other vehicle variables or parameters which also need to be controlled if, for example, acceleration/deceleration or the vehicle's mode of equipment operation are also to be controlled.
Referring next to
In the overall operation of the control system, the desired path trajectory for the vehicle is first entered into the control system by the user via the user terminal 608. The task path generator then interprets this user-defined path definition and converts it into a series of points of sufficient spatial density to adequately represent the desired path to the requisite level of precision. The task path generator typically also defines the vehicle's desired trajectory along the user-defined path, for example, by generating a desired vehicle position, a desired heading H and a desired instantaneous radius of curvature R for each point on the path. This information is then loaded into the spatial database. The way in which this and other spatial information is stored within the database in representative embodiments, and in particular the way in which pieces of data are given memory allocations according to their spatial location, is described further below.
As the vehicle moves along the user-defined path, it will invariably experience various perturbations in its position and orientation due to, for example, bumps, potholes, subsidence beneath the vehicle's wheels, vehicle wheel-spin, over/under-steer, etc. Those skilled in this area will recognize that a huge range of other similar factors can also influence the instantaneous position and orientation of the vehicle as it moves. One of the purposes of the present control system is to automatically correct for these perturbations in position and orientation to maintain the vehicle on the desired path (or as close to it as possible).
As the vehicle moves, the control system progressively receives updated information regarding spatial location from the external spatial data sources. The external spatial data sources will typically include GPS. However, a range of other spatial data sources may also be used in addition to, or in substitute for GPS. For example, the inertial navigation systems (INS), visual navigation systems, etc. described above may also be used as external data sources in the present control system.
Those skilled in the art will recognize that the spatial data collected by the external spatial data sources actually pertains to the specific location of the external spatial data receivers, not necessarily the vehicle/implement reference location itself (which is what is controlled by the control system). In
In addition to this, changes in the vehicle's attitude will also influence the spatial position readings received by the different receivers. For example, if one of the vehicle's wheels passes over, or is pushed sideways by a bump, this may cause the vehicle to rotate about at least one (and possibly two or three) of the axes shown in
In order to compensate for the difference in position between the vehicle's reference point and the location of the spatial data receiver(s), and also to account for changes in the vehicle's orientation, a vehicle attitude compensation module is provided. This is shown in
Those skilled in the art will recognize that the one or more external spatial data sources will progressively receive updated data readings in rapid succession (e.g., in “real time” or as close as possible to it). These readings are then converted by the vehicle attitude compensation module and fed into the spatial database. The readings may also be filtered as described above. Therefore, whilst each reading from each spatial data source is received, converted (ideally filtered) and entered into the spatial database individually, nevertheless the rapid successive way in which these readings (possibly from multiple “parallel” data sources) are received, converted and entered effectively creates a “stream” of incoming spatial data pertaining to the vehicle's continuously changing instantaneous location and orientation. In order to provide sufficient bandwidth, successive readings from each external spatial data source should be received and converted with a frequency of the same order as the clock speed (or at least one of the clock speeds) of the controller, typically 3 Hz-12 Hz or higher.
Referring again to
The position error generator then uses this information to calculate an instantaneous “error term” for the vehicle. The “error term” incorporates the vehicle's instantaneous cross-track error, heading error and curvature error (as described above). The error term is then fed into the controller. The controller is shown in greater detail in
From
where n is the number of states.
Similarly, the quantity Lw.sub.k+1 is the (forced) response of the system due to the random “error” inputs that make up the process noise. Hence, conceptually this quantity may be defined as:
However, as noted above, the quantity Ew(t) is not deterministic and so the integral defining Lw.sub.k+1 cannot be performed (even numerically). It is for this reason that it is preferable to use statistical filtering techniques such as a “Kalman Filter” to statistically optimize the states estimated by the mathematical model.
In general, a “Kalman Filter” operates as a “predictor-corrector” algorithm. Hence, the algorithm operates by first using the mathematical model to “predict” the value of each of the states at time step k+1 based on the known inputs at time step k+1 and the known value of the states from the previous time step k. It then “corrects” the predicted value using actual measurements taken from the vehicle at time step k+1 and the optimized statistical properties of the model. In summary, the Kalman Filter comprises the following equations each of which is computed in the following order for each time step:
where the notation k+1|k means the value of the quantity in question at time step k+1 given information from time step k. Similarly, k+1|k+1 means the value of the quantity at time step k+1 given updated information from time step k+1. [0135]P is the co-variance in the difference between the estimated and actual value of X. [0136]Q is the co-variance in the process noise. [0137]K is the “Kalman gain” which is a matrix of computed coefficients used to optimally “correct” the initial state estimate. [0138]R is the co-variance in the measurement noise. [0139] is a vector containing measurement values taken from the actual vehicle.
The operation of the discrete time state space equations outlined above, including the Kalman gain and the overall feedback closed loop control structure, are represented graphically in
In relation to the spatial database, it is mentioned above that a wide range of methods are known for arranging data within databases. One commonly used technique is to provide a “hash table”. The hash table typically operates as a form of index allowing the computer (in this case the control system CPU) to “look up” a particular piece of data in the database (i.e. to look up the location of that piece of data in memory). In the context of the present invention, pieces of data pertaining to particular locations along the vehicle's path are assigned different hash keys based on the spatial location to which they relate. The hash table then lists a corresponding memory location for each hash key. Thus, the CPU is able to “look up” data pertaining to a particular location by looking up the hash key for that location in the hash table which then gives the corresponding location for the particular piece of data in memory. In order to increase the speed with which these queries can be carried out, the hash keys for different pieces of spatial data can be assigned in such a way that “locality” is maintained. In other words, points which are close to each other in the real world should be given closely related indices in the hash table (i.e. closely related hash keys).
The spatial hash algorithm used to generate hash keys for different spatial locations in representative embodiments of the present invention may be most easily explained by way of a series of examples. To begin, it is useful to consider the hypothetical vehicle path trajectory shown in
As outlined above, in the present invention all data is stored within the spatial database with reference to spatial location. Therefore, it is necessary to assign indices or “hash keys” to each piece of data based on the spatial location to which each said piece of data relates. However, it will be recalled that the hash table must operate by listing the hash key for each particular spatial location together with the corresponding memory location for data pertaining to that spatial location. Therefore, the hash table is inherently one-dimensional, and yet it must be used to link hash keys to corresponding memory allocations for data that inherently pertains to two-dimensional space.
One simple way of overcoming this problem would be to simply assign hash keys to each spatial location based only on, say, the Y coordinate at each location. The hash keys generated in this way for each point on the vehicle path in
TABLE 1
Spatial Hash Key Generated Using only the Y Coordinate
(X,Y)
Hash key
Hash key
coordinates
(hexadecimal)
(decimal)
(0, 0)
0x0
0
(1, 0)
0x0
0
(2, 0)
0x0
0
(3, 0)
0x0
0
(4, 0)
0x0
0
(0, 1)
0x1
1
(1, 1)
0x1
1
(2, 1)
0x1
1
(3, 1)
0x1
1
(4, 1)
0x1
1
(0, 2)
0x2
2
(1, 2)
0x2
2
(2, 2)
0x2
2
(3, 2)
0x2
2
(4, 2)
0x2
2
(0, 3)
0x3
3
(1, 3)
0x3
3
(2, 3)
0x3
3
(3, 3)
0x3
3
(4, 3)
0x3
3
(0, 4)
0x4
4
(1, 4)
0x4
4
(2, 4)
0x4
4
(3, 4)
0x4
4
(4, 4)
0x4
4
The prefix “0x” indicates that the numbers in question are expressed in hexadecimal format. This is a conventional notation.
Those skilled in the art will recognize that the above method for generating hash keys is far from optimal because there are five distinct spatial locations assigned to each different hash key. Furthermore, in many instances, this method assigns the same hash key to spatial locations which are physically remote from each other. For instance, the point (0,1) is distant from the point (4,1), and yet both locations are assigned the same hash key. An identically ineffective result would be obtained by generating a hash key based on only the X coordinate.
An alternative method would be to generate hash keys by concatenating the X and Y coordinates for each location. The hash keys generated using this method for each point on the vehicle path in
TABLE 2
Hash Keys Generated by Concatenating the X and Y Coordinates
(X, Y)
Hash key
Hash key
coordinates
(hexadecimal)
(decimal)
(0, 0)
0x0
0
(1, 0)
0x100
256
(2, 0)
0x200
512
(3, 2)
0x302
770
(4, 2)
0x402
1026
(0, 3)
0x3
3
TABLE 2
Hash Keys Generated by Concatenating the X and Y Coordinates
(X, Y)
Hash key
Hash key
coordinates
(hexadecimal)
(decimal)
(0, 0)
0x0
0
(1, 0)
0x100
256
(2, 0)
0x200
512
(3, 0)
0x300
768
(4, 0)
0x400
1024
(0, 1)
0x1
1
(1, 1)
0x101
257
(2, 1)
0x201
513
(3, 1)
0x301
769
(4, 1)
0x401
1025
(0, 2)
0x2
1
(1, 2)
0x102
258
(2, 2)
0x202
514
(3, 2)
0x302
770
(4, 2)
0x402
1026
(0, 3)
0x3
3
(1, 3)
0x103
759
(2, 3)
0x203
515
(3, 3)
0x303
771
(4, 3)
0x403
1027
(0, 4)
0x4
4
(1, 4)
0x104
260
(2, 4)
0x204
516
(3, 4)
0x304
772
(4, 4)
0x404
1028
In order to understand how the numbers listed in Table 2 above were arrived at, it is necessary to recognize that in the digital implementation of the present control system, all coordinates will be represented in binary. For the purposes of the present example which relates to the simplified integer based coordinate system in
Hence, to illustrate the operation of the spatial hash key algorithm used to generate the numbers in Table 2, consider the point (3,3). Those skilled in the art will understand that the decimal number 3 may be written as 11 in binary notation. Therefore, the location (3,3) may be rewritten in 8-bit binary array notation as (00000011,00000011). Concatenating these binary coordinates then gives the single 16-bit binary hash key 0000001100000011 which can equivalently be written as the hexadecimal number 0x303 or the decimal number 771. The process of converting between decimal, binary and hexadecimal representations should be well known to those skilled in the art and need not be explained.
It will be noted from Table 2 above that concatenating the X and Y coordinates leads to unique hash keys (in this example) for each spatial location. However, the hash keys generated in this way are still somewhat sub-optimal because points which are located close to each other are often assigned vastly differing hash keys. For example, consider the points (0,0) and (1,0). These are adjacent point in the “real world”. However, the hash keys assigned to these points using this method (written in decimal notation) are 0 and 256 respectively. In contrast, the point (0,4) is much further away from (0,0) and yet it is assigned the much closer hash key 4. Therefore, this algorithm does not maintain “locality”, and an alternative algorithm would be preferable.
Yet a further method for generating hash keys is to use a technique which shall hereinafter be referred to as “bitwise interleaving”. As for the previous example, the first step in this technique is to represent the (X,Y) coordinates in binary form. Hence, using the 8-bit binary array representation discussed above, the point (X,Y) may be re-written in 8-bit binary array notation as (X1X2X3X4X5X6X7×8, Y1Y2Y3Y4Y5Y6Y7Y8). Next, rather than concatenating the X and Y coordinates to arrive at a single 16-bit binary hash key, the successive bits from the X and Y binary coordinates are alternatingly “interleaved” to give the following 16-bit binary hash key X1Y1X2Y2X3Y3X4Y4×5Y5X6Y6X7YX8Y8. The hash keys generated using this method for each point on the vehicle path in
TABLE 3
Hash Keys Generated by “Bitwise Interleaving” the
X and Y Coordinates (X, Y)
(X, Y)
Hash key
Hash key
coordinates
(hexadecimal)
(decimal)
(0, 0)
0x0
0
(1, 0)
0x2
2
(2, 0)
0x8
8
(3, 0)
0xa
10
(4, 0)
0x20
32
(0, 0)
0x1
1
(1, 0)
0x3
3
(2, 0)
0x9
9
(3, 0)
0xb
11
(4, 0)
0x21
33
(0, 2)
0x4
4
(1, 2)
0x6
6
(2, 2)
0xc
12
(3, 2)
0xc
14
(4, 2)
0x24
36
(0, 3)
0x5
5
(1, 3)
0x6
7
(2, 3)
0xd
13
(3, 3)
0xf
15
(4, 3)
0x25
37
(0 ,4)
0x10
16
(1, 4)
0x12
18
(2, 4)
0x18
24
(3 ,4)
0x1a
26
(4, 4)
0x30
48
To further illustrate the operation of the spatial hash algorithm used to generate the numbers in Table 3, consider the point (3,4). As noted above, the decimal number 3 may be written as 11 in binary notation. Similarly, decimal number 4 is written as 100 in binary. Therefore, the location (3,4) may be rewritten in 8-bit binary array notation as (00000011,00000100). Bitwise interleaving these binary coordinates then gives the single 16-bit binary hash key 0000000000011010, which can equivalently be written as the hexadecimal number 0x1a or the decimal number 26.
From Table 3 it will be seen that generating hash keys by “bitwise interleaving” the X and Y coordinates leads to unique hash keys (in this example) for each spatial location. Also, the hash keys generated in this way satisfy the requirement that points which are close together in the real world are assigned closely related hash keys. For example, consider again the points (0,0) and (1,0). The hash keys now assigned to these points by “bitwise interleaving” (when written in decimal notation) are 0 and 2 respectively. Furthermore, the point (0,1) which is also nearby is also assigned the closely related hash key 1. Conversely, points which are separated by a considerable distance in the real world are given considerably differing hash keys, for example, the hash key for (4,3) is 37.
From the example described with reference to Table 3, it can be seen that generating hash keys by “bitwise interleaving” the binary X and Y coordinates preserves “locality”. This example therefore conceptually illustrates the operation of the bitwise interleaving spatial hash algorithm that may be used with representative embodiments of the present invention. However, the above example is based on the simplified integer based coordinate system shown in
The fact that GPS and other similar systems which describe spatial location typically do so using IEEE double-precision floating-point numbers (not simple integers). For instance, GPS supplies coordinates in the form of (X,Y) coordinates where X corresponds to longitude, and Y corresponds to latitude. Both X and Y are given in units of decimal degrees.
the fact that certain spatial locations have negative coordinate values when described using GPS and other similar coordinate systems. For example, using the WGS84 datum used by current GPS, the coordinates (153.00341,−27.47988) correspond to a location in Queensland, Australia (the negative latitude value indicates southern hemisphere).
Complexities inherent in representing numbers in accordance with the IEEE double-precision floating-point numbers standard.
A double-precision floating-point number represented in accordance with the IEEE 754 standard comprises a string of 64 binary characters (64 bits) as shown in
Hence, actual exponent value=written exponent value-exponent bias.
The exponent bias is 0x3ff=1023. Consequently, the maximum true exponent value that can be represented (written in decimal notation) is 1023, and the minimum true exponent value that can be represented is −1022.
Finally, the remaining 52 bits form the mantissa. However, as all non-zero numbers must necessarily have a leading “1” when written in binary notation, an implicit “1” followed by a binary point is assumed to exist at the front of the mantissa. In other words, the leading “1” and the binary point which must necessarily exist for all non-zero binary numbers is simply omitted from the actual written mantissa in the IEEE 64-bit standard format. This is so that an additional bit may be used to represent the number with greater precision. However, when interpreting numbers which are represented in accordance with the IEEE standard, it is important to remember that this leading “1” and the binary point implicitly exist even though they are not written.
Bearing in mind these issues, it is possible to understand the actual spatial hash algorithm used in representative implementations of the present control system. A “worked” example illustrating the operation of the spatial hash algorithm to generate a hash key based on the coordinate (153.0000°, −27.0000° is given in the form of a flow diagram in
From
After normalising the coordinates, the next step is to convert the respective coordinates from their representations in decimal degrees into binary IEEE double-precision floating-point number format. This is shown as step 3) in
Next, the binary representations of the two coordinates are split into their respective exponent (11 bits) and mantissa (52 bits) portions. This is step 4) in
After de-biasing the exponents, the resulting exponents are then adjusted by a selected offset. The size of the offset is selected depending on the desired “granularity” of the resulting fix-point number. In the particular example shown in step 6) of
After adjusting the exponent, the next step is to “resurrect” the leading “1” and the binary point which implicitly exist in the mantissa but which are left off when the mantissa is actually written (see above). Hence, the leading “1” and the binary point are simply prepended to the mantissa of each of the coordinates. This is step 7) in
The mantissa for each coordinate is then right-shifted by the number of bits in the corresponding exponent. The exponents for each coordinate are then prepended to their corresponding mantissas forming a single character string for each coordinate. There is then an optional step of discarding the high-order byte for each of the two bit fields. This may be done simply to save memory if required, but is not necessary. Finally, the resultant bit fields for each coordinate are bitwise interleaved to obtain a single hash key corresponding to the original coordinates. In the example shown in
Those skilled in the art will recognize that various other alterations and modifications may be made to the particular embodiments, aspects and features of the invention described without departing from the spirit and scope of the invention may be made to the particular embodiments, aspects and features of the invention described without departing from the spirit and scope of the invention.
MacDonald, Andrew John, Reeve, David R., Morrison, Campbell Robert
Patent | Priority | Assignee | Title |
11167792, | Nov 19 2015 | AGJUNCTION LLC | Single-mode implement steering |
11180189, | Nov 19 2015 | AGJUNCTION LLC | Automated reverse implement parking |
11615639, | Jan 27 2021 | Palm vein identification apparatus and method of use | |
ER6657, |
Patent | Priority | Assignee | Title |
3585537, | |||
3596228, | |||
3727710, | |||
3815272, | |||
3899028, | |||
3987456, | Aug 01 1974 | Lignes Telegraphiques et Telephoniques | Wide relative frequency band and reduced size-to-wavelength ratio antenna |
4132272, | Jun 30 1977 | Case Corporation | Tractor hitch position control system |
4170776, | Dec 21 1977 | System for near real-time crustal deformation monitoring | |
4180133, | Jan 12 1978 | Iowa State University Research Foundation, Inc. | Guidance system for towed vehicles |
4398162, | Oct 22 1980 | NGK Spark Plug Co., Ltd. | Ladder-type piezoelectric filters |
4453614, | Mar 19 1982 | Deere & Company | Steering arrangement for an off-highway articulated vehicle |
4529990, | Oct 22 1979 | Daimler-Benz Aktiengesellschaft | Antenna system for a jamming transmitter |
4637474, | Jul 18 1974 | Tractor and towed implement with elevation control system for implement including pressure responsive valve actuator | |
4667203, | Mar 01 1982 | WESTERN ATLAS INTERNATIONAL, INC , A CORP OF DE | Method and system for determining position using signals from satellites |
4689556, | Oct 12 1984 | Daymarc Corporation; DAYMARC CORPORATION, A CORP OF MASSACHUSETTS | Broad band contactor assembly for testing integrated circuit devices |
4694264, | Mar 05 1986 | GOVERNMENT OF THE UNITED STATES, AS REPRESENTED BY THE UNITED STATES DEPARTMENT OF ENERGY | Radio frequency coaxial feedthrough device |
4694639, | Dec 30 1985 | Robotic lawn mower | |
4710775, | Sep 30 1985 | The Boeing Company | Parasitically coupled, complementary slot-dipole antenna element |
4714435, | Nov 14 1985 | Molex Incorporated | Connection for flexible apparatus |
4739448, | Jun 25 1984 | Magnavox Electronic Systems Company | Microwave multiport multilayered integrated circuit chip carrier |
4751512, | Jan 21 1986 | HILL, JACK O | Differential navigation system for remote mobile users |
4769700, | Nov 20 1981 | LMI TECHNOLOGIES INC | Robot tractors |
4777601, | Mar 15 1985 | DIGITRON AG, AARAU | Method and apparatus for a passive track system for guiding and controlling robotic transport and assembly or installation devices |
4785463, | Sep 03 1985 | MOTOROLA, INC , A CORP OF DELAWARE | Digital global positioning system receiver |
4802545, | Oct 15 1986 | CNH America LLC; BLUE LEAF I P , INC | Steering control system for articulated vehicle |
4812991, | May 01 1986 | Hughes Electronics Corporation; HE HOLDINGS INC , DBA HUGHES ELECTRONICS | Method for precision dynamic differential positioning |
4858132, | Sep 11 1987 | NATIONSBANK OF NORTH CAROLINA, N A | Optical navigation system for an automatic guided vehicle, and method |
4864320, | May 06 1988 | BALL CORPORATION, AN IN CORP | Monopole/L-shaped parasitic elements for circularly/elliptically polarized wave transceiving |
4894662, | Mar 01 1982 | WESTERN ATLAS INTERNATIONAL, INC , A CORP OF DE | Method and system for determining position on a moving platform, such as a ship, using signals from GPS satellites |
4916577, | Dec 20 1988 | Grumman Aerospace Corporation | Method of mounting removable modules |
4918607, | Sep 09 1988 | FMC Corporation | Vehicle guidance system |
4963889, | Sep 26 1989 | Hughes Electronics Corporation; HE HOLDINGS INC , DBA HUGHES ELECTRONICS | Method and apparatus for precision attitude determination and kinematic positioning |
5031704, | May 10 1988 | Fleischer Manufacturing, Inc. | Guidance control apparatus for agricultural implement |
5100229, | Aug 17 1990 | ARC SECOND, INC | Spatial positioning system |
5134407, | Apr 10 1991 | Mitac International Corp | Global positioning system receiver digital processing technique |
5144130, | Feb 16 1989 | Rieter Machine Works Limited | Method for the electrical adjustment of an optical row of sensors |
5148179, | Jun 27 1991 | Trimble Navigation Limited | Differential position determination using satellites |
5152347, | Apr 05 1991 | Deere & Company | Interface system for a towed implement |
5155490, | Oct 15 1990 | GPS TECHNOLOGY CORP , A CORP OF TX | Geodetic surveying system using multiple GPS base stations |
5155493, | Aug 28 1990 | The United States of America as represented by the Secretary of the Air | Tape type microstrip patch antenna |
5156219, | Jun 04 1990 | A I L , INC A CORP OF NEBRASKA | Positioning apparatus for drawn implement |
5165109, | Jan 19 1989 | Trimble Navigation Limited | Microwave communication antenna |
5173715, | Dec 04 1989 | Trimble Navigation Limited | Antenna with curved dipole elements |
5177489, | Sep 26 1989 | Hughes Electronics Corporation; HE HOLDINGS INC , DBA HUGHES ELECTRONICS | Pseudolite-aided method for precision kinematic positioning |
5185610, | Aug 20 1990 | Texas Instruments Incorporated | GPS system and method for deriving pointing or attitude from a single GPS receiver |
5191351, | Dec 29 1989 | RAYTHEON COMPANY, A CORPORATION OF DELAWARE | Folded broadband antenna with a symmetrical pattern |
5194851, | Feb 21 1991 | CNH America LLC; BLUE LEAF I P , INC | Steering controller |
5202829, | Jun 10 1991 | Trimble Navigation Limited | Exploration system and method for high-accuracy and high-confidence level relative position and velocity determinations |
5207239, | Jul 30 1991 | Aura Systems, Inc. | Variable gain servo assist |
5229941, | Apr 14 1988 | Nissan Motor Company, Limited | Autonomous vehicle automatically running on route and its method |
5239669, | Feb 04 1992 | Trimble Navigation Limited | Coupler for eliminating a hardwire connection between a handheld global positioning system (GPS) receiver and a stationary remote antenna |
5247440, | May 03 1991 | MOTOROLA, INC A CORP OF DELAWARE | Location influenced vehicle control system |
5255756, | Apr 22 1992 | KONGSKILDE INDUSTRIES, INC | Caddy with guidance system for agricultural implements |
5268695, | Oct 06 1992 | Trimble Navigation Limited | Differential phase measurement through antenna multiplexing |
5293170, | Apr 10 1991 | Mitac International Corp | Global positioning system receiver digital processing technique |
5294970, | Dec 31 1990 | ARC SECOND, INC | Spatial positioning system |
5296861, | Nov 13 1992 | Trimble Navigation Limited | Method and apparatus for maximum likelihood estimation direct integer search in differential carrier phase attitude determination systems |
5311149, | Mar 12 1993 | Trimble Navigation Limited | Integrated phase locked loop local oscillator |
5323322, | Mar 05 1992 | Trimble Navigation Limited | Networked differential GPS system |
5334987, | Apr 01 1993 | Trimble Navigation Limited | Agricultural aircraft control system using the global positioning system |
5343209, | May 07 1992 | Navigation receiver with coupled signal-tracking channels | |
5345245, | Jul 01 1992 | KDDI Corporation | Differential data signal transmission technique |
5359332, | Dec 31 1992 | Trimble Navigation Limited | Determination of phase ambiguities in satellite ranges |
5361212, | Nov 02 1992 | Honeywell Inc. | Differential GPS landing assistance system |
5365447, | Sep 20 1991 | GPS and satelite navigation system | |
5369589, | Sep 15 1993 | Trimble Navigation Limited | Plural information display for navigation |
5375059, | Feb 05 1990 | Caterpillar Inc. | Vehicle position determination system and method |
5390124, | Dec 01 1992 | Caterpillar Inc. | Method and apparatus for improving the accuracy of position estimates in a satellite based navigation system |
5390125, | Feb 05 1990 | Caterpillar Inc. | Vehicle position determination system and method |
5390207, | Nov 28 1990 | NOVATEL INC | Pseudorandom noise ranging receiver which compensates for multipath distortion by dynamically adjusting the time delay spacing between early and late correlators |
5416712, | May 28 1993 | Trimble Navigation Limited | Position and velocity estimation system for adaptive weighting of GPS and dead-reckoning information |
5442363, | Aug 04 1994 | U.S. Army Corps of Engineers as Represented by the Secretary of the Army | Kinematic global positioning system of an on-the-fly apparatus for centimeter-level positioning for static or moving applications |
5444453, | Feb 02 1993 | Ball Aerospace & Technologies Corp | Microstrip antenna structure having an air gap and method of constructing same |
5451964, | Jul 29 1994 | Del Norte Technology, Inc.; DEL NORTE TECHNOLOGY, INC | Method and system for resolving double difference GPS carrier phase integer ambiguity utilizing decentralized Kalman filters |
5467282, | Sep 20 1991 | GPS and satellite navigation system | |
5471217, | Feb 01 1993 | Hughes Electronics Corporation; HE HOLDINGS INC , DBA HUGHES ELECTRONICS | Method and apparatus for smoothing code measurements in a global positioning system receiver |
5476147, | Mar 19 1993 | Guidance system for an agricultural implement | |
5477228, | Apr 13 1993 | Trimble Navigation Limited | Differential global positioning system using radio data system |
5477458, | Jan 03 1994 | Trimble Navigation Limited | Network for carrier phase differential GPS corrections |
5490073, | Apr 05 1993 | Caterpillar Inc. | Differential system and method for a satellite based navigation |
5491636, | Apr 19 1994 | ROBERTSON, GLEN E | Anchorless boat positioning employing global positioning system |
5495257, | Jul 19 1994 | Trimble Navigation Limited | Inverse differential corrections for SATPS mobile stations |
5504482, | Jun 11 1993 | CSR TECHNOLOGY INC | Automobile navigation guidance, control and safety system |
5511623, | Sep 12 1994 | TEXTRON FINANCIAL CORPORATION | Quick hitch guidance device |
5519620, | Feb 18 1994 | Trimble Navigation Limited | Centimeter accurate global positioning system receiver for on-the-fly real-time kinematic measurement and control |
5521610, | Sep 17 1993 | Trimble Navigation Limited | Curved dipole antenna with center-post amplifier |
5523761, | Jan 12 1993 | Trimble Navigation Limited | Differential GPS smart antenna device |
5534875, | Jun 18 1993 | ADROIT SYSTEMS, INC | Attitude determining system for use with global positioning system |
5543804, | Sep 13 1994 | Northrop Grumman Systems Corporation | Navagation apparatus with improved attitude determination |
5546093, | Jan 04 1994 | Caterpillar Inc. | System and method for providing navigation signals to an earthmoving or construction machine |
5548293, | Mar 24 1993 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | System and method for generating attitude determinations using GPS |
5561432, | May 12 1995 | Trimble Navigation | Out of plane antenna vector system and method |
5563786, | Feb 16 1994 | Fuji Jukogyo Kabushiki Kaisha | Autonomous running control system for vehicle and the method thereof |
5568152, | Feb 04 1994 | Trimble Navigation Limited | Integrated image transfer for remote target location |
5568162, | Aug 08 1994 | Trimble Navigation Limited | GPS navigation and differential-correction beacon antenna combination |
5583513, | Mar 24 1993 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | System and method for generating precise code based and carrier phase position determinations |
5589835, | Dec 20 1994 | Trimble Navigation Limited | Differential GPS receiver system linked by infrared signals |
5592382, | Mar 10 1995 | CSR TECHNOLOGY INC | Directional steering and navigation indicator |
5596328, | Aug 23 1994 | Honeywell INC | Fail-safe/fail-operational differential GPS ground station system |
5600670, | Dec 21 1994 | Trimble Navigation, Ltd. | Dynamic channel allocation for GPS receivers |
5604506, | Dec 13 1994 | Trimble Navigation Limited | Dual frequency vertical antenna |
5608393, | Mar 07 1995 | Honeywell Inc. | Differential ground station repeater |
5610522, | Sep 30 1993 | Commissariat a l'Energie Atomique | Open magnetic structure including pole pieces forming a V-shape threbetween for high homogeneity in an NMR device |
5610616, | Aug 23 1994 | Honeywell Inc. | Differential GPS ground station system |
5610845, | Aug 30 1994 | United Technologies Corporation | Multi-parameter air data sensing technique |
5612883, | Feb 05 1990 | Caterpillar Inc. | System and method for detecting obstacles in the path of a vehicle |
5615116, | Feb 05 1990 | Caterpillar Inc. | Apparatus and method for autonomous vehicle navigation using path data |
5617100, | Apr 07 1994 | Matsushita Electric Industrial Co., Ltd. | Accurate position measuring system |
5617317, | Jan 24 1995 | Honeywell Inc.; Honeywell INC | True north heading estimator utilizing GPS output information and inertial sensor system output information |
5621646, | Jan 17 1995 | Stanford University | Wide area differential GPS reference system and method |
5638077, | May 04 1995 | CSR TECHNOLOGY INC | Differential GPS for fleet base stations with vector processing mechanization |
5644139, | Mar 02 1995 | Hewlett-Packard Company; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P ; Agilent Technologies, Inc | Navigation technique for detecting movement of navigation sensors relative to an object |
5663879, | Nov 20 1987 | U S PHILIPS CORPORATION | Method and apparatus for smooth control of a vehicle with automatic recovery for interference |
5664632, | Sep 12 1994 | TEXTRON FINANCIAL CORPORATION | Quick hitch guidance device |
5673491, | Oct 20 1995 | Crane level indicator device | |
5680140, | Jul 19 1994 | Trimble Navigation Limited | Post-processing of inverse differential corrections for SATPS mobile stations |
5684476, | Dec 30 1993 | CNH America LLC; BLUE LEAF I P , INC | Field navigation system |
5684696, | Feb 05 1990 | Caterpillar Inc. | System and method for enabling an autonomous vehicle to track a desired path |
5706015, | Mar 20 1995 | FUBA AUTOMOTIVE GMBH & CO KG | Flat-top antenna apparatus including at least one mobile radio antenna and a GPS antenna |
5717593, | Sep 01 1995 | Lane guidance system | |
5725230, | Jun 17 1996 | Self steering tandem hitch | |
5731786, | Dec 29 1994 | Trimble Navigation Limited | Compaction of SATPS information for subsequent signal processing |
5739785, | Mar 04 1993 | Trimble Navigation Limited | Location and generation of high accuracy survey control marks using satellites |
5757316, | Feb 01 1997 | Northrop Grumman Systems Corporation | Attitude determination utilizing an inertial measurement unit and a plurality of satellite transmitters |
5765123, | Aug 07 1993 | Aisin AW Co., Ltd. | Navigation system |
5777578, | Feb 10 1997 | National Science Council | Global positioning system (GPS) Compass |
5810095, | Jul 25 1996 | CNH America LLC; BLUE LEAF I P , INC | System for controlling the position of an implement attached to a work vehicle |
5814961, | Sep 03 1996 | Elpida Memory, Inc | Guidance system for automated guided vehicle |
5828336, | Mar 29 1996 | NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, DEPARTMENT OF, UNITED STATES OF AMERICA, THE | Robust real-time wide-area differential GPS navigation |
5838562, | Feb 05 1990 | Caterpillar Inc. | System and a method for enabling a vehicle to track a preset path |
5848485, | Dec 27 1996 | Trimble Navigation Limited | System for determining the position of a tool mounted on pivotable arm using a light source and reflectors |
5854987, | Mar 23 1995 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle steering control system using navigation system |
5862501, | Aug 18 1995 | Trimble Navigation Limited | Guidance control system for movable machinery |
5864315, | Apr 07 1997 | General Electric Company | Very low power high accuracy time and frequency circuits in GPS based tracking units |
5864318, | Apr 24 1997 | Dorne & Margolin, Inc. | Composite antenna for cellular and gps communications |
5875408, | Jul 17 1995 | IMRA America, Inc | Automated vehicle guidance system and method for automatically guiding a vehicle |
5877725, | Mar 06 1997 | Trimble Navigation Limited | Wide augmentation system retrofit receiver |
5890091, | Feb 18 1994 | Trimble Navigation Ltd. | Centimeter accurate global positioning system receiver for on-the-fly real-time kinematic measurement and control |
5899957, | Jan 03 1994 | Trimble Navigation, Ltd. | Carrier phase differential GPS corrections network |
5906645, | Dec 04 1995 | Toyota Jidosha Kabushiki Kaisha | Auto-drive control unit for vehicles |
5912798, | Jul 02 1997 | Landsten Chu | Dielectric ceramic filter |
5914685, | Apr 25 1997 | Mitac International Corp | Relative position measuring techniques using both GPS and GLONASS carrier phase measurements |
5917448, | Aug 07 1997 | TELEDYNE SCIENTIFIC & IMAGING, LLC | Attitude determination system with sequencing antenna inputs |
5918558, | Dec 01 1997 | CNH America LLC; BLUE LEAF I P , INC | Dual-pump, flow-isolated hydraulic circuit for an agricultural tractor |
5919242, | May 14 1992 | Agri-line Innovations, Inc. | Method and apparatus for prescription application of products to an agricultural field |
5923270, | May 13 1994 | Konecranes Finland Oy | Automatic steering system for an unmanned vehicle |
5925080, | Mar 29 1996 | Mazda Motor Corporation | Automatic guided vehicle control system |
5926079, | Dec 05 1996 | CTS Corporation | Ceramic waveguide filter with extracted pole |
5927603, | Sep 30 1997 | J. R. Simplot Company | Closed loop control system, sensing apparatus and fluid application system for a precision irrigation device |
5928309, | Feb 05 1996 | Navigation/guidance system for a land-based vehicle | |
5929721, | Aug 06 1996 | CTS Corporation | Ceramic filter with integrated harmonic response suppression using orthogonally oriented low-pass filter |
5933110, | Jul 13 1998 | WILMINGTON TRUST, NATIONAL ASSOCIATION | Vessel attitude determination system and method |
5935183, | May 20 1996 | Caterpillar Inc | Method and system for determining the relationship between a laser plane and an external coordinate system |
5936573, | Jul 07 1997 | Trimble Navigation Limited; Trimble Navigation LTD | Real-time kinematic integrity estimator and monitor |
5940026, | Jul 21 1997 | TELEDYNE SCIENTIFIC & IMAGING, LLC | Azimuth determination for GPS/INS systems via GPS null steering antenna |
5941317, | Aug 01 1996 | Great Western Corporation PTY LTD | Row cultivator with laterally moveable tool bar |
5943008, | Sep 23 1997 | TELEDYNE SCIENTIFIC & IMAGING, LLC | Single global positioning system receiver capable of attitude determination |
5944770, | Dec 28 1995 | Trimble Navigation Limited | Method and receiver using a low earth orbiting satellite signal to augment the global positioning system |
5945917, | Dec 18 1997 | Rockwell International; Rockwell Collins, Inc | Swathing guidance display |
5949371, | Jul 27 1998 | Trimble Navigation Limited | Laser based reflectors for GPS positioning augmentation |
5955973, | Dec 30 1993 | CNH America LLC; BLUE LEAF I P , INC | Field navigation system |
5956250, | Feb 05 1990 | Caterpillar Inc. | Apparatus and method for autonomous vehicle navigation using absolute data |
5969670, | Jan 22 1998 | Trimble Navigation Limited | Inexpensive monitoring technique for achieving high level integrity monitoring for differential GPS |
5987383, | Apr 28 1997 | Trimble Navigation | Form line following guidance system |
6014101, | Feb 26 1996 | Trimble Navigation Limited | Post-processing of inverse DGPS corrections |
6014608, | Nov 04 1996 | SAMSUNG ELECTRONICS CO , LTD | Navigator apparatus informing or peripheral situation of the vehicle and method for controlling the same |
6018313, | Sep 01 1995 | BRAU VERWALTUNGSGESELLSCHAFT MIT BESCHRANKTER HAFTUNG | System for determining the location of mobile objects |
6023239, | Oct 08 1997 | WILMINGTON TRUST, NATIONAL ASSOCIATION | Method and system for a differential global navigation satellite system aircraft landing ground station |
6052647, | Jun 20 1997 | BOARD OF TRUSTEES LELAND STANFORD, JR | Method and system for automatic control of vehicles based on carrier phase differential GPS |
6055477, | Mar 31 1995 | TRIMBLE NAVIGATIONS LIMITED | Use of an altitude sensor to augment availability of GPS location fixes |
6057800, | Jun 28 1996 | State University of New York | RDOP surface for GPS relative positioning |
6061390, | Sep 02 1994 | California Institute of Technology | P-code enhanced method for processing encrypted GPS signals without knowledge of the encryption code |
6061632, | Aug 18 1997 | Trimble Navigation Limited | Receiver with seamless correction capacity |
6062317, | Sep 03 1999 | Caterpillar Inc. | Method and apparatus for controlling the direction of travel of an earthworking machine |
6069583, | May 06 1997 | Agence Spatiale Europeene | Receiver for a navigation system, in particular a satellite navigation system |
6070673, | Nov 22 1996 | CNH America LLC; BLUE LEAF I P , INC | Location based tractor control |
6076612, | Aug 31 1999 | CNH America LLC; BLUE LEAF I P , INC | Transition from position to draft mode controlled by hitch position command and feedback |
6081171, | Apr 08 1998 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Monolithic filters utilizing thin film bulk acoustic wave devices and minimum passive components for controlling the shape and width of a passband response |
6100842, | Feb 20 1998 | Trimble Navigation Limited | Chained location determination system |
6104978, | Apr 06 1998 | General Electric Company | GPS-based centralized tracking system with reduced energy consumption |
6122595, | May 20 1996 | BENHOV GMBH, LLC | Hybrid GPS/inertially aided platform stabilization system |
6128574, | Jul 23 1996 | CLAAS KGaA | Route planning system for agricultural work vehicles |
6138062, | Jul 15 1996 | TOYOTA JIDOSHIA KABUSHIKI KAISHA | Automatic travel controlling device |
6144335, | Apr 14 1998 | Trimble Navigation Limited | Automated differential correction processing of field data in a global positional system |
6191730, | Dec 15 1997 | Trimble Navigation Limited | Two-channel fast-sequencing high-dynamics GPS navigation receiver |
6191733, | Jun 01 1999 | Modular Mining Systems, Inc. | Two-antenna positioning system for surface-mine equipment |
6198430, | Mar 26 1999 | Rockwell Collins, Inc. | Enhanced differential GNSS carrier-smoothed code processing using dual frequency measurements |
6198992, | Oct 10 1997 | Trimble Navigation Limited | Override for guidance control system |
6199000, | Jul 15 1998 | Trimble Navigation LTD | Methods and apparatus for precision agriculture operations utilizing real time kinematic global positioning system systems |
6205401, | Sep 19 1995 | Northrop Grumman Systems Corporation | Navigation system for a vehicle, especially a land craft |
6212453, | Sep 11 1998 | Honda Giken Kogyo Kabushiki Kaisha | Vehicle steering control system |
6215828, | Feb 10 1996 | Unwired Planet, LLC | Signal transformation method and apparatus |
6229479, | Apr 25 1997 | Mitac International Corp | Relative position measuring techniques using both GPS and GLONASS carrier phase measurements |
6230097, | Aug 31 1998 | Trimble Navigation Limited | Accurate vehicle navigation |
6233511, | Nov 26 1997 | CNH America LLC; BLUE LEAF I P , INC | Electronic control for a two-axis work implement |
6236916, | Mar 29 1999 | Caterpillar Inc. | Autoguidance system and method for an agricultural machine |
6236924, | Jun 21 1999 | Caterpillar Inc.; Caterpillar Inc | System and method for planning the operations of an agricultural machine in a field |
6253160, | Jan 15 1999 | Trimble Navigation Ltd. | Method and apparatus for calibrating a tool positioning mechanism on a mobile machine |
6256583, | Sep 16 1998 | Rockwell Collins, Inc | GPS attitude determination system and method using optimal search space identification for integer cycle ambiguity resolution |
6259398, | May 19 2000 | SRI International | Multi-valued variable ambiguity resolution for satellite navigation signal carrier wave path length determination |
6266595, | Aug 12 1999 | Martin W., Greatline; Stanley E., Greatline | Method and apparatus for prescription application of products to an agricultural field |
6275705, | Dec 22 1995 | Cambridge Positioning Systems Limited | Location and tracking system |
6285320, | Sep 03 1999 | Sikorsky Aircraft Corporation | Apparatus and method for mapping surfaces of an object |
6292132, | Aug 13 1999 | 21ST CENTURY GARAGE LLC | System and method for improved accuracy in locating and maintaining positions using GPS |
6307505, | Jul 22 1998 | Trimble Navigation Limited | Apparatus and method for coupling data to a position determination device |
6313788, | Aug 14 1998 | Garmin International, Inc | Method and apparatus for reliable inter-antenna baseline determination |
6314348, | Feb 11 1998 | Trimble Navigation Limited | Correction control for guidance control system |
6325684, | Jun 09 2000 | JOHNSON OUTDOORS INC | Trolling motor steering control |
6336066, | Sep 29 1998 | Pellenc S.A. | Process for using localized agricultural data to optimize the cultivation of perennial plants |
6345231, | Jul 10 1998 | CLAAS Selbstfahrende Erntemaschinen GmbH | Method and apparatus for position determining |
6356602, | May 04 1998 | Trimble Navigation Limited | RF integrated circuit for downconverting a GPS signal |
6377889, | Oct 13 2000 | Trimble Navigation Limited | Non-linear method of guiding to arbitrary curves with adaptive feedback |
6380888, | Nov 13 2000 | The United States of America as represented by the Secretary of the Navy | Self-contained, self-surveying differential GPS base station and method of operating same |
6389345, | Jun 29 1999 | Caterpillar Inc. | Method and apparatus for determining a cross slope of a surface |
6392589, | Apr 14 1998 | Trimble Navigation Limited | Automated differential correction processing of field data in a global positioning system |
6397147, | Jun 06 2000 | HEMISPHERE GNSS INC | Relative GPS positioning using a single GPS receiver with internally generated differential correction terms |
6415229, | Jun 21 1996 | CLAAS KGaA | System for position determination of mobile objects, in particular vehicles |
6418031, | May 01 2000 | TWITTER, INC | Method and means for decoupling a printed circuit board |
6421003, | May 19 2000 | SRI International | Attitude determination using multiple baselines in a navigational positioning system |
6424915, | Jun 01 2000 | Furuno Electric Company, Limited | System for determining the heading and/or attitude of a body |
6431576, | Apr 28 1999 | Deere & Company | System for steering towed implement in response to, or independently of, steering of towing vehicle |
6434462, | Jun 28 2001 | Deere & Company | GPS control of a tractor-towed implement |
6445983, | Jul 07 2000 | CNH America LLC; BLUE LEAF I P , INC | Sensor-fusion navigator for automated guidance of off-road vehicles |
6445990, | Mar 19 2001 | Caterpillar Inc. | Method and apparatus for controlling straight line travel of a tracked machine |
6449558, | May 29 1998 | Method and device for creating a network positioning system (NPS) | |
6463091, | Aug 09 1995 | Mitac International Corp | Spread spectrum receiver using a pseudo-random noise code for ranging applications in a way that reduces errors when a multipath signal is present |
6463374, | Apr 28 1997 | Trimble Navigation Ltd. | Form line following guidance system |
6466871, | Oct 03 1999 | Azimuth Technologies | Method for calibrating and verifying the attitude of a compass |
6469663, | Mar 21 2000 | HEMISPHERE GNSS INC | Method and system for GPS and WAAS carrier phase measurements for relative positioning |
6484097, | Apr 23 1999 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Wide area inverse differential GPS |
6498570, | May 24 2001 | AURORA OPERATIONS, INC | Optical highway line detector |
6501422, | Aug 19 1998 | Trimble Navigation, Ltd.; Trimble Navigation Limited | Precise parallel swathing guidance via satellite navigation and tilt measurement |
6515619, | Jul 30 1998 | Object location system | |
6516271, | Jun 29 2001 | Regents of the University of California, The | Method and apparatus for ultra precise GPS-based mapping of seeds or vegetation during planting |
6539303, | Dec 08 2000 | AGJUNCTION LLC | GPS derived swathing guidance system |
6542077, | Mar 27 1996 | JOAO CONTROL & MONITORING SYSTEMS, LLC | Monitoring apparatus for a vehicle and/or a premises |
6549835, | Sep 28 2000 | Nissan Motor Co., Ltd. | Apparatus for and method of steering vehicle |
6553299, | Jul 15 1998 | Trimble Navigation Ltd. | Methods and apparatus for precision agriculture operations utilizing real time kinematic global positioning system systems |
6553300, | Jul 16 2001 | Deere & Company | Harvester with intelligent hybrid control system |
6553311, | Dec 08 2000 | Trimble Navigation Limited | Navigational off- line and off-heading indication system and method |
6570534, | Feb 05 2001 | NOVARIANT, INC | Low cost system and method for making dual band GPS measurements |
6577952, | Jan 08 2001 | Continental Automotive Systems, Inc | Position and heading error-correction method and apparatus for vehicle navigation systems |
6587761, | Oct 23 2001 | The Aerospace Corporation | Unambiguous integer cycle attitude determination method |
6606542, | May 30 1995 | AGCO Corporation | System and method for creating agricultural decision and application maps for automated agricultural machines |
6611228, | Jul 24 2000 | FURUNO ELECTRIC COMPANY LIMITED | Carrier phase-based relative positioning apparatus |
6611754, | Mar 14 2000 | Continental Automotive GmbH | Route planning system |
6611755, | Dec 19 1999 | PTX TRIMBLE LLC | Vehicle tracking, communication and fleet management system |
6622091, | May 11 2001 | Northrop Grumman Systems Corporation | Method and system for calibrating an IG/GP navigational system |
6631394, | Jan 21 1998 | WSOU Investments, LLC | Embedded system with interrupt handler for multiple operating systems |
6631916, | Jul 28 2000 | MILLER BLACKSMITH & WELDING | Guidance system for pull-type equipment |
6643576, | Nov 15 2000 | NOVARIANT, INC | Rapid adjustment of trajectories for land vehicles |
6646603, | Jun 16 2000 | NXP B V | Method of providing an estimate of a location |
6657875, | Jul 16 2002 | Semiconductor Components Industries, LLC | Highly efficient step-down/step-up and step-up/step-down charge pump |
6671587, | Feb 05 2002 | Ford Motor Company | Vehicle dynamics measuring apparatus and method using multiple GPS antennas |
6686878, | Feb 22 2000 | Trimble Navigation Limited | GPS weather data recording system for use with the application of chemicals to agricultural fields |
6688403, | Mar 22 2001 | Deere & Company | Control system for a vehicle/implement hitch |
6703973, | Aug 19 1998 | Trimble Navigation, Ltd.; Trimble Navigation, LTD | Guiding vehicle in adjacent swaths across terrain via satellite navigation and tilt measurement |
6711501, | Dec 08 2000 | AGJUNCTION LLC | Vehicle navigation system and method for swathing applications |
6721638, | May 07 2001 | DEMATIC CORP | AGV position and heading controller |
6732024, | May 07 2001 | The Board of Trustees of the Leland Stanford Junior University | Method and apparatus for vehicle control, navigation and positioning |
6744404, | Jul 09 2003 | HEMISPHERE GNSS INC | Unbiased code phase estimator for mitigating multipath in GPS |
6754584, | Feb 28 2001 | ENPOINT L L C | Attitude measurement using a single GPS receiver with two closely-spaced antennas |
6774843, | Mar 28 2001 | TAKAHASHI, MASATO | Method for acquiring azimuth information |
6789014, | May 09 2003 | Deere & Company | Direct modification of DGPS information with inertial measurement data |
6792380, | Feb 12 2002 | FURUNO ELECTRIC COMPANY LIMITED | Attitude angle detecting apparatus |
6819269, | May 17 2000 | OMEGA PATENTS, L L C | Vehicle tracker including battery monitoring feature and related methods |
6819780, | Feb 02 2001 | CNH America LLC; BLUE LEAF I P , INC | Method and apparatus for automatically steering a vehicle in an agricultural field using a plurality of fuzzy logic membership functions |
6822314, | Jun 12 2002 | INTERSIL AMERICAS LLC | Base for a NPN bipolar transistor |
6865465, | May 06 2002 | AGJUNCTION INC | Method and system for implement steering for agricultural vehicles |
6865484, | Apr 11 2001 | Kabushiki Kaisha Topcon | Satellite position measurement system |
6876920, | Oct 27 1998 | AGJUNCTION LLC | Vehicle positioning apparatus and method |
6879283, | Feb 21 2003 | Trimble Navigation Limited | Method and system for transmission of real-time kinematic satellite positioning system data |
6900992, | Sep 18 2001 | Intel Corporation | Printed circuit board routing and power delivery for high frequency integrated circuits |
6922635, | Aug 13 2002 | DRS SIGNAL SOLUTIONS, INC | Method and system for determining absolute positions of mobile communications devices using remotely generated positioning information |
6931233, | Aug 31 2000 | CSR TECHNOLOGY INC | GPS RF front end IC with programmable frequency synthesizer for use in wireless phones |
6961018, | Oct 06 2003 | Insitu, Inc | Method and apparatus for satellite-based relative positioning of moving platforms |
6967538, | Nov 28 2002 | ABOV SEMICONDUCTOR CO , LTD | PLL having VCO for dividing frequency |
6990399, | Oct 31 2002 | CNH America LLC; BLUE LEAF I P , INC | Agricultural utility vehicle and method of controlling same |
7006032, | Jan 15 2004 | Honeywell International, Inc | Integrated traffic surveillance apparatus |
7026982, | Dec 19 2001 | Furuno Electric Ompany Limited | Carrier-phase-based relative positioning device |
7027918, | Apr 07 2003 | NOVARIANT, INC | Satellite navigation system using multiple antennas |
7031725, | Aug 13 2002 | DRS SIGNAL SOLUTIONS, INC | Method and system for determining relative positions of networked mobile communication devices |
7089099, | Jul 30 2004 | AMERICAN VEHICULAR SCIENCES LLC | Sensor assemblies |
7142956, | Mar 19 2004 | AGJUNCTION LLC | Automatic steering system and method |
7155335, | Aug 06 2003 | General Motors LLC | Satellite radio real time traffic updates |
7162348, | Dec 11 2002 | AGJUNCTION LLC | Articulated equipment position control system and method |
7191061, | Apr 17 2003 | Battelle Energy Alliance, LLC | Auto-steering apparatus and method |
7221314, | Mar 26 2004 | Topcon GPS, LLC | Estimation and resolution of carrier wave ambiguities in a position navigation system |
7231290, | Apr 05 2002 | E I DU PONT DE NEMOURS AND COMPANY | Method and apparatus for controlling a gas-emitting process and related devices |
7248211, | Jul 26 2004 | Deere & Company | Moving reference receiver for RTK navigation |
7271766, | Jul 30 2004 | Trimble Navigation Limited | Satellite and local system position determination |
7277784, | May 31 2002 | Deere & Company | Combination of a self-moving harvesting machine and a transport vehicle |
7277792, | Aug 29 2001 | AGJUNCTION LLC | Vehicle guidance software, method and system |
7292186, | Apr 23 2003 | HEMISPHERE GNSS INC | Method and system for synchronizing multiple tracking devices for a geo-location system |
7324915, | Jul 14 2005 | Biosense Webster, Inc | Data transmission to a position sensor |
7358896, | Nov 03 2005 | Qualcomm Incorporated | Multiband GNSS receiver |
7373231, | Dec 11 2002 | AGJUNCTION LLC | Articulated equipment position control system and method |
7388539, | Oct 19 2005 | HEMISPHERE GNSS INC | Carrier track loop for GNSS derived attitude |
7395769, | Oct 21 2004 | UNVERFERTH MANUFACTURING COMPANY, INC | Individual row rate control of farm implements to adjust the volume of crop inputs across wide implements in irregularly shaped or contour areas of chemical application, planting or seeding |
7400956, | Mar 20 2003 | AGJUNCTION INC | Satellite position and heading sensor for vehicle steering control |
7428259, | May 06 2005 | CSR TECHNOLOGY HOLDINGS INC | Efficient and flexible GPS receiver baseband architecture |
7437230, | Mar 20 2003 | AGJUNCTION LLC | Satellite based vehicle guidance control in straight and contour modes |
7451030, | Feb 04 2005 | NOVARIANT, INC | System and method for interactive selection and determination of agricultural vehicle guide paths offset from each other with varying curvature along their length |
7460942, | Apr 09 2001 | AGJUNCTION LLC | Soil cultivation implement control apparatus and method |
7479900, | May 28 2003 | ELECTRONIC COMMUNICATION TECHNOLOGIES LLC | Notification systems and methods that consider traffic flow predicament data |
7505848, | Mar 31 2003 | Deere & Company | Path planner and method for planning a contour path of a vehicle |
7522099, | Sep 08 2005 | Topcon GPS, LLC | Position determination using carrier phase measurements of satellite signals |
7522100, | Jul 01 2005 | CSR TECHNOLOGY HOLDINGS INC | Method and device for acquiring weak global navigation satellite system (GNSS) signals |
7571029, | Oct 04 2005 | GM Global Technology Operations LLC | Method and apparatus for reporting road conditions |
7610123, | Jan 04 2005 | Deere & Company | Vision-aided system and method for guiding a vehicle |
7623952, | Apr 21 2005 | A.I.L., Inc.; A I L , INC | GPS controlled guidance system for farm tractor/implement combination |
7689354, | Mar 20 2003 | AGJUNCTION LLC | Adaptive guidance system and method |
7835832, | Jan 05 2007 | AGJUNCTION LLC | Vehicle control system |
7854108, | Dec 12 2003 | Vision Robotics Corporation | Agricultural robot system and method |
7885745, | Dec 11 2002 | AGJUNCTION LLC | GNSS control system and method |
8098324, | Dec 07 2005 | Sony Corporation | Imaging device, GPS control method, and computer program |
8106817, | Dec 31 2009 | POLARIS WIRELESS, INC ; NTT DoCoMo, Inc | Positioning system and positioning method |
8190337, | Mar 20 2003 | AGJUNCTION LLC | Satellite based vehicle guidance control in straight and contour modes |
8311696, | Jul 17 2009 | AGJUNCTION LLC | Optical tracking vehicle control system and method |
8437901, | Oct 15 2008 | Deere & Company | High integrity coordination for multiple off-road vehicles |
8649930, | Sep 17 2009 | AGJUNCTION LLC | GNSS integrated multi-sensor control system and method |
8768558, | Jan 05 2007 | AGJUNCTION LLC | Optical tracking vehicle control system and method |
20010004601, | |||
20010025221, | |||
20020004691, | |||
20020067849, | |||
20020072850, | |||
20020138187, | |||
20020161522, | |||
20020165645, | |||
20020165669, | |||
20020171427, | |||
20030014171, | |||
20030093210, | |||
20030187560, | |||
20030187577, | |||
20030208319, | |||
20040006426, | |||
20040039514, | |||
20040186644, | |||
20040212533, | |||
20040221790, | |||
20050055147, | |||
20050080559, | |||
20050110676, | |||
20050150160, | |||
20050196162, | |||
20050225955, | |||
20050259240, | |||
20050265494, | |||
20060031664, | |||
20060095172, | |||
20060103573, | |||
20060167600, | |||
20060206246, | |||
20060213167, | |||
20060215739, | |||
20060290779, | |||
20070055412, | |||
20070069924, | |||
20070078570, | |||
20070088447, | |||
20070112700, | |||
20070121708, | |||
20070193798, | |||
20070194984, | |||
20070198185, | |||
20070205940, | |||
20070247361, | |||
20070285308, | |||
20080039991, | |||
20080059068, | |||
20080129586, | |||
20080167770, | |||
20080204312, | |||
20080269988, | |||
20080284643, | |||
20080288205, | |||
20090093959, | |||
20090160951, | |||
20090164067, | |||
20090171583, | |||
20090174587, | |||
20090174597, | |||
20090174622, | |||
20090175593, | |||
20090177395, | |||
20090177399, | |||
20090204281, | |||
20090251366, | |||
20090259397, | |||
20090259707, | |||
20090262014, | |||
20090262018, | |||
20090262974, | |||
20090265054, | |||
20090265101, | |||
20090265104, | |||
20090273372, | |||
20090273513, | |||
20090274079, | |||
20090274113, | |||
20090276155, | |||
20090295633, | |||
20090295634, | |||
20090299550, | |||
20090322597, | |||
20090322598, | |||
20090322600, | |||
20090322601, | |||
20090322606, | |||
20090326809, | |||
20100013703, | |||
20100026569, | |||
20100030470, | |||
20100039316, | |||
20100039318, | |||
20100039320, | |||
20100039321, | |||
20100060518, | |||
20100063649, | |||
20100084147, | |||
20100085249, | |||
20100085253, | |||
20100103033, | |||
20100103034, | |||
20100103038, | |||
20100103040, | |||
20100106414, | |||
20100106445, | |||
20100109944, | |||
20100109945, | |||
20100109947, | |||
20100109948, | |||
20100109950, | |||
20100111372, | |||
20100114483, | |||
20100117894, | |||
20100117899, | |||
20100117900, | |||
20100121577, | |||
20100124210, | |||
20100124212, | |||
20100134354, | |||
20100149025, | |||
20100149030, | |||
20100149033, | |||
20100149034, | |||
20100149037, | |||
20100150284, | |||
20100152949, | |||
20100156709, | |||
20100156712, | |||
20100156718, | |||
20100159943, | |||
20100161179, | |||
20100161211, | |||
20100161568, | |||
20100171660, | |||
20100171757, | |||
20100185364, | |||
20100185366, | |||
20100185389, | |||
20100188285, | |||
20100188286, | |||
20100189163, | |||
20100201829, | |||
20100207811, | |||
20100210206, | |||
20100211248, | |||
20100211315, | |||
20100211316, | |||
20100220004, | |||
20100220008, | |||
20100222076, | |||
20100225537, | |||
20100228408, | |||
20100228480, | |||
20100230198, | |||
20100231443, | |||
20100231446, | |||
20100232351, | |||
20100235093, | |||
20100238976, | |||
20100241347, | |||
20100241353, | |||
20100241441, | |||
20100241864, | |||
20100312475, | |||
20110015817, | |||
20110118938, | |||
20120182421, | |||
20120251123, | |||
20120271540, | |||
20120300070, | |||
20130004086, | |||
20130041549, | |||
20130046461, | |||
20130066542, | |||
20130107034, | |||
20130121678, | |||
20130141565, | |||
20130147661, | |||
20130156271, | |||
20130166103, | |||
20130211715, | |||
CN105531706, | |||
JP7244150, | |||
WO1998036288, | |||
WO200024239, | |||
WO2003019430, | |||
WO2008080193, | |||
WO2008119386, | |||
WO2009066183, | |||
WO2009082745, | |||
WO2009126587, | |||
WO2009148638, | |||
WO2010005945, | |||
WO2010104782, | |||
WO2011014431, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 04 2007 | MACDONALD, ANDREW JOHN | Beeline Technologies Pty LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 055358 | /0496 | |
Apr 04 2007 | REEVE, DAVID ROBERT | Beeline Technologies Pty LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 055358 | /0496 | |
Apr 04 2007 | MORRISON, CAMPBELL ROBERT | Beeline Technologies Pty LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 055358 | /0496 | |
Apr 21 2008 | Beeline Technologies Pty LTD | Hemisphere GPS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 055358 | /0533 | |
Jun 19 2013 | Hemisphere GPS LLC | AGJUNCTION LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 055362 | /0215 | |
Jun 29 2016 | AGJUNCTION LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 08 2021 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Nov 29 2021 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 20 2024 | 4 years fee payment window open |
Oct 20 2024 | 6 months grace period start (w surcharge) |
Apr 20 2025 | patent expiry (for year 4) |
Apr 20 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 20 2028 | 8 years fee payment window open |
Oct 20 2028 | 6 months grace period start (w surcharge) |
Apr 20 2029 | patent expiry (for year 8) |
Apr 20 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 20 2032 | 12 years fee payment window open |
Oct 20 2032 | 6 months grace period start (w surcharge) |
Apr 20 2033 | patent expiry (for year 12) |
Apr 20 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |