A planting unit for a seeding machine having a seed meter with a metering member that moves seed sequentially along a first path to a release position at which the seed is moving in a first direction and a delivery system adapted to take seed from the metering member at the release position and control movement of the seed from the seed meter to a discharge location adjacent a seed furrow formed in soil beneath the seeding machine. The delivery system, at the release position, moves seed in a second direction along a second path. A blocking member located adjacent the first path immediately preceding the release position prevents movement of the seed in the second direction until the seed has passed the blocking member.

Patent
   RE48572
Priority
Feb 02 2009
Filed
Oct 31 2017
Issued
Jun 01 2021
Expiry
Feb 02 2029

TERM.DISCL.
Assg.orig
Entity
Large
17
429
currently ok
1. A seed delivery apparatus for transferring seed to a furrow, the seed delivery apparatus secured to a seeding machine, the seed delivery apparatus comprising:
a housing having a first opening through which seed is received and a second opening through which seed exits;
an endless member positioned within the housing; and
a drive member operably configured to control the movement of the endless member in cooperation with movement of the seeding machine,
wherein the seeding machine is operable in a seeding direction at a first seeding speed and at a second seeding speed, and wherein the drive member is configured to discharge seed with a directional component equal and opposite to the seeding direction and at a speed in the directional component approximately equal to the first seeding speed in a first mode and at a speed in the directional component approximately equal to the second seeding speed in a second mode.
7. A seed delivery apparatus for transferring seed to a furrow, the seed delivery apparatus secured to a seeding machine, the seed delivery apparatus comprising:
a housing having a first opening through which seed is received and a second opening through which seed exits;
an endless member positioned within the housing; and
a drive member operably configured to control a discharge of seed from the second opening in cooperation with movement of the seeding machine,
wherein the seeding machine is operable in a seeding direction at a first seeding speed and at a second seeding speed, and wherein the drive member is configured to discharge seed with a directional component equal and opposite to the seeding direction and at a speed in the directional component approximately equal to the first seeding speed in a first mode and at a speed in the directional component approximately equal to the second seeding speed in a second mode.
0. 23. A seed delivery apparatus for transferring seed to a furrow, the seed delivery apparatus secured to a seeding machine, the seed delivery apparatus comprising:
a housing having a first opening through which seed is received and a second opening through which seed exits;
an endless member positioned within the housing; and
a drive member operably configured to control the movement of the endless member in cooperation with movement of the seeding machine,
wherein the seeding machine is operable in a seeding direction at a first seeding speed and at a second seeding speed, and wherein the drive member is configured to drive the endless member to discharge seeds from the seed delivery apparatus with a directional component equal and opposite to the seeding direction and at a speed in the directional component approximately equal to the first seeding speed in a first mode and at a speed in the directional component approximately equal to the second seeding speed in a second mode.
0. 29. A seed delivery apparatus for transferring seed to a furrow, the seed delivery apparatus secured to a seeding machine, the seed delivery apparatus comprising:
a housing having a first opening through which seed is received and a second opening through which seed exits;
an endless member positioned within the housing; and
a drive member operably configured to control a discharge of seed from the second opening in cooperation with movement of the seeding machine,
wherein the seeding machine is operable in a seeding direction at a first seeding speed and at a second seeding speed, and wherein the drive member is configured to drive the endless member to discharge seeds from the seed delivery apparatus with a directional component equal and opposite to the seeding direction and at a speed in the directional component approximately equal to the first seeding speed in a first mode and at a speed in the directional component approximately equal to the second seeding speed in a second mode.
0. 35. A method of transferring seed to a furrow with a seed delivery apparatus secured to a seeding machine, the method comprising:
receiving a seed into a housing through a first opening;
controlling a drive member configured to drive an endless member positioned within the housing in cooperation with movement of the seeding machine;
conveying the seed from the first opening to a second opening; and
discharging the seed through the second opening directly to the furrow,
wherein the seeding machine is operable in a seeding direction and at a first seeding speed and at a second seeding speed, and wherein discharging the seed through the second opening means discharging the seed from the seed delivery apparatus with the drive member and with a directional component equal and opposite to the seeding direction and at a speed in the directional component approximately equal to the first seeding speed in a first mode and at a speed in the directional component approximately equal to the second seeding speed in a second mode.
13. A method of transferring seed to a furrow with a seed delivery apparatus secured to a seeding machine, the method comprising:
receiving a seed into a housing through a first opening;
controlling movement of the seed within the housing in cooperation with movement of the seeding machine;
conveying the seed from the first opening to a second opening; and
discharging the seed through the second opening directly to the furrow,
wherein the seeding machine is operable in a seeding direction and at a seeding speed, and wherein discharging the seed through the second opening means discharging the seed with a directional component equal and opposite to the seeding direction and at a speed in the directional component approximately equal to the seeding speed
wherein the seeding machine is operable in the seeding direction and at a first seeding speed and at a second seeding speed, and wherein discharging the seed through the second opening means discharging the seed with a directional component equal and opposite to the seeding direction and at a speed in the directional component approximately equal to the first seeding speed in a first mode and at a speed in the directional component approximately equal to the second seeding speed in a second mode.
2. The seed delivery apparatus of claim 1, wherein the seeding machine is operable in a seeding direction and at seeding speed, and wherein the drive member is configured to discharge seed with a directional component equal and opposite to the seeding direction and at a speed in the directional component approximately equal to the seeding speed to minimize rolling of the seed in the trench.
3. The seed delivery apparatus of claim 1, wherein the drive member is operable at a first speed and at a second speed different than the first speed.
4. The seed delivery apparatus of claim 1, wherein the drive member is a variable speed drive member.
0. 5. The seed delivery apparatus of claim 1, wherein the drive member is a first drive member operable at a first speed, and further including a second drive member operable at a second speed and configured to control movement of the endless member in cooperation with movement of the seeding machine.
6. The seed delivery apparatus of claim 1, wherein the drive member speed is proportional to movement of the seeding machine.
8. The seed delivery apparatus of claim 7, wherein the seeding machine is operable in a seeding direction and at seeding speed, and wherein the drive member is configured to discharge seed with a directional component equal and opposite to the seeding direction and at a speed in the directional component approximately equal to the seeding speed to minimize rolling of the seed in the trench.
9. The seed delivery apparatus of claim 7, wherein the seeding machine is operable in a first mode at a first seeding speed and in a second mode at a second seeding speed, and wherein the drive member is configured to discharge the seed with a first seed spacing in the furrow during the first mode and is further configured to discharge the seed with a second seed spacing in the furrow during the second mode, wherein the second seed spacing approximately equals the first seed spacing.
10. The seed delivery apparatus of claim 7, wherein the drive member is operable at a first speed and at a second speed different than the first speed.
11. The seed delivery apparatus of claim 7, wherein the drive member is a variable speed drive member.
0. 12. The seed delivery apparatus of claim 7, wherein the drive member is a first drive member operable at a first speed, and further including a second drive member operable at a second speed and configured to control the movement of the endless member in cooperation with movement of the seeding machine.
14. The method of claim 13, wherein controlling movement of the seed within the housing means controlling movement of an endless member positioned within the housing.
15. The method of claim 14, wherein controlling movement of the seed within the housing means controlling a drive member configured to drive the endless member.
16. The method of claim 15, wherein controlling the drive member means controlling the drive member at a first speed and controlling the drive member at a second speed different than the first speed.
17. The method of claim 14, wherein controlling movement of the seed within the housing means controlling a variable speed drive member configured to drive the endless member.
0. 18. The method of claim 14, wherein controlling movement of the seed within the housing in cooperation with movement of the seeding machine means selectively controlling a first drive member configured to drive the endless member and selectively controlling a second drive member configured to drive the endless member.
19. The method of claim 13, wherein controlling movement of the seed within the housing in cooperation with movement of the seeding machine means controlling movement of the seed within the housing in response to an operating speed of the seeding machine.
20. The method of claim 13, wherein controlling movement of the seed within the housing in cooperation with movement of the seeding machine means controlling movement of the seed within the housing in response to an operating direction of travel of the seeding machine.
21. The method of claim 13, wherein discharging the seed through the second opening means selectively discharging the seed at a speed responsive to an operating speed of the seeding machine.
22. The method of claim 13, wherein the seeding machine is operable in a first mode at a first seeding speed and in a second mode at a second seeding speed, and wherein discharging the seed through the second opening means discharging the seed such that a seed spacing in the furrow during the first mode is equal to a seed spacing in the furrow during the second mode.
0. 24. The seed delivery apparatus of claim 23, wherein the drive member is operable at a first speed and at a second speed different than the first speed.
0. 25. The seed delivery apparatus of claim 23, wherein the drive member is a variable speed drive member.
0. 26. The seed delivery apparatus of claim 23, wherein the drive member is configured to discharge the seed with a first seed spacing in the furrow during the first mode and is further configured to discharge the seed with a second seed spacing in the furrow during the second mode, wherein the second seed spacing approximately equals the first seed spacing.
0. 27. The seed delivery apparatus of claim 23, wherein the drive member is operable at a speed proportional to movement of the seeding machine.
0. 28. The seed delivery apparatus of claim 23, wherein the furrow is formed into a soil through a soil surface, and wherein the second opening is below the soil surface.
0. 30. The seed delivery apparatus of claim 29, wherein the drive member is operable at a first speed and at a second speed different than the first speed.
0. 31. The seed delivery apparatus of claim 29, wherein the drive member is a variable speed drive member.
0. 32. The seed delivery apparatus of claim 29, wherein the drive member is configured to discharge the seed with a first seed spacing in the furrow during the first mode and is further configured to discharge the seed with a second seed spacing in the furrow during the second mode, wherein the second seed spacing approximately equals the first seed spacing.
0. 33. The seed delivery apparatus of claim 29, wherein the drive member is operable at a speed proportional to movement of the seeding machine.
0. 34. The seed delivery apparatus of claim 29, wherein the furrow is formed into a soil through a soil surface, and wherein the second opening is below the soil surface.
0. 36. The method of claim 35, wherein controlling the drive member means controlling the drive member at a first speed and controlling the drive member at a second speed different than the first speed.
0. 37. The method of claim 35, wherein controlling the drive member means controlling a variable speed drive member configured to drive the endless member.
0. 38. The method of claim 35, wherein discharging the seed through the second opening means discharging the seed such that a seed spacing in the furrow during the first mode is equal to a seed spacing in the furrow during the second mode.
0. 39. The method of claim 35, wherein the furrow is formed into a soil through a soil surface, and wherein discharging the seed through the second opening directly to the furrow means discharging the seed through the second opening below the soil surface.

This application is a reissue of U.S. patent application Ser. No. 14/215,182, filed Mar. 17, 2014, now U.S. Pat. No. 9,510,502, which is a Continuation of U.S. patent application Ser. No. 13/072,175, filed Mar. 25, 2011, now U.S. Pat. No. 8,671,856, which is a Continuation-in-part of U.S. patent application Ser. No. 12/363,968, filed Feb. 2, 2009, now U.S. Pat. No. 7,918,168.

The following relates to a planting unit for a seeding machine and more particularly to a planting unit having a seed meter and seed delivery system.

Various types of seed meters have been developed that use an air pressure differential, either vacuum or positive pressure, to adhere seed to a metering member. The metering member takes seed from a seed pool and sequentially discharges single seeds. (In some cases, multiple seeds may be discharged at a time.) One common type of seed meter is shown in U.S. Pat. No. 5,170,909. There, a seed disk 48 contained in a housing is used to meter the seed. The seed pool is positioned on one side of the disk at a lower portion thereof while vacuum is applied to the opposite side of the disk. As the disk is rotated, individual seeds from the seed pool are adhered by the vacuum to apertures that extend though the disk. When the seed reaches a desired release position, the vacuum is terminated, allowing the seed to drop from the disk, through a seed tube to a furrow formed in the soil below.

Flexible belts have also been used in an air pressure differential seed meter. One example is shown in US patent application 2010/0192818 A1. There, a flexible belt having an array of apertures therein is movable along a path in a housing. A seed pool is formed on one side of the belt. Vacuum applied on the opposite side of the belt along a portion of the belt path adheres seed to the apertures, allowing the belt to move the seed to a release position where the vacuum is cut-off. The seed then falls or is removed from the belt.

When seed falls by gravity from the meter through the seed tube, it can be difficult to maintain accurate and consistent seed spacing at planting speeds greater than about 8 kph (5 mph). To maintain spacing accuracy, a seed delivery system that controls the seed as the seed moves from the seed meter to the soil is desirable. One such delivery system is shown in U.S. patent application 2010/0192819-A1. With such a delivery system, the hand-off of seed from the disk of U.S. Pat. No. 5,170,909 to the delivery system is difficult to achieve In a consistent manner. While the hand-off of seed may be improved with the use of a belt meter, there is still a need for a more consistent and reliable hand-of seed from the seed meter to the delivery system.

A planting unit for a seeding machine is provided having a seed meter with a metering member that moves seed sequentially along a first path to a release position at which the seed is moving in a first direction and a delivery system adapted to take seed from the metering member at the release position and control movement of the seed from the seed meter to a discharge location adjacent a seed furrow formed in soil beneath the seeding machine. The delivery system, at the release position, moves seed in a second direction along a second path. A blocking member or guide located adjacent the first path immediately preceding the release position prevents movement of the seed in the second direction until the seed has passed the blocking member.

FIG. 1 is a perspective view of a common agricultural planter;

FIG. 2 is a side perspective view of a planting unit frame, seed meter and seed delivery system;

FIG. 3 is an enlarged perspective view of the seed meter and delivery system drives;

FIG. 4 is a perspective view of the seed meter with the cover open illustrating the metering member;

FIG. 5 is an exploded perspective view of the seed meter of FIG. 4;

FIG. 6 is a perspective view of the metering member of FIG. 4;

FIG. 7 is side cross-section of the metering member of FIG. 6 illustrating the orientation of the metering member installed in a seed meter mounted to a planting unit;

FIG. 8 is a fragmentary cross-section of an alternative metering member;

FIG. 9 is a elevational view of the inside of the metering member of FIG. 6;

FIG. 10 is a side sectional view of the metering member and seed delivery system;

FIG. 11 is a sectional view of the hand-off of seed from the metering member to the delivery system including the delivery system brush belt;

FIG. 12 is a sectional view like FIG. 11 without the delivery system brush belt;

FIG. 13 is a schematic illustration the direction of entry of seed into the brush belt;

FIG. 14 is a schematic illustration of the direction of travel of the seed on the metering member and in the delivery system at the release position of seed from the metering member;

FIG. 15 is side sectional view of the metering member and delivery system at the hand-off without the brush belt;

FIG. 16 is a perspective view of the inner side of the seed meter housing;

FIG. 17 is a side sectional view of the metering member and meter housing illustrating the seed pool formed by the metering member and housing;

FIG. 18 is side sectional view like FIG. 17 illustrating a prior art seed meter with a disk metering member;

FIG. 19 is a perspective view of the lower end of the delivery system;

FIGS. 20 and 21 are perspective views of an alternative metering member;

FIG. 22 is a schematic side view of another arrangement of the seed meter and seed delivery system;

FIG. 23 is a perspective view of the seed meter of FIG. 22 partially disassembled;

FIG. 24 is perspective view of the seed meter as seen along the line 24-24 of FIG. 23;

FIG. 25 is a perspective view of the vacuum manifold of the seed meter of FIG. 23;

FIG. 26 is a sectional view of the idler pulley mounting structure of the seed meter of FIG. 23;

FIG. 27 is a plan view of a vacuum control member in the seed meter of FIG. 23;

FIG. 28 is a perspective view of the seed meter housing cover of the seed meter of FIG. 23;

FIG. 29 is perspective view of the upper end of the seed meter of FIG. 23; and

FIG. 30 is a perspective view showing the seed meter of FIG. 23 in relation to the seed deliver system.

An agricultural seeding machine 10 is shown in FIG. 1 as a row crop planter. Seeding machine 10 has a central frame 12 on which are mounted a plurality of individual planting units 14. The seeding machine 10 has a fore-aft direction shown by the arrow 15 and a transverse direction shown by the arrow 17. Each planting unit 14 is coupled to the central frame 12 by a parallel linkage 16 so that the individual planting units 14 may move up and down to a limited degree relative to the frame 12. Large storage tanks 13 hold seed that is delivered pneumatically to a mini-hopper on each planting unit. Each planting unit 14 has a frame member 18 (FIG. 2) to which the components of the planting unit are mounted. The frame member 18 includes a pair of upstanding arms 20 at the forward end of thereof. The arms 20 are coupled to the rearward ends of the parallel linkage 16. Furrow opening disks (not shown) are attached to shaft 22 in a known manner to form an open furrow in the soil beneath the seeding machine into which seed is deposited. Closing and packing wheels (not shown) are also mounted to the frame member 18 in a known manner to close the furrow over the deposited seed and to firm the soil in the closed furrow. A seed meter 24 and a seed delivery system 400 are also attached to the frame member 18 of the planting unit.

The meter 24 includes a housing 30 (FIG. 3) and a cover 34. The housing 30 and the cover 34 are coupled to one another by complementary hinge features 36 and 38 (see FIG. 5) on the housing and cover respectively. Hinge feature 36 includes a pivot pin 37 coupled to the housing while the feature 38 is an integrally formed hook that wraps around the pivot pin allowing the cover 34 to pivot about the axis of the pin 37. An elastomeric latch member 40 is coupled to the housing 30 and has an enlarged portion 42 that is seated into a socket 44 formed in the cover to hold the cover in a closed position on the housing 30.

The housing 30 is formed with a second hinge element in the form of a pivot pin 46 (FIG. 3). Pivot pin 46 is seated into a hook member 48 (FIG. 4) of the mounting frame 50 attached to the frame member 18. This allows the seed meter 24 to pivot relative to the planting unit frame member 18 about an axis 52. A drive spindle 54 is carried by the housing 30 and has a drive hub 56 (FIG. 5) on the end thereof. The spindle 54 couples to the output shaft 58 of electric motor 60 to drive the seed meter when in the assembled position shown in FIG. 3. The seed meter 24 is coupled to the delivery system by a latch mechanism 68 including a metal rod 70 having a hook at one end seated into an aperture in the meter housing 30 when latched. The delivery system further has a mounting hook 72, partially shown in FIG. 2, which attaches to the planting unit frame member 18 to support the delivery system.

The delivery system 400 is driven by an electric motor 80, also carried by the mounting frame 50. The output shaft of motor 80 is connected to the delivery system through a right-angle drive 82. While electric motors have been shown to drive both the seed meter and the seed delivery system, it will be appreciated by those skilled in the art that other types of motors, such as hydraulic, pneumatic, etc. can be used as well as various types of mechanical drive systems.

With reference to FIG. 6, a metering member 100 of the seed meter is shown in greater detail. These metering member 100 is shown as a single piece, concave bowl shaped body. The bowl shaped body has a base portion 102 from which extends a sidewall 104. Sidewall 104 terminates in an outer edge 106. The sidewall has a radially inner surface 108 and a radially outer surface 110. Adjacent the outer edge 106, the sidewall has a rim portion 112 shown by the bracket in FIG. 6. The rim portion 112 extends radially outwardly and axially toward the outer edge 106. In the rim portion 112, there is an annular array of apertures 114 that extend through the sidewall between the inner and outer surfaces 108 and 110. The metering member 100 is mounted in the meter housing for rotation in the direction of the arrow 118 in FIG. 6. In operation, as the metering member rotates, individual seeds from a seed pool 120 located at a bottom portion of the metering member are adhered to the apertures 114 on the inner surface 108 of the sidewall and sequentially carried upward to a release position 164 at an upper portion of the metering member. Thus, the inner surface is also known as the seed side of the metering member. A series of raised features or projections, such as paddles 116, extend from the inner surface 108 of the sidewall 104 typically with one paddle located behind each aperture 114 in the direction of rotation. Each paddle forms a confronting surface 124 behind the associated aperture in the direction of rotation to push the seed adhered to the aperture into the delivery system as described below. As explained above, it is the rim portion 112 of the metering member that performs the function of drawing individual seeds from the seed pool and sequentially moving seed to the release position to supply seed individually to the seed delivery system 400.

The base portion 102 of the metering member contains a central drive aperture 130 (FIG. 5) used to mount the metering member on a rotational drive hub 56 for rotation about the axis 132 in a manner similar to mounting a flat seed disk in a seed meter as is well known. When mounted to the housing 30, the metering member 100 cooperates with the housing to form a trough to hold the seed pool 120 as described more fully below. The axis 132 is inclined to both a horizontal plane as well as to a vertical plane extending fore and aft of the seeding machine and a vertically plane extending transversely to the seeding machine.

With reference to FIG. 7, the metering member 100 is shown in a sectional view. The base portion 102 is a generally planar while the rim portion 112 of the inner surface of the sidewall 104 is outwardly flared, that is, extending both radially outward and axially. As shown in FIG. 7, the rim portion is frusto-conical. Alternatively, as shown in FIG. 8 in connection with a metering member sidewall 104′, the inner surface of the sidewall rim portion 112 may be frusto-spherical in shape. Furthermore, while the rim portion 112 has been shown as being outwardly flared, the rim portion could be generally cylindrical without any outward flair, that is, extending only axially. The metering member 100 can be formed as one piece or constructed of multiple pieces. The metering member can be most easily molded of plastic such as polycarbonate, nylon, polypropylene or urethane. However, other plastics can be used as well as other materials such as metal, etc. The metering member 100 is sufficiently rigid to be self-sustaining in shape without additional supporting structure. This is in contrast to the flexible belt metering member shown in U.S. Pat. No. 2,960,258 where it be belt member is preferably of a flexible elastomeric material and is supported within a support ring. Being self-sustaining in shape, the metering member does not need any supporting structure to hold a shape. As a self-sustaining, the metering member may be rigid or the metering member may be flexible to change shape when acted upon in a manner similar to the flexible seed disk of U.S. Pat. No. 7,661,377.

As previously mentioned, the metering member 100 can be mounted to a drive hub through the central drive aperture 130 in the base portion 102. Mounting through the central drive aperture 130 provides both mounting support of the metering member as well as the rotational drive of the metering member. Alternatively, support for the metering member can be provided on the outer surface of the sidewall. A groove may be formed in the outer surface of the sidewall to receive rollers that support the metering member. If the groove is also formed with drive teeth, one of the rollers could be driven by a motor to rotate the metering member. With such alternative arrangements possible, it is not necessary that the metering member have a base portion. The function of metering seed is performed by the sidewall and thus, the sidewall is the only required portion of the metering member.

As shown in FIG. 7, the metering member 100, when mounted in the meter housing, is oriented at an incline to the vertical as shown. In this orientation, the apertures 114 lie in a plane 150 inclined at an angle a relative to vertical. In this orientation, an upper portion 148 of the metering member overhangs or extends beyond a lower portion 154. As described below, this allows access to the upper portion 148 of the metering member for the mechanical seed delivery system 400. As shown, the angle a is approximately 24°. However, any angle will suffice as long as the upper portion 148 extends beyond the lower portion sufficiently for access for the seed delivery system from below the metering member at the seed release position.

The seed pool 120 is formed at the bottom of the metering member 100 as shown in FIG. 9. Vacuum is applied to the outer surface 110, causing individual seeds to be adhered to the apertures 114 as the apertures travel through the seed pool. As the metering member rotates as shown by the arrow 118, seed is moved upward to a release position 164 at the upper portion 148 of the metering member. The release position is slightly past the top or 12 O'clock position on the circular path of travel of the seed such that the seed is moving somewhat downward at the release position. This facilitates the seed's entry into the delivery system as more fully described below. Also, by being past the top point of the path, the delivery system is off center relative to the metering member providing clearance between the delivery system and the seed meter drive. At the release position 164, the inner surface of the rim portion of the metering member is facing downward such that seed is adhered beneath the metering member or is hanging from the metering member. See FIG. 10. The seed delivery system 400 is also positioned beneath the upper portion of the metering member at the release position 164 to take the seed from the metering member as shown in FIG. 10.

Delivery system 400 includes a housing 402 having a left sidewall 404 (see FIG. 19) and a right sidewall 406 (see FIG. 3). The terms left and right are used in relationship to the direction of travel of the seeding machine shown by the arrow 408. Connecting the left and right sidewalls to one another is an edge wall 410. An upper opening 416 is formed in the edge wall and sidewalls to allow seed to enter into the housing 402. A lower opening 418 is provided at the lower end forming a discharge location 413 for the seed. A pair of pulleys 420 and 422 are mounted inside the housing 402. The pulleys a support a belt 424 for rotation within the housing. One of the two pulleys is a drive pulley while the other pulley is an idler pulley. The belt has a flexible base member 426 to engage the pulleys. Elongated bristles 428 extend from the base member 426. The bristles are joined to the base member at proximal, or radially inner, ends of the bristles. Distal, or radially outer, ends 430 of the bristles touch or are close to touching the inner surface of the housing edge wall 410.

As shown at the top of FIG. 10, a seed 152 is at the release position on the metering member 100 and has just been inserted into the bristles 428 of the delivery system. At the release position, the rim portion 112 of the metering member sidewall 104 is generally tangent to the stationary inner surface 412 across which the brush bristles 428 sweep. The surface 412 is on a latch portion 66 of the housing 30. The surface 412 is a continuation of the inner surface 414 of the delivery system housing 402. Once the seed is captured in the delivery system, the seed moves in the direction of the belt, shown by the arrow 417. The direction of travel of the seed immediately upon capture by the delivery system 400 is shown by the vector 438.

Prior to release of the seed from the metering member, the seed is moving in the direction of vector 160 which is slightly downward into the bristles 428. With reference to FIG. 13, the vector 160 of the seed direction is at an angle 161 of about 60° to the length of the bristles 428 shown by the arrow 176. As shown in FIG. 11, the brush belt is positioned so that seed enters the bristles at the corner of the brush belt. The brush can be positioned so that the seed enters the brush through the distal ends of the bristles or through the side of the bristles.

The relationship between the seed direction vector 160 on the metering member and the seed direction vector 438 when the seed is first in the brush belt is shown in FIG. 14 illustrating the two vectors in the plane containing both vectors at the release position 164. The angle 163 between the vectors is at least 35° and preferably between 50° and 80°. This shows the cross-feed of the seed into the bristles, meaning that the seed, prior to the release position is moving substantially in a different direction than the brush bristles are moving. This is in contrast to the arrangement shown in FIG. 3 of the previously mentioned U.S. patent application 2010/0192819-A1 where the seed on the metering disk at the release is moving in substantially the same direction as the brush bristles. This is also the relationship by which the bristles sweep over the inner surface of the sidewall relative to the travel direction of seed.

FIGS. 11 and 12 show a blocking member 162 carried by the meter housing 30. Blocking member 162 is positioned adjacent a path of travel of seed 152 leading to the release position 164 and prevents movement of seed from the metering member prior to reaching the release position. Once the seed has passed the end 174 of the blocking member 162, the seed is free to move with the brush bristles in the direction of the vector 438 in FIG. 10. The blocking member ensures that the seed is consistently feed into the brush belt in the center of the belt, widthwise, rather than allowing the seed to enter the belt at random positions across the belt width. As shown in FIG. 15, the blocking member is located beneath the sidewall 104 of the metering member 100 between the paddles 116 and the outer edge 106 of the metering member. The confronting surfaces 124 of the paddles 116 push seed into the brush bristles. The paddles or projections 116 travel further into the brush bristles, that is deeper into the bristles from their distal ends, as the projections cross the width of the brush as seen in FIG. 11. Once seed is in the brush bristles, the seed is swept over the inner surface of the metering member, from the apertures 114 to the outer edge 106 of the metering member in the direction of the vector 438. The delivery system could be arranged to sweep seed in the opposite direction, that is, away from the outer edge 106 of the metering member.

To further ensure consistent release of seed from the metering member and hand-off to the delivery system, an ejector 166, carried by the cover 34 rides on the outer surface of the metering member rim portion. See FIGS. 11, 12 and 15. The ejector 166 is in the form of a star wheel having a number of projections 168. The projections 168 extend into the apertures 114 from the outer surface 110 of the sidewall 104 and force seed out of the apertures 114. The ejector is caused to rotate by rotation of the metering member 100 due to the projections 168 engaging in the apertures 114. The ejector is mounted to the cover 34 via a pivot arm 170 and bracket 171. The ejector 166 is biased against the metering member by a spring 172.

Turning attention once again to FIG. 4, a flexible seal 180 is shown on the inner side of the cover 34. This seal bears against the outer surface 110 of the metering member 100 forming a vacuum chamber within the interior 182 of the seal. A first portion 184 of the seal is spaced radially further out on the metering member than is the second portion 186 of the seal. In the area of the seal first portion 184, vacuum is applied to the apertures 114, causing seed to adhered thereto. There is no vacuum applied to the apertures adjacent and outside of the seal second portion 186. A port 188 in the cover 34 is adapted to connect the interior of the cover to a vacuum source in a known manner for a vacuum seed meter. The seed release position 164 is within the vacuum chamber. Thus, the brush belt and the ejector are working in opposition to the vacuum applied to the apertures 114 to release the seed from the metering member.

With reference to FIG. 16, The inside of the housing 30 is shown. The housing includes a central boss 302 for the drive spindle 54. The housing also includes an opening 304 to receive seed from a mini-hopper, not shown, mounted to the outside of the housing and surrounding the opening 304. Below the opening 304, the housing wall forms a ramp 306 extending downward toward the lower end 308 of the housing. The ramp cooperates with the inner surface 108 of the metering member to hold the seed pool 120. The housing includes an inward projection 310 forming a cavity 314 (FIG. 17) on the outside of the housing into which the upper end if the delivery system 400 is placed. The projection is open at the upper end, forming a downward looking opening 312 from the interior of the housing to the exterior. This opening 312 allows the brush belt 424 to access the inner surface of the 108 of the metering member and carry seed from the housing.

FIG. 17 illustrates the orientation of the metering member and the cooperation of the housing 30 and metering member 100 to form a trough for the seed pool 120 at the lower end of the metering member. FIG. 17 shows the orientation of the metering member when the seeding machine 10 is on level ground. At the lower end of the metering member, the sidewall 104 is inclined to the vertical such that the inner surface 108 is at an angle d to the vertical vector 126. As illustrated in FIG. 17, the inner surface is approximately 21° from vertical. The orientation of the housing adjacent the metering member, forming the other side of the trough, is not critical. Seed from the seed pool 120 sits on top of the inner surface 108 and a component of the force of gravity is perpendicular to the inner surface 108. When operating on a hillside, if the meter is tilted clockwise or counter-clockwise, as viewed in FIG. 17, the inner surface 108 remains inclined and gravity still has a component perpendicular to the inner surface. This is in contrast to a typical disk seed meter shown in FIG. 18 with a vertically oriented disk 320 cooperating with a housing wall 322 for form a seed pool 324. If this meter is tilted counterclockwise as viewed, seed from the pool will still bear against the disk. However, if the meter is tilted clockwise, seed from the pool will fall away from the disk, allowing for decreased metering performance in terms of seed being picked-up by the disk. Evaluation of the meter has shown improved meter performance on a hillside when the angle d is as small as 5° and as large as 75°. Better performance is achieved when the angle d is between 10° and 50° while the optimum performance is in the range of 20° to 40°. This last range provides considerable tilting of the seed meter on a hillside in any direction before performance begins to decrease.

At the upper end of the metering member, at the release position 164, the inner surface 108 has an angle f to a downward vertical vector 128 in the range of 50° to 90° with the closer to 90° being the better for hand-off of seed from the metering member to the brush belt. As shown, the angle f is approximately 68°. The different orientations of the inner surface 108 relative to vertical at the seed trough and at the release position is accomplished with a metering member that is rigid. Such variation is not possible with the flat disk metering member shown in FIG. 18.

As described above, seed is adhered to the apertures 114 in the metering member due to the vacuum applied to the outer surface of the metering member creating a pressure differential on opposite sides of the metering member. As an alternative to vacuum on the outer side of the metering member, the pressure differential can be created by a positive pressure between the housing 30 and the metering member 100. Such a system would require seals between the metering member 100 and the housing 30 to create a positive pressure chamber. In a positive pressure arrangement, the cover 34 only serves as a cover for the rotating metering member.

It is possible that more than one seed will be adhered to a given aperture 114. To prevent more than one seed at a time from being transferred to the brush belt, a pair of doubles eliminators or singulators are attached to the housing 30 along the path of seed from the seed pool to the release position 164. The singulators are in the form of brushes 330 and 332 (FIGS. 5 and 9). Brush 330 has bristles extending substantially axially and brushes seed on the apertures 114 by extending inwardly from the outer edge 106 of the metering member. The bristles of brush 330 are of varying length, to engage the seed at several discrete locations along the length of the brush 330. The brush 332 has bristles extending substantially radially and engaging the inner surface of the metering member sidewall inside of the paddles 116 and extend along the sidewall to the apertures 114. Both brushes 330 and 332 act to slightly disturb seed on the aperture and cause excess seed to fall off. Once removed, the excess seed falls back to the seed pool 120. The brushes can be fixed in position or they can be adjustable to change the degree to which the brushed disturb seed on the metering member. A third brush 334 is shown which extends generally radially of the metering member. The brush 334 serves to define a boundary to the seed pool 120. The brushes 330, 332 and 334 are mounted to the housing 30.

Returning again to FIG. 10, once seed is captured or trapped in the bristles 428, the delivery system controls the movement of seed from the seed meter to the discharge location. The seeds are held in the bristles such that the seeds can not move vertically relative to the bristles 428 or relative to other seeds in the delivery system. Particularly, during travel of the seeds along the vertical side of the delivery system, the seeds are held on at least the top and bottom of the seeds to prevent any relative movement between the seed and the brush belt. Thus, the relative position of the seeds to one another is not affected by dynamics of the planting unit while moving across a field. The seed is carried by the bristles from the upper opening 416 to the lower opening 418 with the movement of the seed controlled at all times from the upper opening to the lower opening.

The lower opening 418 of the delivery system housing is positioned as close to the bottom 446 of the seed trench or furrow 448 as possible. As shown, the lower opening 418 is near or below the soil surface 432 adjacent the seed furrow. The bottom of the delivery system should be no more than one or two inches, (2.5-5 cm) above the soil surface 432. If possible, the lower end of the delivery system should be below the soil surface 432. The housing edge wall 410 forms an exit ramp 434 at the lower opening 418. The lower opening 418 and the ramp 434 are positioned along the curve in the belt path around the pulley 422. The seed, being carried by the bristle's distal ends, increases in linear speed around the pulley 422 as the distal ends of the bristles travel a greater distance around the pulley 422 than does the base member 426 of the belt. This speed difference is shown by the two arrows 440 and 442.

At discharge, the seed has a velocity shown by the vector V. This velocity has a vertical component VV and a horizontal component VH. The belt is operated at a speed to produce a horizontal velocity component VH that is approximately equal to, but in the opposite direction of, the seeding machine forward velocity shown by arrow 408. As a result, the horizontal velocity of the seed relative to the ground is zero or approximately zero. This minimizes rolling of the seed in the seed trench.

Seed can be inserted into the brush bristles at essentially an infinite number of positions. This enables the brush to be operated at the speed necessary to produce the desired horizontal velocity component to the seed, independent of the seed population. The seed meter, on the other hand, must be operated at a speed that is a function of both the forward travel speed of the seeding machine and the desired seed population. Because the belt 424 can be loaded with seed at essentially an infinite number of positions, the belt speed can be operated independently of the seed meter speed. This is not the case with other seed delivery systems, such as that disclosed in U.S. Pat. No. 6,681,706 where the delivery system of FIG. 2 has a belt with flights to carry the seed. The belt speed must be timed to the seed meter speed to ensure that one or more flights pass the seed meter for each seed that is discharged from the meter.

While it is desirable to match the seed rearward velocity to the seeding machine forward velocity to minimize seed relative velocity to the soil, with some seed types, it may be necessary to operate the brush belt at a different speed to ensure the seed is discharged from the brush bristles.

The interior of the lower portion of delivery system housing is shown in FIG. 19. The delivery system housing 402 is a two-piece housing having an upper housing member 460 and a lower housing member 462. The lower housing member carries the lower pulley 422. The lower housing member has an upwardly extending rod portion 464 that slides within a channel formed by walls 466 and 468 in the upper housing member. Springs, not shown, push downward on the rod portion 464 to bias the lower housing member downward. The brush belt 424, wrapped about the pulleys 420 and 422, holds the upper and lower housing members together. The belt 424 is tensioned by the springs acting on the rod portion 464. A U-shaped metal strip 470 is attached to the upper housing member 460 and bridges the gap 472 between the upper and lower housing members to provide a continuous surface for holding seed in the housing between the upper opening 416 and the lower opening 418. The metal strip has a tab at the upper end thereof bent over and inserted into a slot 474 in the upper housing member 460 to hold the metal strip 470 in place. If needed, a fastener, such as a nut and bolt, may be placed through the rod portion 464 and the upper housing member 460 to fix the upper and lower housing members together.

Different metering members may be used for different seed types. The metering member 100 is intended for soybeans and other crops planted with a fairly close seed spacing. Corn, which is planted at a greater seed spacing uses a metering member 200 shown in FIGS. 20 and 21. Metering member 200 is constructed in a similar fashion as metering member 100 and like components are given the same reference numeral with the addition of 100. However, metering member 200 has half the number of apertures 214 as the metering member 100. To avoid the need to replace the ejector 166 when changing metering members, the metering member 200 has recess 226 extending into the sidewall 204 on the outer surface 210 of the sidewall between each aperture 214. The recesses 226 provide clearance for the projections 168 of the ejector 166 that are arranged to be inserted in each aperture 114 of the metering member 100. The recesses 226 are not open to the inner surface 208 of the sidewall 204. Thus there are additional projections 228 on the inner surface of the sidewall 204 between the apertures 214. Alternatively, the projections 228 and the paddles 216 can be formed as a single projections extending from the inner surface 208.

The blocking member or guide is shown in another arrangement of the seed meter and delivery system described in connection with FIGS. 22-31 from the parent application, U.S. patent application Ser. No. 12/363,968, filed Feb. 2, 2009. with reference to FIG. 22, a belt meter 1200 is shown schematically to illustrate the relationship of the belt 1250 relative to the row unit structure. The belt 1250 lies in a plane that is inclined relative to all three axes, that is the plane of the belt is inclined relative to a vertical fore and aft plane, inclined relative to a vertical transverse plane and inclined relative to a horizontal plane. Furthermore, the seed pickup region 1206 is positioned at the lower end of the belt 1250 while the seed release position or location 1208 is located at the upper end of the belt 1250. In the embodiment shown in FIG. 22, the seed is removed from the belt 1250 at the release location by a seed delivery system 1210. The seed delivery system 1210 is like seed delivery system 400 described above containing a brush belt 1312 to grip and carry seed. The seed delivery system 1210 moves the seed from the seed meter belt to the lower end of the row unit between the furrow opening disks where it is deposited into the furrow formed in the soil. The seed meter 1200 is described fully below with reference to FIGS. 23-30.

The seed meter 1200 has a frame member 1220 in the form of a plate which is mounted to the row unit frame in a suitable manner. The frame member 1220 supports the upper idler pulley 1256 and the lower drive pulley 1260 about which the belt 1250 is wrapped. A gearbox and drive motor (not shown) are coupled to the shaft 264 to drive the pulley 1260 and belt counterclockwise as viewed in FIG. 23 and shown by the arrow 1261. The frame member 1220 also carries a vacuum manifold 1262 having a hollow interior vacuum chamber 1266. A vacuum port 1263 extends from the opposite side of the vacuum chamber through the frame member 1220. The manifold 1262 has an outer wall 11268 (FIG. 25) containing a main slot 1270 extending the length of the outer wall. A secondary slot 11272 extends only a short portion of the length of the outer wall.

The belt 1250 has an outer seed engaging face or side 11251. The belt 1250 includes a row of first apertures 11252 which overlie the slot 1270 in the manifold 1262. The apertures 11252 to extend through the belt, allowing air to flow through the belt. The belt further has a plurality of features 11254 formed as ribs extending from the seed face 1251. The features 1254 each for a confronting face 1255 shown in FIG. 29 facing in the travel direction of the belt. In this embodiment, the feature 1254 forms the confronting face 1255 extending outward from the seed side 1251 of the belt. In the embodiment shown, the features 1254 do not extend laterally to both side edges of the belt, but leaves a flat edge zone 1257 along one edge of the belt. An optional second row of apertures 1258 in the belt are positioned to pass over the secondary slot 1272 in the manifold outer wall 1268. The apertures 1258 are only in communication with the vacuum chamber 1266 for the short portion of the path of the apertures 1258 over the slot 1272.

A housing 1276 is attached to the frame member 1220 and closely positioned to the belt 1250. A portion 1277 of the housing 1276 overlies the flat edge zone 1257 of the belt. The housing 1276, the belt 1250, and a cover 1278 (shown in FIG. 28) form a small chamber 1279 which holds a pool of seed 1280. A brush 1282 mounted to the housing 1276 sweeps across the face 1251 of the belt and seals the chamber 1279 at the location where the belt enters the chamber to prevent seed from escaping the chamber 1279. Seed enters in the chamber 1279 through a suitable port, not shown, in the housing 1276 or housing cover 1278.

The belt 1250 and housing 1276 form a V-shaped trough for the seed pool that extends uphill in the direction of belt travel. The confronting faces 1255 formed by the features 1254 of the belt engage the seed in the pool to agitate the seed creating a circular flow of seed as shown by the broken line 1284 of FIG. 24. Since the belt forms one side of the V-shaped trough, seed will always remain in contact with the belt regardless of tilt or inclination of the planter, as long as sufficient seed is present in the seed pool. An advantage of the seed meter is that when the vacuum shut off, seed on the belt falls back into the seed pool. This is in contrast to disk meters where a portion of the seed on the disk above the seed tube will fall to the ground upon vacuum shut-off.

The idler pulley 1256 is supported by a bearing set 1285 on a tube 1286 (FIG. 26). A flange 1288 welded to the tube 1286 is attached to the frame member 1220 by bolts 1290. A spacer 1292 is positioned between the flange and frame member 1220. The idler pulley 1256 has a groove 1294 in its outer periphery which is in line with the belt apertures 1252. Channels 1296 extend radially through the pulley 1256 to an annular chamber 1298 surrounding the tube 1286. An opening 1300 in the tube 1286 provides communication between the chamber 1298 and the hollow interior 1302 of the tube. The tube is connected to the vacuum source whereby the vacuum is applied to the apertures 1252 in the belt as the belt travels over the pulley 1256. A fork 1304 is attached to the frame member 1220 with tines 1306 seated in the groove 1294 in the idler pulley. The tines filled the groove 1294 to cut off the vacuum and create the seed release location 1208. The tines 1306 extend from the seed release location to the vacuum manifold in the direction of rotation of the idler pulley to seal the vacuum chamber and the groove in the idler pulley.

The housing cover 1278 mounts to the manifold and covers the open side of the housing 1276 as shown in FIG. 29. A doubles the eliminator 1310 is mounted to the housing cover and, when assembled, lies on top of the belt 1250. The doubles eliminator 1310 is roughly wedge-shaped and progressively increases in width in the travel direction of the belt to increase its coverage over the apertures 1252. The doubles eliminated 1310 causes doubles or multiples of seed to be removed from the belt resulting in a single seed covering each aperture 1252.

In operation, as the belt rotates, the confronting face 1255 engage and agitate seed in the seed pool at the bottom of the housing 1276. Seed from the seed pool will be adhered to the belt at each aperture 1252 due to the vacuum applied to the apertures from the interior of the manifold 1262 or by positive air pressure on the seed side of the belt. By virtue of the main slot 1270, the seeds will continue to be retained on the belt as the belt travels from the seed pick-up region 1206 to the idler pulley 1256. Due to the groove in the idler pulley, the vacuum is maintained on the apertures as the belt travels around the pulley until the seed and the aperture reaches the tine 1306 of the fork 1304. Upon reaching the tine 1306, the vacuum is terminated and the seed is released from the belt 1250. Alternatively, the seed can be mechanically removed from the belt or removed by a combination of vacuum termination and mechanical removal or the seeds can be removed mechanically while the vacuum is still applied.

The second row of apertures 1258 will also operate to retain a seed therein while the aperture 1258 travels over the shorter slot 1272. By picking up seed, the apertures 1258 act to further agitate the seed pool. In addition, when the apertures 1258 reach the downstream end 273 of the secondary slot 1272, the seed is released from the belt. The release location from the aperture 1258 causes the seed to pass over one of the apertures 1252 as the seed falls. If the aperture 1252 failed to pick-up a seed and is empty, the falling seed may be retained thereon. If the aperture 1252 is not empty, but instead picked-up multiple seeds, the falling seed may collide with the multiple seeds and assist in removing one or more of the multiple seeds. In this fashion, the falling seed operates to avoid errors in terms either no seed or multiple seeds on an aperture 1252.

At the seed release position 1208, the seed is transferred from the metering belt 1252 to the seed delivery system 1210. The seed delivery system 1210 includes an endless member also wrapped around pulleys and contained within a housing 1322. The housing has an upper opening 1324 through which seed is admitted into the delivery system. The endless member is shown in the form of a brush belt 1312 having bristles 1314 that sweep across the face 1251 of the belt 1250 to remove the seed therefrom. At the seed release position 1208, a transition plate 1316 is positioned adjacent the belt 1250. The transition plate has a curved first edge 1318 abutting the edge of the belt as the belt travels around the idler pulley. The brush belt bristles will engage a seed in the aperture 1252A at the location shown in FIG. 19 and will sweep the seed off the belt and across the face 1320 of the transition plate 1316 in the direction of the arrow 1321. The confronting face 1255 behind the aperture 1252A serves as a back stop to prevent the brush from knocking the seed off the metering belt. The confronting face 1255 pushes the seed into the brush bristles. The downward extending tab portion 1323 of the transition plate projects into the housing of the delivery system 1210 to allow the brush to continuously trap seed as the seed moves off the belt 1250, over the transition plate 1316 and into the interior of the delivery system housing where the seed is trapped by the brush bristles and the interior surface of the delivery system housing 1322. A guide 1325 projects from the surface of the transition plate to guide the seed and keep the seed from being swept off the meter belt prematurely. The guide forms an upstanding wall having a first portion 1326 adjacent the path of seed on the belt 1250 immediately prior to the release position 1208. A second portion 1328 of the upstanding wall extends in the direction of seed travel in the brush belt 1312. Seed must pass the corner or bend 1330 in the upstanding wall before it can be moved off the meter belt 1250 by the seed delivery system.

The guide 1325 and blocking member 162 ensure seed entry into the brush belt in a consistent manner and in the same location across the width of the brush belt. This consistent hand-off of seed from the seed meter to the seed delivery system helps to improve placement accuracy of the seed in the furrow in the soil.

Having described the seed meter and delivery system, it will become apparent that various modifications can be made without departing from the scope of the accompanying claims.

Garner, Elijah B., Mariman, Nathan A., Friestad, Michael E.

Patent Priority Assignee Title
11483963, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11490558, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11516958, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11523555, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11523556, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11553638, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11553639, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11564344, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11564346, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11582899, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11589500, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11596095, Dec 24 2019 BLUE LEAF I P , INC Particle delivery system of an agricultural row unit
11612099, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
11770994, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
11770995, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
11793104, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
11849665, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
Patent Priority Assignee Title
10004173, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
10051782, Aug 07 2015 Kinze Manufacturing, Inc. Row unit for an agricultural planting implement
10058023, Jul 13 2016 AMVAC CHEMICAL CORPORATION Electronically pulsing agricultural product with seed utilizing seed transport mechanism
10143127, Nov 06 2015 Kinze Manufacturing, Inc. Multiple agricultural product application method and systems
10165724, Oct 07 2016 CRARY INDUSTRIES, INC Potato seed planting apparatus and method of planting potato seed using the apparatus
10206325, Feb 07 2017 BLUE LEAF I P , INC Multiple seed type seed meter with seed switching mechanism
10206326, Mar 25 2011 Deere & Company Planting unit for a seeding machine having a seed meter and seed delivery system
10257973, Feb 14 2017 Deere & Company Row planter unit with sensor-mounted furrow shaper
10296017, Mar 08 2017 BLUE LEAF I P , INC Pre-metering system for feeding different types of seed into a seed meter
10398077, Aug 30 2013 Precision Planting LLC Seed delivery apparatus, systems, and methods
10433476, Nov 24 2016 Bourgault Industries Ltd. Implement frame mounted variable rate singulating meters
10448561, Apr 27 2017 BLUE LEAF I P , INC Pneumatic seed delivery system
10455757, Sep 30 2013 Precision Planting LLC Methods and systems for seed variety selection
10470358, Jun 21 2013 Precision Planting LLC Crop input variety selection systems, methods, and apparatus
10485159, Feb 11 2014 Kinze Manufacturing, Inc. Planter with seed delivery apparatus
10524410, Aug 16 2017 BLUE LEAF I P , INC Multiple variety seed meter with segmented feed pipe system
10537055, Oct 13 2017 Deere & Company Actuated seed depth setting for a planter row unit
10582655, Aug 23 2017 CNH Industrial Canada, Ltd. System and method for spraying fluid onto seeds dispensed from a planter
10602656, Aug 04 2017 Deere & Company Skip compensation system
10729063, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
10743460, Oct 03 2017 Ag Leader Technology Controlled air pulse metering apparatus for an agricultural planter and related systems and methods
10765057, Jul 14 2015 Precision Planting LLC Seed delivery apparatus, systems, and methods
10772256, Aug 31 2015 Precision Planting LLC Systems, methods, and apparatus for multi-row agricultural implement control and monitoring
10806070, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
10820489, Feb 05 2018 Deere & Company Row unit for a seeding machine with pneumatic seed loading
10823748, Jan 15 2018 Precision Planting LLC Seed delivery systems and mapping of row speeds
10842072, Sep 29 2017 KINZE MANUFACTURING, INC Planter with high speed seed delivery apparatus
1220684,
1264454,
1376933,
1397689,
13986,
140493,
1480963,
1506294,
1566187,
1976315,
1997791,
2053390,
2054552,
2141044,
2144044,
2250719,
2340163,
2440846,
2462276,
2510658,
2566406,
2589762,
2673536,
2684781,
2882977,
2960258,
2975936,
2980043,
3077290,
3122283,
3154032,
3156201,
3176636,
3208413,
3253739,
3272159,
3325060,
3329310,
3343507,
3413941,
3468441,
3526344,
3552601,
3561380,
3570424,
3636897,
3648631,
3690511,
3693833,
3757995,
3773224,
3841522,
3860146,
3880100,
3889883,
3903815,
3913503,
3923206,
3971446, Nov 24 1972 Agricultural do-all machine
3976214, Oct 03 1972 Sugar cane planter
3982661, Dec 18 1974 Seed planter for individual seeds
3990606, Aug 28 1972 H. Fahse & Co. Single seed drilling machine
3999690, Sep 17 1975 ALLIED PRODUCTS CORPORATION, A CORP OF DE Metering apparatus for a seed planter
4002266, Aug 14 1972 Massey-Ferguson Inc. Seed decelerating device
4008826, Jun 25 1975 Societe Jeantil & Cie Planting machine for potatoes and other tubers
4009668, Jul 07 1975 Deere & Company Planter apparatus and method for planting
4010778, Jan 10 1973 Automatic seed planting machine and method for planting seeds in planters
4023509, Nov 12 1975 Apparatus for planting a plurality of individual seeds in a planting furrow
4026437, Nov 22 1974 F W MCONNEL LTD , A CORP OF UNITED KINGDOM Seed drill
4029235, Mar 27 1975 Nodet-Gougis One-by-one pneumatic seeder
4037755, Jan 29 1976 Massey-Ferguson Inc. Pneumatic seed dispensing apparatus
4074830, Sep 23 1974 Landoll Corporation Compressed air seed planter
4156395, Dec 27 1977 Illinois Tool Works Inc. High-speed planting method and machine
4162744, Oct 28 1976 Seed dispensing device
4193523, Feb 21 1977 Planting machine for potatoes, bulbs or similar seed crop
4221305, Apr 10 1976 Logan Farm Equipment Co., Inc. Seed planting machines
4239126, Nov 30 1977 Seed sower having apertured pick-up member
4282985, Jan 21 1980 Seed plate
4306509, Mar 08 1979 North Carolina State University at Raleigh Vacuum drum planter
4314514, Mar 17 1980 Sugar cane planter
4324347, Aug 06 1980 Seed drill apparatus
4333561, Jul 10 1978 Elevator head material guide means
4449642, Mar 18 1983 Weyerhaeuser Company Seed planter
4450979, Aug 15 1980 AGCO Corporation Seed metering means
4519494, Jul 01 1982 DIAMOND AUTOMATIONS, INC , A MI CORP Egg handling system
4555624, Feb 22 1983 U S BANK NATIONAL ASSOCIATION High rate seed sensor
4561939, Mar 26 1984 VALMET TECHNOLOGIES, INC Extended nip press arrangement
4600122, Mar 23 1984 Deere & Company Seed meter disk for use with sunflower and other seeds of long, slender shape
4613056, Oct 31 1983 Deere & Company; DEERE & COMPANY, A DE CORP Seed meter having cleanout and seed sealing member
4628841, Oct 10 1983 Single grain sowing machine
4635215, Sep 10 1984 Deere & Company Article or seed counter
4646941, Apr 14 1984 AMAZONEN WERKE H DREYER GMBH & CO KG A GERMAN CORP Mechanism for discharging granular material
4653410, Mar 11 1985 Seed planter
4664290, Feb 25 1985 Deere & Company Method and apparatus for precise positioning of a seed disk in a seed meter
4793511, Mar 26 1984 Deere & Company Seed meter having seed disk aperture cleaning wiper and brush arrangement
4896615, Oct 15 1985 Clemson University Hopper for dispensing seed, grain and the like
4896616, Mar 07 1980 Seed planter
4915258, Feb 28 1985 Deere & Company Seed meter seed tube
4949869, Apr 22 1988 Ateliers Ribouleau Distributor for a monoseed sowing machine
5025736, Oct 03 1988 Furrow opener
5058766, May 25 1990 Kinze Manufacturing, Inc. Seed meter for row crop planter unit
5167317, Jun 05 1991 FPS Food Processing Systems B.V. Apparatus for and method of transferring articles such as eggs
5170909, Oct 31 1983 DEERE & COMPANY, A CORP OF DE Vacuum seed meter
5383371, Oct 14 1991 Valmet Corporation; Metso Corporation Method and device for measurement of the nip force and/or nip pressure in a nip formed by a revolving roll or a band that is used in the manufacture of paper
5402741, May 18 1993 Truax Company Seed planter
540458,
5431117, Aug 09 1993 Triple S Engineering, Inc. Seed drum row shutoff for planter
5501366, Jul 29 1993 MATERMACC SPA Single-seed dispenser of a pneumatic precision sower
5533458, Mar 14 1995 Deere & Company Seed tube for an agricultural seeding machine
5601209, Jul 10 1995 MORRIS INDUSTRIES, LTD Seed metering apparatus
5650609, May 15 1995 JOHN DEERE ELECTRONIC SOLUTIONS, INC Seed monitoring system for counting seeds as they are dispensed through a seed planting tube
5720233, Mar 04 1996 Deere & Company Mechanical seed meter
5784871, Oct 10 1996 University of Delaware Automated control system for vegetable harvesters
5784985, Mar 04 1996 Deere & Company Mechanical seed meter
5802994, Jul 03 1996 Turfco Manufacturing Incorporated Seeder apparatus for dispensing seed with or without top dressing
5810974, Oct 20 1995 Valmet Corporation Press section including an extended-nip press with an internally heated center roll
5855303, Aug 18 1997 Deere & Company Wear insert for metering system
5918726, Dec 13 1996 FPS FOOD PROCESSING SYSTEMS B V Apparatus for transferring separate products, such as eggs and fruit, from a feed conveyor to a packaging apparatus
5936234, May 15 1995 Deere & Company Seed planter monitoring system with optical sensors
5975283, May 02 1996 DBT AMERICA INC Vertical belt conveyor system
5992338, Oct 15 1997 Belted seed metering device
6000528, Jun 20 1997 KLOCKNER HANSEL TEVOPHARM B V Conveyor device for accelerating a series of products
6024033, Jul 03 1996 TURFCO MANUFACTURING, INCORPOR Seeder apparatus for dispensing seed with or without top dressing
6047652, May 12 1998 CNH America LLC; BLUE LEAF I P , INC Seed planter distribution system
6142086, Nov 09 1998 Air seeder singulation system
6173664, Jul 27 1999 Equidistant planting system
6202944, Feb 03 1999 The Toro Company Material spreading apparatus
6237514, Oct 15 1997 Belted seed metering device
6244201, Jun 19 2000 Spudnik Equipment Company LLC Potato planter
6269758, Aug 23 2000 Precision Planting LLC Seed selection mechanism
6293438, Jul 29 1999 BASF Aktiengesellschaft Methods and apparatus for metering material
6305303, May 07 1999 Board of Supervisors of Louisiana State University and Agricultural and Mechanical College High-speed transplanter for seedlings attached to tape
6332413, Dec 29 1995 CNH America LLC; BLUE LEAF I P , INC Seed tube for seed metering apparatus
6352042, Oct 10 2000 Deere & Company Internal seed knockout assembly
6499414, Apr 15 1998 CNH America LLC; BLUE LEAF I P , INC Seed metering system with improved wear enhancement
6516733, Dec 21 2001 Precision Planting LLC Vacuum seed meter and dispensing apparatus
6564730, Dec 29 1995 CNH America LLC; BLUE LEAF I P , INC Seed planter apparatus and method
6567764, Apr 05 2000 Circle Tekko Co., Ltd. Method and apparatus for regulating interval of seedlings
6581535, Dec 07 2000 KINZE MANUFACTURING, INC Agricultural seed meter
658348,
6640732, Feb 07 2000 CNH America LLC; BLUE LEAF I P , INC Disc opener assembly for a seed planter
6651570, Jan 10 2003 Deere & Company Seed placement system for use in a seeding machine
6681706, Feb 26 2002 Precision Planting LLC Apparatus and method for controlled delivery of seeds to an open furrow
6718892, Jul 20 2001 Seed meter
6729249, Mar 05 2002 Precision Planting LLC Seed belt housing with impact absorbing material to reduce seed skip and method for same
6748885, Dec 21 2001 Precision Planting LLC Vacuum seed meter and dispensing apparatus
6752095, Jan 10 2003 Deere & Company Seed metering system for use in a seeding machine
6913541, Mar 29 2002 Golf putting training apparatus
6932236, Mar 28 2002 Method and apparatus for improving the efficiency of a John Deere vacuum planter
697874,
6994038, Apr 26 2004 Deere & Company Agricultural machine with variable pressure product distribution system
7086269, Jul 15 2004 Precision Planting LLC Apparatus and method for testing seed singulation of a seed meter
7093548, Dec 29 2003 KINZE MANUFACTURING, INC Air seed meter
7162963, Aug 16 2004 Precision Planting LLC Adjustable singulating brush assembly and method of singulating seeds
7185596, Jan 10 2003 Deere & Company Seed slide for use in an agricultural seeding machine
7334532, Aug 19 2005 Precision Planting LLC Vacuum seed meter and retrofit kit for celled-disk vacuum meters
7343868, Jan 10 2003 Deere & Company Seed placement system for use in a seeding machine
7404366, Dec 02 2005 Deere & Company Flat type seed meter disk with protruded pick up orifices
7448334, Nov 14 2005 Deere & Company Flat type seed meter disk with axially offset surface
7490565, Aug 05 2003 Seed distribution method and apparatus
7513200, Aug 31 2006 Deere & Company Seed singulator for a seed metering system in a seeding machine
7617785, Jun 27 2007 BLUE LEAF I P INC Direct drive electric seed metering system
7631606, Aug 19 2005 Precision Planting LLC Seed belt for an agricultural planter
7661377, Jul 23 2007 Deere & Company Seed meter with flexible seed disc
7726251, Mar 11 2009 Deere & Company Agricultural seeding apparatus and method for seed placement synchronization between multiple rows
7854205, Oct 30 2008 SEEDMASTER MANUFACTURING LTD Chamber for slowing particles flowing in a pneumatic conveyor conduit
7918168, Feb 02 2009 Deere & Company Differential pressure seed meter with an endless belt seed transport member
7918968, Oct 11 2006 DUBOIS CHEMICALS, INC Apparatus for cleaning paper machine press fabrics on-the-run
7938073, Sep 25 2007 KINZE MANUFACTURING, INC Air seed meter with debris clearing device
7975631, Feb 17 2005 Combined agricultural machine
7994377, May 30 2006 Institut Francais du Petrole; IFP Method of converting ethanol to base stock for diesel fuel
8001913, Oct 30 2008 Deere & Company Planter with cup belt meter
8074586, Feb 02 2009 Deere & Company Seed delivery apparatus with sensor and moving member to capture and move seed to a lower outlet opening
8078367, Jan 07 2008 CLIMATE LLC Planter monitor system and method
8221047, Feb 15 2007 UNVERFERTH MANUFACTURING COMPANY INC Seed carrier with pivoting conveyor
8276529, Feb 02 2009 Deere & Company Row unit for a seeding machine
8336471, Nov 18 2008 VÄDERSTAD HOLDING AB Arrangement of a seed metering device on an agricultural machine
8375874, Jun 02 2009 Great Plains Manufacturing, Inc.; GREAT PLAINS MANUFACTURING, INC Seed metering device and seed disk for agricultural seeder
8413371, Aug 07 2009 CO2 Boost LLC Mushroom growing material application system
8468960, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
8522699, Feb 02 2009 Deere & Company Row unit for a seeding machine
8543238, Jan 18 2010 KINZE MANUFACTURING, INC Method and apparatus for changing seed varieties at the row unit of a planter
8618465, Nov 13 2008 Deere & Company Seed sensor system and method for improved seed count and seed spacing
8671856, Feb 02 2009 Deere & Company Planting unit for a seeding machine having blocking member to control hand-off of seed from a seed meter to a seed delivery system
8746159, Mar 25 2011 Deere & Company Metering member for a seed meter
8752490, Apr 29 2009 SEEDMASTER MANUFACTURING LTD Singulating seed
8789482, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
8800457, Feb 02 2009 Deere & Company Planting unit for a seeding machine having a seed meter with a downwardly facing metering member and a seed delivery system
8813663, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
8843281, Sep 17 2010 Kinze Manufacturing, Inc. Seed characteristic sensor
8850995, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
8850997, Apr 25 2011 Deere & Company Planter and method of operating a planter with individual meter control
8850998, Mar 25 2011 Deere & Company Planting unit for a seeding machine having a seed meter and seed delivery system
8869719, Mar 25 2011 Deere & Company Air pressure differential seed meter
8985037, Sep 27 2011 Precision Planting LLC Seed delivery apparatus, systems, and methods
9144190, Jan 23 2012 CNH Industrial Canada, Ltd Particulate material delivery system for variable rate sectional control
9216860, Jan 31 2014 Deere & Company Belt tensioner for a planting unit
9237687, Jun 21 2013 Precision Planting LLC Crop input variety selection systems, methods, and apparatus
9258939, Oct 14 2013 Spudnik Equipment Co., LLC; SPUDNIK EQUIPMENT CO , LLC Hill-compensating planter and method
9258940, May 29 2012 BLUEFIELD ACRES INC ; BLUEFIELD SEEDING SOLUTIONS INC Method for planting potatoes at high speed and equipment for carrying out that method
9265191, Mar 22 2011 Precision Planting LLC Seed disc with seed aperture path having interspersed agitation cavities
9301441, Jan 31 2014 Deere & Company Brush conditioner for a planting unit
9313941, Feb 02 2009 Deere & Company Alignment system for a blocking member of a planting unit
9313943, Jan 31 2014 Deere & Company Seed-double eliminator for a planting unit
9332689, Jul 25 2012 Precision Planting LLC Systems, methods, and apparatus for multi-row agriculturalimplement control and monitoring
9345188, Feb 02 2009 Deere & Company Transitional blocking member of planting unit to control hand-off of seed from a seed meter to a seed delivery system
9345189, Jan 31 2014 Deere & Company Sensor and sensor mount assembly for seed delivery system
9433141, Mar 25 2011 Deere & Company Wear liner for seed delivery system
9439,
9445539, Feb 26 2014 AGCO Corporation Dual belt seed delivery mechanism
9468142, Oct 31 2014 BLUE LEAF I P , INC Dual conveyor granular commodity dispersement system
9480199, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
9510502, Feb 02 2009 Deere & Company Planting unit for a seeding machine having blocking member to control hand-off of seed from a seed meter to a seed delivery system
9578802, Sep 27 2011 Precision Planting LLC Seed delivery apparatus, systems, and methods
9622402, Sep 05 2013 KINZE MANUFACTURING, INC Multiple agricultural product application method and systems
9633491, Jul 22 2015 Deere & Company Monitoring belt operation to predict belt lifespan
9635802, Oct 02 2015 Deere & Company Automatic seeding system motor reversal
9635804, Jun 18 2012 Gary W. Clem, Inc. Drop tube system for planting field seeds in rows with different varieties of seeds
9661799, Mar 25 2011 Deere & Company Planting unit having a seed meter and an endless seed delivery system
9686905, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
9686906, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
9693498, Mar 25 2011 Deere & Company Seed-double eliminator for a planting unit
9699955, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
9713298, Sep 30 2015 Deer & Company Multi-channel agricultural singulating meter
9730377, Jun 26 2015 CNH Industrial Canada, Ltd. Planter with on-board seed treatment
9733634, Jun 30 2015 BLUE LEAF I P , INC Air pressure differential control system of agricultural planters
9750178, Sep 05 2013 KINZE MANUFACTURING, INC Multiple agricultural product application method and systems utilizing drum metering system
9756779, Feb 11 2014 Kinze Manufacturing, Inc. Planter with seed delivery apparatus
9769978, Aug 30 2013 Precision Planting LLC Seed delivery apparatus, systems, and methods
9775279, May 09 2014 Deere & Company Seed valve and planting method for multiple seed types
9795078, Nov 07 2014 Deere & Company Row unit for a seeding machine with dual seed meters
9801328, Nov 07 2014 Deere & Company Row unit for a seeding machine with dual seed meters
9807922, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
9807924, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
9814176, Nov 26 2014 CNH Industrial Canada, Ltd. Belted seed transfer mechanism
9820429, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
9839178, Sep 30 2015 Deere & Company Seed firmer
9861025, Nov 12 2014 Precision Planting LLC Seed planting apparatus, systems and methods
9861031, Feb 02 2009 Deere & Company Seeding machine with seed delivery system
9872424, Jul 25 2012 Precision Planting LLC Systems, methods, and apparatus for multi-row agricultural implement control and monitoring
9883625, Aug 21 2014 Precision Planting LLC Crop input variety selection systems
9888622, Dec 08 2014 CNH Industrial Canada, Ltd. Air flow control of a distribution head for agricultural products
9897922, Jun 30 2010 FUJIFILM Corporation Method of forming pattern and developer for use in the method
9936625, Apr 20 2015 BLUE LEAF I P , INC Multiple seed-type planting system with seed delivery speed control
9936630, Jan 29 2016 BLUE LEAF I P , INC Mounting assembly for an agricultural product conveying system
9936631, Sep 30 2016 Deere & Company Device and method for detecting and reporting seed placement
9949426, Sep 27 2011 Precision Planting LLC Seed delivery apparatus, systems, and methods
9974230, Jan 21 2013 Precision Planting LLC Agricultural input selection systems, methods and apparatus
9999175, Jul 25 2012 Precision Planting LLC Systems, methods and apparatus for multi-row agricultural implement control and monitoring
20020043201,
20020050238,
20030159631,
20030167986,
20030183647,
20050235890,
20060278726,
20060283363,
20070039528,
20070039529,
20070107645,
20070125284,
20080053352,
20100010667,
20100107944,
20100192818,
20100192819,
20100192821,
20100224110,
20100300341,
20120067260,
20120067261,
20130192504,
20130298810,
20140196642,
20150013581,
20150216111,
20150230397,
20150238003,
20150305231,
20160128273,
20160135363,
20160174458,
20160234996,
20170049040,
20170127604,
20170332546,
20170359949,
20180007824,
20180049367,
20180153094,
20180184578,
20180192577,
20190098827,
20190098828,
20190219606,
20190223372,
20190230846,
20190239425,
20190239426,
20190246551,
20190254224,
20190289774,
20190289778,
20190307057,
20190343037,
20190364724,
20200000011,
20200000012,
20200000016,
20200000017,
20200000018,
20200344941,
20210059104,
20210059105,
20210059106,
20210068337,
20210076558,
AU6198680,
BE335843,
BRI1044974,
BRI3059936,
BRI6047980,
BRI6052924,
BRI7035454,
BRI8501300,
BRI97011452,
CA2154022,
CA2485250,
CA2806410,
CA3032575,
CN2180028,
DE102007031576,
DE1090458,
DE2011462,
DE2826658,
DE3405031,
DE389840,
DE8400142,
EP14622,
EP47577,
EP49330,
EP152048,
EP158985,
EP182220,
EP457679,
EP606541,
EP801523,
EP953280,
EP981270,
EP1219155,
EP1236387,
EP1560157,
EP2213152,
EP2213153,
EP2215903,
EP2449871,
EP2688385,
EP2747541,
EP2974582,
EP3056073,
EP3409092,
EP3586583,
FR1026090,
FR1408127,
FR1503687,
FR2210887,
FR2414288,
FR2574243,
FR2591061,
FR2635432,
FR2638054,
FR858062,
GB190418381,
GB2012534,
GB2057835,
GB482789,
GB926217,
GB989145,
JP1159886,
JP2007117941,
JP530815,
JP56024815,
JP6133858,
JP64003306,
NL1005451,
RU2044436,
RU2343675,
SU948316,
WO2005011358,
WO2005065441,
WO2010059101,
WO2010124360,
WO2013049198,
WO2016054715,
WO2017117638,
WO2019050944,
WO2019068582,
WO2019091871,
WO2019202194,
WO2019241856,
WO2020014752,
WO98049884,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 09 2015FRIESTAD, MICHAEL E Deere & CompanyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0550990443 pdf
Mar 31 2015GARNER, ELIJAH B Deere & CompanyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0550990443 pdf
Apr 13 2015MARIMAN, NATHAN A Deere & CompanyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0550990443 pdf
Oct 31 2017Deere & Company(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 31 2017BIG: Entity status set to Undiscounted (note the period is included in the code).
Jun 06 2024M1552: Payment of Maintenance Fee, 8th Year, Large Entity.


Date Maintenance Schedule
Jun 01 20244 years fee payment window open
Dec 01 20246 months grace period start (w surcharge)
Jun 01 2025patent expiry (for year 4)
Jun 01 20272 years to revive unintentionally abandoned end. (for year 4)
Jun 01 20288 years fee payment window open
Dec 01 20286 months grace period start (w surcharge)
Jun 01 2029patent expiry (for year 8)
Jun 01 20312 years to revive unintentionally abandoned end. (for year 8)
Jun 01 203212 years fee payment window open
Dec 01 20326 months grace period start (w surcharge)
Jun 01 2033patent expiry (for year 12)
Jun 01 20352 years to revive unintentionally abandoned end. (for year 12)