A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.
|
0. 11. A method of nucleic acid amplification of a sample, the method comprising the steps
a. providing an aqueous solution, wherein the aqueous solution comprises components for performing nucleic acid amplification and an input sample comprising a plurality of nucleic acids;
b. providing an immiscible partitioning fluid;
c. providing a solid substrate, wherein the solid substrate comprises a two-dimensional array of small indentations;
d. contacting the aqueous solution with the immiscible partitioning fluid on the solid substrate, wherein the immiscible partitioning fluid is less dense than the aqueous solution, wherein the solid substrate is configured such that the contacting the aqueous solution with the immiscible partitioning fluid partitions the input sample comprising the plurality of nucleic acids into one or more microdroplets, and wherein the one or more microdroplets are further partitioned into and held by the two-dimensional array of small indentations; and
e. performing nucleic acid amplification of the one or more microdroplets held by the two-dimensional array of small indentations.
0. 1. An apparatus for nucleic acid amplification of a sample, comprising:
means for partitioning said sample into partitioned sections, wherein said means for partitioning said sample into partitioned sections comprises an injection orifice, and
means for performing PCR on said partitioned sections of said sample.
0. 2. The apparatus for nucleic acid amplification of a sample of
0. 3. The apparatus for nucleic acid amplification of a sample of
0. 4. The apparatus for nucleic acid amplification of a sample of
0. 5. The apparatus for nucleic acid amplification of a sample of
0. 6. The apparatus for nucleic acid amplification of a sample of
0. 7. The apparatus for nucleic acid amplification of a sample of
0. 8. The apparatus for nucleic acid amplification of a sample of
0. 9. The apparatus for nucleic acid amplification of a sample of
0. 10. A method of nucleic acid amplification of a sample, comprising the steps of:
partitioning said sample into partitioned sections, wherein said step of partitioning said sample into partitioned sections comprises flowing said sample through an injection orifice, and
subjecting said partitioned sections of said sample to PCR.
0. 12. The method of claim 11, wherein the solid substrate is hydrophobic.
0. 13. The method of claim 11, wherein the nucleic acid amplification step comprises alternately heating and cooling the solid substrate.
0. 14. The method of claim 11, wherein the nucleic acids comprise a target DNA.
0. 15. The method of claim 12, wherein the one or more microdroplets contain, on average, a single template of the target DNA, and wherein the single template is amplified within the one or more microdroplets.
0. 16. The method of claim 11, wherein the components for performing nucleic acid amplification comprise one or more polymerase chain reaction (PCR) reagents.
0. 17. The method of claim 11, wherein the method further comprises detecting one or more products of the nucleic acid amplification.
0. 18. The method of claim 17, wherein the detecting comprises optically detecting.
0. 19. The method of claim 18, wherein the optically detecting comprises confocal imaging.
0. 20. The method of claim 18, wherein the optically detecting comprises laser excitation.
0. 21. The method of claim 18, wherein the optically detecting comprises fluorescent detection.
0. 22. The method of claim 18, wherein the optically detecting comprises detecting a colorimetric indicator.
0. 23. The method of claim 18, wherein the optically detecting comprises signaling the presence of a target nucleic acid.
0. 24. The method of claim 11, wherein the nucleic acid amplification comprises multiple heating and cooling cycles.
0. 25. The method of claim 24, wherein the number of cycles is sufficient to detect products of the nucleic acid amplification.
0. 26. The method of claim 11, wherein the one or more microdroplets have a volume of about 5×10−9 to 10−12 liters.
|
The system 100 facilitates removal of interference from competing DNA templates. Given the extremely small volumes involved with Fluid-Partitioned DNA Detection (FPDD), it is possible to isolate a single template of the target DNA in a given partitioned volume or microdroplet. For example, the formation of 2000 partitioned fluid volumes or microdroplets (each with a volume of 5×10′9 liters) made by dividing a bulk solution of 10 microliters containing 200 DNA molecules, would result in one DNA molecule per microdroplet on average. This makes it possible to amplify only one template in mixtures containing many kinds of templates without interference. This is extremely important in processing of real world aerosol samples containing complex mixtures of DNA from many sources, and has direct application in screening of cDNA libraries. The system 100 facilitates removal of interference from competing DNA templates. Given the extremely small volumes involved with Fluid-Partitioned DNA Detection (FPDD), it is possible to isolate a single template of the target DNA in a given partitioned volume or microdroplet. For example, the formation of 2000 partitioned fluid volumes or microdroplets (each with a volume of 5×10′9 liters) made by dividing a bulk solution of 10 microliters containing 2000 DNA molecules, would result in one DNA molecule per microdroplet on average. This makes it possible to amplify only one template in mixtures containing many kinds of templates without interference. This is extremely important in processing of real world aerosol samples containing complex mixtures of DNA from many sources, and has direct application in screening of cDNA libraries.
Referring now to
In block 201 a chemical reagent and an input sample are “partitioned” into a large number of microdroplets or other forms of fluid partitions prior to amplification. The system 200 achieves a reduction in the total number of cycles by limiting the dilution of the optically generated signal (e.g., fluorescence or absorption). The formation of partitioned fluid volumes of the DNA-containing solution effectively isolates the fluid volumes which contain the target DNA from the fluid volumes that do not contain the target DNA. Therefore, the dilution of the optical signal is largely eliminated, allowing much earlier detection. This effect is directly related to the number of fluid partitions formed from the initial sample/reagent pool.
In block 202 selected portions of each nucleic acid sample are then amplified using polymerase chain reaction (PCR), with the product contained in each partitioned fluid volume. This results in much more concentrated amplification product, since the volume containing the reaction is so small. If a Taqman type detection approach is used, fluorescent dye molecules unquenched by the PCF amplification are also more concentrated, making possible earlier optical based detection. Since it is possible to contain very amounts of the starting target DNA in each partition fluid volume, inhibitory competition from near-neighbor DNA templates is less allowing screening of very dilute samples.
In block 203 partitioned portions of the sample are detected by monitoring for the calorimetric indicator (e.g., fluorescence or optical absorption) generated with each DNA template duplication sequence. The partitioned portions of the sample are optically probed to detect the colorimetric indicator which signals the presence of the target DNA. The partitioned portions of the sample can also be scanned optically to detect the colorimetric indicator signaling the presence of the target DNA. In one embodiment, fluorescence, generated by degradation of the dye/quencher pair on the primer, is detected using a confocal imaging system such as that employed in conventional flow cytometers. Scattering profiles from individual microdroplets, as in conventional flow cytometers, can be used to eliminate background signal from other particles. In block 203 partitioned portions of the sample are detected by monitoring for the colorimetric indicator (e.g., fluorescence or optical absorption) generated with each DNA template duplication sequence. The partitioned portions of the sample are optically probed to detect the colorimetric indicator which signals the presence of the target DNA. The partitioned portions of the sample can also be scanned optically to detect the colorimetric indicator signaling the presence of the target DNA. In one embodiment, fluorescence, generated by degradation of the dye/quencher pair on the primer, is detected using a confocal imaging system such as that employed in conventional flow cytometers. Scattering profiles from individual microdroplets, as in conventional flow cytometers, can be used to eliminate background signal from other particles.
The system 200 has application wherever current PCR-type systems exist, including medical, drug-discovery, biowarfare detection, and other related fields. Biowarfare detection applications include identifying, detecting, and monitoring bio-threat agents that contain nucleic acid signatures, such as spores, bacteria, etc. Biomedical applications include tracking, identifying, and monitoring outbreaks of infectious disease. The system 200 provides rapid, high throughput detection of biological pathogens (viruses, bacteria, DNA in biological fluids, blood, saliva, etc.) for medical applications. Forensic applications include rapid, high throughput detection of DNA in biological fluids for forensic purposes. Food and beverage safety applications include automated food testing for bacterial contamination.
Referring now to
The partitioning section 301 includes a sample introduction unit 304 and a unit 305 where the sample and a PCR reagent are combined. The sample and a PCR reagent are injected through a small orifice 306. The injection of the sample through the small orifice 306 produces microdroplets 308.
The PCR section 302 includes a continuous tube 309 for circulating the microdroplets 308 and suspended in an immiscible carrier fluid 314. The microdroplets 308 suspended in an immiscible carrier fluid 314 are pumped through the continuous tube 309 by pump 311. The microdroplets 308 suspended in an immiscible carrier fluid 314 are cycled through heater 310 and cooler 315 to perform PCR.
The detection and analysis section 303 includes a blue laser 312 and a detector 313. The laser 312 is projected upon the droplets 308 as they pass through tube 308 between the laser 312 and the detector 313.
In the system 300, the DNA-containing solution is partitioned into many microdroplets 308 and suspended in an immiscible carrier fluid 314. The microdroplets 308 are formed by forcing the PCR mix (sample and reagent) through the small orifice or microjet 306. These microdroplets 308 are then captured in the immiscible fluid 314, such as mineral oil, and flowed past the heating element 310 and cooler 315. An optical signal (e.g., fluorescence or optical absorption), generated by degradation of the dye/quencher pair on the primer, is detected using a confocal imaging system such as that employed in conventional flow cytometers. Scattering profiles from individual microdroplets, as in conventional flow cytometers, can be used to eliminate background signal from other particles. Once exposed to multiple heating cycles, the microdroplets can be identified and probed for an optical signal at rates of several thousand per second.
The FPDD system achieves a reduction in the total number of cycles by limiting the dilution of the optically generated signal (e.g., fluorescence or absorption). The formation of partitioned fluid volumes of the DNA-containing solution effectively isolates the fluid volumes which contain the target DNA from the fluid volumes that do not contain the target DNA. Therefore, the dilution of the optical signal is largely eliminated, allowing much earlier detection. This effect is directly related to the number of fluid partitions formed from the initial sample/reagent pool. The effect of the number of fluid partitions on the number of cycles required for detection is described by the Equation E1 set out earlier.
The FPDD technique reduces the duration of each temperature cycle by effectively increasing the concentration of reactants by enclosing them in picoliter type volumes. Since reaction rates depend on the concentration of the reactants, the efficiency of a partitioned fluid volume or droplet should be higher than in an ordinary vessel (such as a test tube) where the reactant quantity (DNA quantity) is extremely low. It is estimated that through the reduction in the number of cycles and the reduction in the time required for each cycles that the FPDD technique can reduce the detection time by an order of magnitude as compared to bulk solution DNA detection techniques
The FPDD technique facilitates removal of interference from competing DNA templates. Given the extremely small volumes involved with FPDD, it is possible to isolate a single template of the target DNA in a given partitioned volume or microdroplet. For example, the formation of 2000 partitioned fluid volumes or microdroplets (each with a volume of 5×10−9 liters) made by dividing a bulk solution of 10 microliters containing 200 DNA molecules, would result in one DNA molecule per microdroplet on average. This makes it possible to amplify only one template in mixtures containing many kinds of templates without interference. This is extremely important in processing of real world aerosol samples containing complex mixtures of DNA from many sources, and has direct application in screening of cDNA libraries. The FPDD technique facilitates removal of interference from competing DNA templates. Given the extremely small volumes involved with FPDD, it is possible to isolate a single template of the target DNA in a given partitioned volume or microdroplet. For example, the formation of 2000 partitioned fluid volumes or microdroplets (each with a volume of 5×10−9 liters) made by dividing a bulk solution of 10 microliters containing containing 2000 DNA molecules, would result in one DNA molecule per microdroplet on average. This makes it possible to amplify only one template in mixtures containing many kinds of templates without interference. This is extremely important in processing of real world aerosol samples containing complex mixtures of DNA from many sources, and has direct application in screening of cDNA libraries.
With this new bioassay technique, each partitioned DNA-containing fluid volume contains the necessary biochemical constituents for selectively amplifying a specified portion of a sample DNA via polymerase chain reaction (PCR). The target DNA is detected by monitoring for the colorimetric indicator (e.g., fluorescence or optical absorption) generated with each DNA template duplication sequence.
The system 300 provides a fast, flexible and inexpensive high throughput, bioassay technology based on creation and suspension of microdroplets in an immiscible carrier stream. Each microdroplet contains the necessary biochemical constituents for selectively amplifying and fluorescently detecting a specified portion of a sample DNA via polymerase chain reaction (PCR). Once exposed to multiple heating cooling cycles, the microdroplets can be identified and probed for fluorescent signal at rates of several thousand per second.
Isolating the PCR reaction in such small (picoliter) volumes provides an order of magnitude reduction in overall detection time by:
Referring now to
The sample is separated into immiscible slugs 406, 407, and 408. The immiscible slugs 406, 407, and 408 are formed through a system of microfluidics. Background information on microfluidics is contained in U.S. Pat. No. 5,876,187 for micropumps with fixed valves to Fred K. Forster et al., patented Mar. 2, 1999. As stated in U.S. Pat. No. 5,876,187, “Miniature pumps, hereafter referred to as micropumps, can be constructed using fabrication techniques adapted from those applied to integrated circuits. Such fabrication techniques are often referred to as micromachining. Micropumps are in great demand for environmental, biomedical, medical, biotechnical, printing, analytical instrumentation, and miniature cooling applications.” Microchannels 403, 404, and 405 are formed in substrates 401 and 402. The disclosures of U.S. Pat. Nos. 5,876,187 and 5,876,187 are incorporated herein by reference.
The immiscible slugs 406, 407, and 408 can be moved through the microchannels using magnetohydrodynamics. Background information on magnetohydrodynamics is contained in U.S. Pat. No. 6,146,103 for micromachined magnetohydrodynamic actuators and sensors to Abraham P. Lee and Asuncion V. Lemoff, patented Nov. 14, 2000. As stated in U.S. Pat. No. 6,146,103, “Microfluidics is the field for manipulating fluid samples and reagents in minute quantities, such as in micromachined channels, to enable handheld bioinstrumentation and diagnostic tools with quicker process speeds. The ultimate goal is to integrate pumping, valving, mixing, reaction, and detection on a chip for biotechnological, chemical, environmental, and health care applications. Most micropumps developed thus far have been complicated, both in fabrication and design, and often are difficult to reduce in size, negating many integrated fluidic applications. Most pumps have a moving component to indirectly pump the fluid, generating pulsatile flow instead of continuous flow. With moving parts involved, dead volume is often a serious problem, causing cross-contamination in biological sensitive processes. The present invention utilizes MHDs for microfluid propulsion and fluid sensing, the microfabrication methods for such a pump, and the integration of multiple pumps for a microfluidic system. MHDs is the application of Lorentz force law on fluids to propel or pump fluids. Under the Lorentz force law, charged particles moving in a uniform magnetic field feel a force perpendicular to both the motion and the magnetic field. It has thus been recognized that in the microscale, the MHD forces are substantial for propulsion of fluids through microchannels as actuators, such as a micropump, micromixer, or microvalve, or as sensors, such as a microflow meter, or viscosity meter. This advantageous scaling phenomenon also lends itself to micromachining by integrating microchannels with micro-electrodes.” The disclosure of U.S. Pat. No. 6,146,103 is incorporated herein by reference.
The means for performing PCR on the partitioned sections of the sample can be a system for alternately heating and cooling the immiscible slugs 406, 407, and 408. Alternatively, the means for performing PCR on the partitioned sections of the sample can be a system for alternately heating and cooling the immiscible slugs 406, 407, and 408 can be a system for moving the immiscible slugs 406, 407, and 408 through zones for heating and cooling. An example of such a system is shown in U.S. patent application No. 2002/0127152 published Sep. 12, 2002 for a convectively driven PCR thermal-cycling system described as follows: “A polymerase chain reaction system provides an upper temperature zone and a lower temperature zone in a fluid sample. Channels set up convection cells in the fluid sample and move the fluid sample repeatedly through the upper and lower temperature zone creating thermal cycling.” The disclosure of U.S. Patent Application No. 2002/0127152 is incorporated herein by reference.
In another embodiment of the invention, the DNA-containing solution is partitioned by adding a gelling agent to the solution to form cells of partitioned volumes of fluid separated by the gelling agent. Using this approach for fluid partitioning, the DNA-containing solution is gelled in a tube or as a very thin layer. For example, it can be in a thin layer between flat plates and the surface of the thin film can be optically probed spatially in directions parallel to the film surface to detect micro-regions in the film where the colorimetric indicator suggests the presence of the target DNA.
Another embodiment of the invention is to partition the DNA-containing solution as microdroplets in an immiscible fluid where the droplets are arranged in a two-dimensional array such that the array of microdroplets can be optically probed to detect the colorimetric indicator which signals the presence of the target DNA. In this approach a solid hydrophobic substrate supports the microdroplets. For example, in small indentations, and the immiscible “partitioning” fluid is less dense than the aqueous DNA-containing solution.
In another embodiment of the invention the DNA-containing solution is partitioned using mechanical means. For example, the DNA-containing solution can be partitioned into an array of capillaries, microtubes, or wells. In this approach, the micro vessels holding each partitioned fluid volume can be scanned optically to detect the colorimetric indicator signaling the presence of the target DNA.
Referring now to
While the invention may be susceptible to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and have been described in detail herein. However, it should be understood that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the following appended claims.
Anderson, Brian L., Colston, Bill W., Elkin, Christopher J.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3575220, | |||
4283262, | Jul 01 1980 | IL HOLDING S P A | Analysis system |
4801529, | Jun 18 1985 | Brandeis University | Methods for isolating mutant microoganisms using microcapsules coated with indicator material |
4948961, | Aug 05 1985 | Roche Diagnostics Operations, Inc | Capillary flow device |
5091652, | Jan 12 1990 | The Regents of the University of California | Laser excited confocal microscope fluorescence scanner and method |
5176203, | Aug 05 1989 | SOCIETE DE CONSEILS DE RECHERCHES ET D APPLICATIONS SCIENTIFIQUES S C R A S | Apparatus for repeated automatic execution of a thermal cycle for treatment of samples |
5270183, | Feb 08 1991 | Beckman Research Institute of the City of Hope | Device and method for the automated cycling of solutions between two or more temperatures |
5376252, | May 10 1990 | Cellectricon AB | Microfluidic structure and process for its manufacture |
5422277, | Mar 27 1992 | Ortho Diagnostic Systems Inc. | Cell fixative composition and method of staining cells without destroying the cell surface |
5585069, | Nov 10 1994 | ORCHID CELLMARK, INC | Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis |
5587128, | May 01 1992 | Trustees of the University of Pennsylvania | Mesoscale polynucleotide amplification devices |
5602756, | Nov 29 1990 | Applied Biosystems, LLC | Thermal cycler for automatic performance of the polymerase chain reaction with close temperature control |
5736314, | Nov 16 1995 | MicroFab Technologies, Inc. | Inline thermo-cycler |
5827480, | Jul 28 1993 | Applied Biosystems, LLC | Nucleic acid amplification reaction apparatus |
5842787, | Oct 09 1997 | Caliper Life Sciences, Inc | Microfluidic systems incorporating varied channel dimensions |
5846735, | Apr 18 1996 | UNIVERSITY OF IOWA RESEARCH FOUNDATION, THE | Hepatitis C virus Fc-binding function |
5856174, | Jan 19 1996 | AFFYMETRIX, INC , A DELAWARE CORPORATION | Integrated nucleic acid diagnostic device |
5858187, | Sep 26 1996 | LOCKHEED MARTIN ENERGY SYSTEMS, INC | Apparatus and method for performing electrodynamic focusing on a microchip |
5912945, | Jun 23 1997 | Regents of the University of California | X-ray compass for determining device orientation |
5928907, | Apr 29 1994 | Applied Biosystems, LLC | System for real time detection of nucleic acid amplification products |
5945334, | Jun 08 1994 | AFFYMETRIX, INC , A DELAWARE CORPORATION | Apparatus for packaging a chip |
5972716, | Apr 29 1994 | Applied Biosystems, LLC | Fluorescence monitoring device with textured optical tube and method for reducing background fluorescence |
6033880, | Jul 28 1993 | Applied Biosystems, LLC | Nucleic acid amplification reaction apparatus and method |
6057149, | Sep 15 1995 | MICHIGAN, UNIVERSITY OF, THE | Microscale devices and reactions in microscale devices |
6126899, | Apr 03 1996 | Applied Biosystems, LLC | Device for multiple analyte detection |
6130098, | Jul 03 1997 | REGENTS OF THE UNIVERSITY OF MICHIGAN, THE | Moving microdroplets |
6143496, | Apr 17 1997 | Applied Biosystems, LLC | Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly |
6146103, | Oct 09 1998 | Lawrence Livermore National Security LLC | Micromachined magnetohydrodynamic actuators and sensors |
6156181, | Apr 16 1996 | Caliper Technologies, Corp. | Controlled fluid transport microfabricated polymeric substrates |
6174673, | Jun 16 1997 | BASF Enzymes LLC | High throughput screening for novel enzymes |
6175669, | Mar 30 1998 | Lawrence Livermore National Security LLC | Optical coherence domain reflectometry guidewire |
6176609, | Oct 13 1998 | V & P Scientific, Inc.; V&P SCIENTIFIC, INC | Magnetic tumble stirring method, devices and machines for mixing in vessels |
6177479, | Mar 30 1998 | JAPAN AS REPRESENTED BY DIRECTOR OF NATIONAL FOOD RESEARCH INSTITUTE MINISTRY OF AGRICULTURE, FORESTRY AND FISHERIES; Bio-Oriented Technology Research Advancement Institution | Continuous manufacturing method for microspheres and apparatus |
6221654, | Sep 25 1996 | California Institute of Technology | Method and apparatus for analysis and sorting of polynucleotides based on size |
6281254, | Sep 17 1998 | JAPAN AS REPRESENTED BY DIRECTOR OF NATIONAL FOOD RESEARCH INSTITUTE, MINISTRY OF AGRICULTURE, FORESTRY, AND FISHERIES; Bio-Oriented Technology Research Advancement Institution | Microchannel apparatus and method of producing emulsions making use thereof |
6337740, | Jul 16 1996 | Caliper Life Sciences, Inc | Microfluidic devices for electrophoretic analysis of materials |
6344325, | Sep 25 1996 | California Institute of Technology | Methods for analysis and sorting of polynucleotides |
6357907, | Jun 15 1999 | V & P Scientific, Inc.; V&P SCIENTIFIC, INC | Magnetic levitation stirring devices and machines for mixing in vessels |
6384915, | Mar 30 1998 | Lawrence Livermore National Security LLC | Catheter guided by optical coherence domain reflectometry |
6391559, | Apr 17 1997 | Applied Biosystems, LLC | Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly |
6403338, | Apr 04 1997 | Mountain View | Microfluidic systems and methods of genotyping |
6429025, | Jun 28 1996 | CALIPER TECHNOLOGIES CORP | High-throughput screening assay systems in microscale fluidic devices |
6440706, | Aug 02 1999 | Johns Hopkins University, The | Digital amplification |
6466713, | Aug 18 2000 | Lawrence Livermore National Security LLC | Optical fiber head for providing lateral viewing |
6479299, | Jun 28 1996 | Caliper Technologies Corp. | Pre-disposed assay components in microfluidic devices and methods |
6488895, | Oct 29 1998 | Caliper Technologies Corp. | Multiplexed microfluidic devices, systems, and methods |
6494104, | Mar 22 2000 | Sumitomo Wiring Systems, Ltd. | Bend test for a wire harness and device for such a test |
6509085, | Dec 10 1997 | Caliper Technologies Corp. | Fabrication of microfluidic circuits by printing techniques |
6521427, | Sep 16 1997 | CENTOCOR, INC | Method for the complete chemical synthesis and assembly of genes and genomes |
6522407, | Jan 22 1999 | Lawrence Livermore National Security LLC | Optical detection dental disease using polarized light |
6524456, | Aug 12 1999 | UT-Battelle, LLC | Microfluidic devices for the controlled manipulation of small volumes |
6540895, | Sep 23 1997 | California Institute of Technology | Microfabricated cell sorter for chemical and biological materials |
6551841, | May 01 1992 | The Trustees of the University of Pennsylvania | Device and method for the detection of an analyte utilizing mesoscale flow systems |
6558916, | Aug 02 1996 | Caliper Life Sciences, Inc | Cell flow apparatus and method for real-time measurements of patient cellular responses |
6575188, | Jul 26 2001 | HANDYLAB, INC | Methods and systems for fluid control in microfluidic devices |
6602472, | Oct 01 1999 | Agilent Technologies Inc | Coupling to microstructures for a laboratory microchip |
6637463, | Oct 13 1998 | ROCHE NIMBLEGEN, INC | Multi-channel microfluidic system design with balanced fluid flow distribution |
6660367, | Mar 08 1999 | Caliper Life Sciences, Inc | Surface coating for microfluidic devices that incorporate a biopolymer resistant moiety |
6663619, | Mar 04 1998 | AMO Manufacturing USA, LLC | Method and systems for laser treatment of presbyopia using offset imaging |
6664044, | Jun 19 1997 | Toyota Jidosha Kabushiki Kaisha | Method for conducting PCR protected from evaporation |
6670153, | Sep 14 2000 | CALIPER TECHNOLOGIES CORP | Microfluidic devices and methods for performing temperature mediated reactions |
6767706, | Jun 05 2000 | California Institute of Technology | Integrated active flux microfluidic devices and methods |
6773566, | Aug 31 2000 | Advanced Liquid Logic | Electrostatic actuators for microfluidics and methods for using same |
6833242, | Sep 23 1997 | California Institute of Technology | Methods for detecting and sorting polynucleotides based on size |
6900021, | May 16 1997 | UNIVERSITY OF ALBERTA, THE | Microfluidic system and methods of use |
6905885, | Jun 12 2001 | Lawrence Livermore National Security LLC | Portable pathogen detection system |
6960437, | Apr 06 2001 | California Institute of Technology | Nucleic acid amplification utilizing microfluidic devices |
6964846, | Apr 09 1999 | Exact Sciences Corporation | Methods for detecting nucleic acids indicative of cancer |
7010391, | Mar 28 2001 | HandyLab, Inc. | Methods and systems for control of microfluidic devices |
7041481, | Mar 14 2003 | Lawrence Livermore National Security LLC | Chemical amplification based on fluid partitioning |
7052244, | Jun 18 2002 | COMMISSARIAT A L ENERGIE ATOMIQUE | Device for displacement of small liquid volumes along a micro-catenary line by electrostatic forces |
7081336, | Jun 25 2001 | Georgia Tech Research Corporation | Dual resonance energy transfer nucleic acid probes |
7091048, | Jun 28 1996 | Caliper Life Sciences, Inc | High throughput screening assay systems in microscale fluidic devices |
7094379, | Oct 24 2001 | COMMISSARIAT A L ENERGIE ATOMIQUE | Device for parallel and synchronous injection for sequential injection of different reagents |
7118910, | Nov 30 2001 | FLUIDIGM CORPORATION - A DELAWARE CORPORATION | Microfluidic device and methods of using same |
7129091, | May 09 2002 | UNIVERSITY OF CHICAGO, THE | Device and method for pressure-driven plug transport and reaction |
7188731, | Aug 26 2002 | Lawrence Livermore National Security LLC | Variable flexure-based fluid filter |
7192557, | Mar 28 2001 | HandyLab, Inc. | Methods and systems for releasing intracellular material from cells within microfluidic samples of fluids |
7198897, | Dec 19 2001 | Brandeis University | Late-PCR |
7238268, | Aug 12 1999 | UT-Battelle, LLC | Microfluidic devices for the controlled manipulation of small volumes |
7244567, | Jan 29 2003 | 454 Corporation | Double ended sequencing |
7252943, | Oct 03 2002 | United Kingdom Research and Innovation | In Vitro sorting method |
7268167, | Feb 23 2001 | Japan Science and Technology Corporation | Process for producing emulsion and microcapsules and apparatus therefor |
7268179, | Feb 03 1997 | Cytonix LLC | Hydrophobic coating compositions, articles coated with said compositions, and processes for manufacturing same |
7270786, | Mar 28 2001 | HandyLab, Inc. | Methods and systems for processing microfluidic samples of particle containing fluids |
7279146, | Apr 17 2003 | FLUIDIGM CORPORATION - A DELAWARE CORPORATION | Crystal growth devices and systems, and methods for using same |
7294503, | Sep 15 2000 | California Institute of Technology | Microfabricated crossflow devices and methods |
7312085, | Apr 01 2002 | STANDARD BIOTOOLS INC | Microfluidic particle-analysis systems |
7323305, | Jan 29 2003 | 454 Life Sciences Corporation | Methods of amplifying and sequencing nucleic acids |
7368233, | Dec 07 1999 | Exact Sciences Development Company, LLC | Methods of screening for lung neoplasm based on stool samples containing a nucleic acid marker indicative of a neoplasm |
7459315, | Apr 17 1997 | Applied Biosystems, LLC | Miniaturized assembly and method of filling assembly |
7514210, | Sep 13 2000 | United Kingdom Research and Innovation | Compartmentalised self replication method for in vitro evolution of molecular libraries |
7595195, | Feb 11 2003 | Regents of the University of California, The | Microfluidic devices for controlled viscous shearing and formation of amphiphilic vesicles |
7622280, | Nov 16 2001 | United Kingdom Research and Innovation | Emulsion compositions |
7682565, | Dec 20 2002 | Life Technologies Corporation | Assay apparatus and method using microfluidic arrays |
7833708, | Apr 06 2001 | California Institute of Technology | Nucleic acid amplification using microfluidic devices |
7842457, | Jan 29 2003 | 454 Corporation | Bead emulsion nucleic acid amplification |
7927797, | Jan 28 2004 | 454 Corporation | Nucleic acid amplification with continuous flow emulsion |
7972778, | Apr 17 1997 | Applied Biosystems, LLC | Method for detecting the presence of a single target nucleic acid in a sample |
8067159, | Apr 17 1997 | Applied Biosystems, LLC | Methods of detecting amplified product |
8257925, | Apr 17 1997 | Applied Biosystems, LLC; The United States of America, as represented Department of Health and Human Services | Method for detecting the presence of a single target nucleic acid in a sample |
8278071, | Apr 17 1997 | Applied Biosystems, LLC | Method for detecting the presence of a single target nucleic acid in a sample |
8304193, | May 09 2002 | The University of Chicago | Method for conducting an autocatalytic reaction in plugs in a microfluidic system |
9127310, | Feb 12 2010 | BIO-RAD LABORATORIES, INC | Digital analyte analysis |
9968933, | May 09 2002 | The University of Chicago | Device and method for pressure-driven plug transport and reaction |
20010000752, | |||
20010039014, | |||
20010041357, | |||
20010046701, | |||
20020021866, | |||
20020058332, | |||
20020093655, | |||
20020119459, | |||
20020141903, | |||
20020164820, | |||
20030003441, | |||
20030027244, | |||
20030032172, | |||
20030170698, | |||
20030204130, | |||
20040038385, | |||
20040074849, | |||
20040171055, | |||
20040180346, | |||
20040185484, | |||
20040208792, | |||
20040224325, | |||
20050032240, | |||
20050042639, | |||
20050042684, | |||
20050064460, | |||
20050079510, | |||
20050221279, | |||
20050221373, | |||
20050227264, | |||
20050239192, | |||
20060057599, | |||
20060094108, | |||
20060172336, | |||
20060263264, | |||
20070227890, | |||
20080138815, | |||
20080145923, | |||
20080153091, | |||
20080160525, | |||
20080161420, | |||
20080166793, | |||
20080169184, | |||
20080171324, | |||
20080171325, | |||
20080171326, | |||
20080171327, | |||
20080171380, | |||
20080171382, | |||
20080213766, | |||
20090035838, | |||
20090325236, | |||
AU2004225691, | |||
EP672834, | |||
EP843589, | |||
EP1053790, | |||
EP1522582, | |||
RE41780, | Mar 14 2003 | Lawrence Livermore National Security LLC | Chemical amplification based on fluid partitioning in an immiscible liquid |
RE43365, | Mar 14 2003 | Lawrence Livermore National Security, LLC | Apparatus for chemical amplification based on fluid partitioning in an immiscible liquid |
RE45539, | Mar 14 2003 | Lawrence Livermore National Security, LLC | Method for chemical amplification based on fluid partitioning in an immiscible liquid |
RE46322, | Mar 14 2003 | Lawrence Livermore National Security, LLC | Method for chemical amplification based on fluid partitioning in an immiscible liquid |
RE47080, | Mar 14 2003 | Lawrence Livermore National Security, LLC | Chemical amplification based on fluid partitioning |
WO200222869, | |||
WO2081490, | |||
WO198402000, | |||
WO1992001812, | |||
WO1994005414, | |||
WO1998047003, | |||
WO199841869, | |||
WO200107159, | |||
WO200157263, | |||
WO2002023163, | |||
WO2002081490, | |||
WO2002081729, | |||
WO2003016558, | |||
WO2003072258, | |||
WO2003106678, | |||
WO2005010145, | |||
WO2005075683, | |||
WO2008109878, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 28 2018 | Lawrence Livermore National Security, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Aug 24 2024 | 4 years fee payment window open |
Feb 24 2025 | 6 months grace period start (w surcharge) |
Aug 24 2025 | patent expiry (for year 4) |
Aug 24 2027 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 24 2028 | 8 years fee payment window open |
Feb 24 2029 | 6 months grace period start (w surcharge) |
Aug 24 2029 | patent expiry (for year 8) |
Aug 24 2031 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 24 2032 | 12 years fee payment window open |
Feb 24 2033 | 6 months grace period start (w surcharge) |
Aug 24 2033 | patent expiry (for year 12) |
Aug 24 2035 | 2 years to revive unintentionally abandoned end. (for year 12) |